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Abstract

The diagnosis of autism spectrum disorder
(ASD) is a complex, challenging task as it de-
pends on the analysis of dynamic interactional
behaviors during diagnostic conversations, in-
cluding the degree to and ways in which the in-
dividual being assessed coordinates their verbal
and non-verbal behaviors with their interlocutor
(interpersonal coordination), and the degree to
which and ways in which they engage in repeti-
tive behaviors (intrapersonal coordination). In
this paper, we look at interactional coordina-
tion during diagnostic conversations between
a psychologist and children who either are typ-
ically developing (TD) or have a diagnosis of
ASD. Using Cross-Recurrence Quantification
Analysis, a method developed for investigating
the behavior of dynamic systems, we measure
the coordination of non-verbal behaviors be-
tween child and psychologist and test whether
these measures can be predictive of diagnosis
outcome.

1 Introduction

Autism spectrum disorder (ASD) refers to a range
of developmental disabilities that affect people’s
communication, interaction, learning, and other so-
cial behaviors. Adolescents with ASD generally
exhibit impairments in social interaction (Amer-
ican Psychiatric Organization, 2013), including
difficulty in reciprocating verbal and non-verbal
behaviors appropriately as well as repetitive be-
haviors (Tager-Flusberg and Caronna, 2007; Tager-
Flusberg, 1999; Mundy and Markus, 1997; Landa,
2000). Previous research on ASD has examined
characteristic difficulties in understanding both ver-
bal and non-verbal communication behaviors in-
cluding following eye gaze (Baron-Cohen et al.,
1997), recognizing and imitating gestures (Hob-
son and Lee, 1999; Williams et al., 2004) and fa-
cial expressions (Drimalla et al., 2021), as well
as proper use of language pragmatics and verbal
reciprocity (Norbury and Bishop, 2002).

A standard diagnostic tool for autism, the
Autism Diagnostic Observation Schedule (Lord
et al., 2000), relies on qualitative coding by expert
assessors for the presence or absence of certain
behavioral markers across multiple structured and
naturalistic conversational scenarios. The assessor
has to simultaneously engage the child in conver-
sation, monitor their own conversational behav-
ior, and make diagnostic notes based on their ob-
servations. Understanding the cognitive demands
and subjective nature of this process, previous re-
search has explored the efficacy of machine learn-
ing methods for identifying behavioral signals of
ASD in conversation data (Fusaroli et al., 2019,
2017, 2022). Recent years have seen much more
work on computational tools for providing fine-
grained, quantitative measurements of conversa-
tional behaviors in autism diagnosis conversations.
This includes the use of acoustic-prosodic features
such as pitch (Kiss et al., 2012), intonation, and
rhythm (Bone et al., 2015); language features such
as word usage (Song et al., 2021; Prud’hommeaux
et al., 2011), discourse expressions (Yang et al.,
2021; Chowdhury et al., 2023), social and cognitive
linguistic word counts (Kumar et al., 2016), seman-
tic similarity (Goodkind et al., 2018); pose (Ko-
jovic et al., 2021) and mouth movement (Parish-
Morris et al., 2018). However, most of this work
has examined behaviors either at the individual ut-
terance level, or via conversation-level aggregate
statistics. This means that the moment-to-moment
dynamic aspects of coordination in conversation
are not well captured. Prior work suggests that
typically developing children have been shown
to spontaneously modify their interaction patterns
more than children with ASD to achieve coordi-
nation (Marsh et al., 2013; Drimalla et al., 2021).
Quantifying interactional coordination under differ-
ent conversation contexts during autism diagnosis
could thus provide insights into an individual’s be-
havioral flexibility to adapt across conversational
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contexts and its influence on diagnostic outcomes.
Contributions: First, we introduce recurrence
quantification analysis (RQA) and cross-recurrence
quantification analysis (CRQA), techniques used
in a variety of other fields but almost never used
in NLP. RQA and CRQA permit fine-grained mod-
eling of the dynamic systems reflected in one or
two time series. Second, we use RQA and CRQA
to analyze the dynamic synchronization of non-
verbal conversational cues exhibited through the
body movements of conversational interlocutors,
focusing on conversational diagnostics for autism.
We explore the following questions:

• Does interactional coordination evolve differ-
ently for typically developing (TD) children
and children with ASD?

• Does interactional coordination during autism
diagnostic conversations differ by conversa-
tional context?

• Can we classify children with ASD and TD
children using interactional coordination mea-
sures as indicators?

2 Background

Generally speaking, in a conversation or interac-
tion, the interlocutors will coordinate their verbal
and non-verbal behaviors (Brennan and Hanna,
2009; Reitter and Moore, 2014; Rasenberg et al.,
2020). This dynamic process of coordination
is difficult to model or analyze using computa-
tional approaches, which generally require fixed-
length representations. Traditionally, computa-
tional researchers extract summary statistics over
the conversation or segments of the conversation
(Stenchikova and Stent, 2007; Danescu-Niculescu-
Mizil and Lee, 2011; Jones et al., 2014; Dubuis-
son Duplessis et al., 2021). By contrast, with
CRQA it is possible to computationally model the
fine-grained patterning of moment-to-moment co-
ordination in conversation.

2.1 Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) and
Cross-Recurrence Quantification Analysis (CRQA)
are non-parametric, non-linear techniques that can
be used to analyze any (set of) time series (Zbilut
et al., 1998). CRQA has been used by cognitive
scientists and psychologists to model the coordina-
tion of behaviors by conversational interlocutors

(e.g. Dale and Spivey, 2006; Fusaroli et al., 2014;
Kodama et al., 2021; Romero and Paxton, 2023),
but this technique is so far almost unknown to the
NLP community1.

RQA converts an input time series (with some
measure along the y axis and time along the x axis)
into a phase-space representation of an estimate of
the underlying dynamics of the system that gener-
ated it (Webber Jr and Zbilut, 2005). CRQA, an
extension of RQA, is used for two time-series (Wal-
lot and Leonardi, 2018). For example, if our only
measure of a conversational interlocutor’s behavior
is the position of their nose (an estimate of direc-
tionality of gaze), then our time series would be the
x and y coordinates of the positions of each partic-
ipant’s nose over time, but the underlying system
would include much more information.

CRQA has been applied to quantify interactions
between people in a wide range of modalities. It
has been used to quantify heart rate coordination
during performances (Konvalinka et al., 2011) and
while completing joint construction tasks (Fusaroli
et al., 2016). Ramenzoni et al. (2011) found that in-
terpersonal coordination in motor behaviors varies
due to the nature of the task performed and can
affect individual and joint performance differently.
Similarly, Wallot et al. (2016) observed that move-
ment coordination in joint construction tasks de-
pends on the task context, and coordination can
affect performance positively or negatively depend-
ing on the type of interactions demanded by the
task.

CRQA has also been used to explore conver-
sational scenarios to measure the level of coor-
dination through behavior matching in speech,
gaze (Richardson and Dale, 2005), and gestures
(Louwerse et al., 2012). Shared knowledge be-
tween interlocutors that work as a common ground
is found to influence coordination achieved dur-
ing dialogue (Richardson et al., 2007). Richardson
et al. (2009) showed that the conversation partner’s
belief about the contextual information available
to the other influences their language usage and
coordination. Leonardi (2012) posed conversation
as a coordination task where alignment in the form
of recurrence can happen in verbal and non-verbal
interaction involved, including lexical, syntactic,
and movement levels.

1We could find only one paper in the ACL Anthology
where RQA is used, (Chinaei et al., 2017); other NLP-related
papers that use RQA are (Allen et al., 2017; Dale et al., 2018;
Song et al., 2023), two of which are unpublished preprints.

25



The complex dynamics of child language and
speech usage in dyadic interaction with adults has
been studied using recurrence quantification mea-
sures (Cox and van Dijk, 2013) where they found
increased dynamic adaptation as the child’s lan-
guage developed with age. Similarly, Dale and
Spivey (2006) studied conversations between child
and caregiver, and found that the child’s ability to
coordinate reflects their language acquisition and
development. Warlaumont et al. (2010) studied in-
teractional dynamics during conversations between
child and caregiver and found recurrent delayed re-
sponse as an indicator of autism. In a similar study
using recurrence analysis, Romero et al. (2016)
found differences in interpersonal coordination pat-
terns between children with autism and typically
developing across a variety of tasks.

In prior research, several CRQA-based metrics
have been used to measure coordination (e.g.
Fusaroli et al., 2014; Reuzel et al., 2013; Richard-
son and Dale, 2005; Louwerse et al., 2012). The
ones we used here are:

• Recurrence Rate (RR) measures the amount
of similarity between the trajectories of the
two systems, or the amount of time in which
interlocutors showed any kind of interactional
coordination during their conversation.

• Determinism (DET) measures the determin-
ism or stability of the coordination.

• Longest Line Length (MaxLine) is another
measure of the stability of the coordination.

• Entropy (ENTR) in this context provides a
measure of the regularity or irregularity of the
coordination over time. Where low ENTR im-
plies regularity of movement and high ENTR
means more complex, chaotic movement.

• Trapping time (TT) measures the perma-
nence of coordination between the two series.

3 Data

We used video data collected during sessions of the
Autism Diagnostic Observation Schedule - Second
Edition (ADOS-2), an assessment tool used to cate-
gorize ASD (Lord et al., 2000). In this assessment,
a child and a certified adult assessor (usually a psy-
chologist) engage in a sequence of semi-structured
activities (subtasks). Our data includes fourteen

different subtasks from Module 3 of the ADOS-2,
which is designed for verbally fluent children and
adolescents. Depending on the subtask, the child
may be asked to engage in a spontaneous conversa-
tion (tell a story, play with toys with the assessor,
act out a cartoon, or simply chat) or participate in
a structured interview on topics such as social life,
friends, or emotions.

Our data involved 29 sessions, each with a dif-
ferent child, administered by a single psychologist
assessor. Each session lasted on average 40-60 min-
utes. 14 children had been previously diagnosed
with autism (3 Female) and 15 were age-matched
typically developing (TD) children (5 Female) who
had not received any diagnosis of a mental disor-
der in the past. All the children were between the
ages of 10 and 15. Those in the ASD group had
a mean age of 12.36 years (SD = 1.60) and typi-
cally developing children were on average 12.20
years old (SD = 1.93). Of the 14 children with
ASD, nine of them were white (no Hispanics) and
5 of them were African American. For the TD
group, there were 13 white (2 Hispanics) children,
1 African American child, and 1 Asian child. We
split each session recording by subtask using an-
notations done by a research assistant; the average
length of these videos is 5 minutes. We cropped
each video into left (child) and right (assessor) par-
ticipant videos, each of resolution 640x720 pixels.
We downsampled the videos to 10 frames per sec-
ond for efficiency in analysis2. We processed the
left and right participant videos for each subtask
using OpenPose (Cao et al., 2017; Cao et al., 2019),
obtaining time series of x- and y-coordinates for
25 skeletal keypoints of the person present in the
video. In the experiments reported here, we used
only four of these key points: nose (head), neck
(body), and wrists (hand). This allowed us to cap-
ture the temporal dynamics of, and relationships
between, the child’s and assessor’s non-verbal be-
haviors, without using on-body sensors.

The collection and use of this data were ap-
proved by the IRBs at the institutions of the corre-
sponding authors and where the data was collected.

4 Method

In this section, we describe how we fit a CRQA
model to our data.

2People’s movements over time periods of less than 1/10
second are not typically trackable by AI pose tracking soft-
ware.
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Vertical Head Movement Horizontal Body Movement
Indicator F p−value
DET 21.668 < 0.001
TT 6.082 0.05
ENT 21.173 < 0.001
Lmax (V) 4.918 < 0.05
Delay 84.343 < 0.0001

Indicator F p−value
DET 17.615 < 0.001
TT 14.810 < 0.0001
ENT 37.200 < 0.0001
Lmax (V) 11.363 < 0.01
Delay 100.395 < 0.0001

Horizontal Hand Movement Vertical Hand Movement
Indicator F p−value
DET 30.069 < 0.0001
TT 20.374 < 0.005
ENT 32.645 < 0.0001
Lmax (V) 18.810 < 0.005
Delay 78.911 < 0.0001

Indicator F p−value
DET 4.748 < 0.05
TT 1.007 0.3247
ENT 17.712 < 0.001
Lmax (V) 17.228 < 0.001
Delay 36.080 < 0.0001

Table 1: (Section 5.1) Interpersonal coordination varies between first and last subtasks (results of mixed ANOVA).

4.1 Parameter Selection

For quantifying interactional dynamics between
time series pairs of non-verbal conversational be-
havior, we need to first estimate a set of parameters
to reconstruct the phase space dynamics of the time
series of interest (Takens, 2006): the embedding
dimension m, the delay d, and the radius r.
Delay: The delay d is used to recover the latent
dimensions by using embedded copies of the time
series at different delays. We estimated delay d
using the approach described in prior work (Wallot
and Leonardi, 2018). Specifically, we used the de-
lay value at the first local minimum of the average
mutual information function (AMI) of the compo-
nent time-series, since the time-series is most inde-
pendent of itself at that delay (Abarbanel, 2012).
Embedding dimension: The embedding dimen-
sion m is an estimate of the number of latent di-
mensions responsible for the dynamics. We used
the false nearest neighbor (FNN) method (Kennel
et al., 1992) to estimate the embedding dimension
m. Using the delay parameter to embed the time
series, we used the embedding obtained at the first
local minimum of FNN.
Radius: The radius r specifies the interval space
within which two values are counted as recurrent,
as continuous-valued time series usually never re-
peat at exactly the same value. We chose r by
incrementally increasing it until RR reached 4%,
which is within the recommended range of 1-5%
for behavioral data (Webber Jr and Zbilut, 2005)
to balance stochastic and deterministic components
of the signal.

As we separately estimated d, m, and r for each
analysis, this did not allow us to compare RR
across participants and tasks. The dynamics of
each conversation were too different to use a fixed
set of parameters for all. We used PyRQA (Rawald
et al., 2017) for the recurrence analysis and tea-
spoon (Munch and Khasawneh, 2022) for parame-
ter selection for phase space reconstruction.

We limited our analysis to vertical movement of
the head (e.g. nodding), horizontal movement of
the body (e.g. postural sway or proximity due to
moving closer or apart from the other), and hori-
zontal and vertical movement of hands (gestures),
resulting in four pairs of time series of non-verbal
cues per conversation. Note that using raw move-
ment as non-verbal behavioral cues is advantageous
as it allows us to compare conversations that are
seemingly different activity-wise yet involve non-
verbal behaviors that are universal to conversations
in general.

5 Results

5.1 How does interpersonal coordination
change over time and by diagnostic
group?

In our first experiment, we examined which move-
ments exhibit greater coordination at the end of
ADOS diagnostic conversations vs the beginning.
In each of our conversations, participants com-
pleted subtasks from Module 3 of ADOS-2 in order;
we compared coordination in the last subtask vs
the first one. This gave n = 29 observations (one
pair of subtasks per participant). We used a mixed
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Vertical Head Movement Horizontal Body Movement
Indicator Estimates p−value
DET 0.001 0.919
TT −0.004 0.628
ENT 0.001 0.847
Lmax (V) −0.473 0.537
Delay −3.552 0.082

Indicator Estimates p−value
DET −0.011 0.429
TT −0.005 0.548
ENT 0.002 0.843
Lmax (V) −2.288 0.278
Delay −8.679 < 0.01

Horizontal Hand Movement Vertical Hand Movement
Indicator Estimates p−value
DET −0.004 0.781
TT −0.003 0.706
ENT 0.004 0.279
Lmax (V) −0.530 0.723
Delay −5.965 < 0.05

Indicator Estimates p−value
DET −0.007 0.670
TT 0.001 0.934
ENT 0.003 0.668
Lmax (V) 1.189 0.149
Delay −2.900 0.204

Table 2: (Section 5.2.1) Interpersonal coordination generally does not vary by diagnostic group (results of linear
mixed model).

Vertical Head Movement Horizontal Body Movement
Indicator Estimates p−value
DET 0.002 0.802
TT 0.005 0.532
ENT 0.002 0.708
Lmax (V) 1.460 < 0.05
Delay −3.649 < 0.05

Indicator Estimates p−value
DET 0.011 0.443
TT 0.005 0.451
ENT 0.001 0.872
Lmax (V) 3.225 0.129
Delay −10.092 < 0.001

Horizontal Hand Movement Vertical Hand Movement
Indicator Estimates p−value
DET 0.013 0.283
TT −0.010 0.082
ENT 0.003 0.337
Lmax (V) 2.733 0.051
Delay −6.942 < 0.005

Indicator Estimates p−value
DET 0.001 0.979
TT −0.021 < 0.05
ENT −0.002 0.676
Lmax (V) 0.788 0.551
Delay −4.496 < 0.05

Table 3: (Section 5.2.1) Interpersonal coordination varies by subtask type (results of linear mixed model).

2(diagnostic group: TD vs. ASD) x 2(task order:
first vs. last) ANOVA for our experiment.

Our results are shown in Table 1. Interpersonal
coordination between child and psychologist dif-
fers significantly (p < 0.05) between the first and
last subtask for all modalities, for all metrics other
than Trapping Time (which indicates the propor-
tion of time the interlocutors stay in a coordinated
state).

For typically developing children, Trapping
Time improved between the first task (construction
with a puzzle) and the last task (creating a story
using props), while for the children with ASD, it
remained similar. However, we did not observe a
significant difference between the two diagnostic

groups for any of the movement modalities, per-
haps due to the small number of observations. Prior
work on synchronization during joint work made
a similar observation: practice and task difficulty
improved coordination over time (Louwerse et al.,
2012). Here, the subtask type can be considered
analogous to task difficulty, so we next look at
how coordination changes depending on the sub-
task type.

5.2 How does interpersonal coordination
change with subtask type and diagnostic
group?

In our second experiment, we grouped the ADOS-2
module 3 conversation-centric tasks into two types:
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Vertical Head Movement Horizontal Body Movement
Indicator Estimates p−value
DET 0.023 < 0.05
TT 0.010 0.059
ENT 0.000 0.829
Lmax (V) 2.078 < 0.01
Delay −1.644 0.399

Indicator Estimates p−value
DET −0.027 0.111
TT −0.017 0.171
ENT 0.000 0.866
Lmax (V) −0.622 0.613
Delay −6.444 < 0.05

Horizontal Hand Movement Vertical Hand Movement
Indicator Estimates p−value
DET −0.018 0.439
TT −0.013 0.454
ENT 0.169 0.909
Lmax (V) −0.622 0.613
Delay −5.563 < 0.05

Indicator Estimates p−value
DET −0.010 0.576
TT −0.007 0.650
ENT 0.000 0.872
Lmax (V) −0.130 0.917
Delay −2.051 0.396

Table 4: (Section 5.2.2) Intra-personal coordination generally does not vary by diagnostic group (results of linear
mixed model).

(a) Vertical Head Movement (b) Horizontal Body Movement

(c) Horizontal Hand Movement (d) Vertical Hand Movement

Figure 1: Difference in latency for interpersonal coordination in movement

naturalistic and interview. Naturalistic subtasks are
those in which the interlocutors engage in unstruc-
tured conversations (discussing a picture, talking
about a topic of interest, silent play, or unstruc-
tured conversation). Interview subtasks are those
in which the assessor uses a structured sequence of

questions (interviews about social life, friends, or
emotions). This gave n = 169 observations (three
subtasks per participant per subtask type).

Repetitive behavior is a symptom of autism;
therefore, we looked at both interpersonal coor-
dination (coordination between interlocutors) us-
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Model Acc. Prec. Recall F1
Naive Bayes 0.48 0.50 0.48 0.40
Decision Tree 0.61 0.68 0.61 0.62
Random Forest 0.62 0.68 0.62 0.63
Adaboost 0.60 0.76 0.60 0.63

Model Acc. Prec. Recall F1
Naive Bayes 0.30 0.11 0.30 0.15
Decision Tree 0.66 0.72 0.66 0.66
Random Forest 0.61 0.65 0.61 0.61
Adaboost 0.61 0.66 0.61 0.61

Table 5: Classification of autism diagnosis using CRQA metrics of interpersonal coordination (left) and RQA
metrics of intrapersonal coordination (right).

ing CRQA, and intrapersonal coordination (self-
coordination of the child’s behaviors) using RQA.
We used linear mixed-effects models with the di-
agnostic group as the between-group factor and
conversation type as the within-group factor.

5.2.1 Interpersonal coordination
Our results are shown in Tables 2 and 3.

Coordination measures decreased or remain
nearly unchanged in all 4 behavioral modalities
for children with ASD compared to children who
are typically developing (Table 2). However, De-
lay (the latency at which coordination happens)
is significantly lower for head movement, hand
horizontal movement, and vertical hand move-
ment (p < 0.05) in naturalistic subtasks com-
pared to interview subtasks (Table 3). The negative
coefficients for all three cases (−3.649, −6.942,
−4.496) suggest that children respond more imme-
diately in naturalistic subtasks, perhaps because of
the relaxed nature of the conversations. Further-
more, there are significant diagnostic group differ-
ences in horizontal body movement and horizontal
hand movement for Delay (p < 0.05). The nega-
tive coefficients for both (−8.679, −5.965) suggest
that movement latency is reduced for children with
ASD compared to children who are typically devel-
oping.

5.2.2 Intrapersonal coordination
Our results are shown in Table 4. We found no sig-
nificant differences in intrapersonal coordination
between naturalistic and interview subtask types.
Delay (the latency at which coordination happens)
is significantly lower for children with ASD than
for children who are typically developing. For verti-
cal head movement (which captures behaviors such
as nodding), intrapersonal coordination shows a
higher deterministic pattern for children with ASD.
This is also evident from Figure 1, which depicts
the distribution of coordination delay for the two
subtask types between the two diagnostic groups.
For children with ASD, in all 4 behavioral modali-
ties, delay either increased or remain unchanged.

5.3 Can information from RQA and CRQA
analyses be successfully used in diagnostic
classification models?

Recurrence analysis metrics from time series gener-
ated from wearable sensors have been used for de-
tecting repetitive motor movement (Großekathöfer
et al., 2017). In our third experiment, we used
recurrence analysis metrics from time series gener-
ated via AI-based human body-skeleton detection
in ADOS conversational assessments as features
for the classification of autism diagnosis.

As features, we used the same five recurrence
analysis metrics as above (DET, TT, ENT, Lmax,
and Delay) obtained from vertical head movement,
horizontal body movement, and horizontal and ver-
tical hand movement data from each subtask, plus
the task itself, This gave 6 features for each of
n = 1568 observations (four movements for each
of 14 subtasks for each of 29 participating conver-
sational pairs, with 14 subtasks missing because
the children declined to participate).

To ensure generalization for out-of-sample test-
ing, we performed cross-validation by using leave-
n-user-out 3. We report results averaged over 10
runs, where 80% (23) of children were randomly
selected for training and 20% (6) for testing in each
run. We experimented with simple, relatively in-
terpretable classification approaches: Naive Bayes,
Decision Tree, Random Forest, and Adaboost4. All
experiments were run using the scikit-learn and
sciPy libraries with default parameter settings. We
report accuracy, precision, recall, and F1-score.

We trained one set of models using RQA met-
rics capturing intrapersonal coordination and an-
other using CRQA metrics capturing interpersonal

3We chose this over 10-fold cross-validation, as this en-
sures our training set does not include information from a
child who is also present in our test set.

4Our goal in this work is to give assessors assessment
support tools, not to support automated diagnosis. For this
reason, the interpretability of model decisions is important.
In addition to the results presented here, we tried multi-layer
perceptrons and support vector machines, which performed
worse than a random baseline.
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coordination. Our results are shown in Table 5.
Decision trees were the best-performing approach
with RQA across all metrics; tree-based models
(Adaboost, Random Forests, and decision trees)
performed similarly with CRQA metrics. In both
cases, Naive Bayes performs worse than a random
baseline; this can be attributed to its strong feature
independence assumption. No modeling approach
gave results good enough likely to make it a use-
ful assessment support tool for ADOS assessors;
however, it is possible that by combining CRQA or
RQA-derived features with acoustic/prosodic and
language-derived features, we could obtain better
results (see Chowdhury et al., 2023).

6 Limitations

We would like to emphasize that this study is pre-
liminary. The sample set is relatively small, and
the number of non-verbal behaviors we had the
opportunity to evaluate is also relatively small.

In addition, although our results and those of
others cited in this paper show that automated mea-
sures extracted from autism assessments may be
somewhat predictive of autism diagnosis, we in no
way mean to imply that it is now or will soon be
possible (or even desirable) to automate autism di-
agnosis. Especially since the tools available to us
at the moment, like OpenPose need to be improved
to consistently extract movement data from video
(Chung et al., 2022). We would like to drive this
point home:

• There is an element of subjectivity in manual
assessment diagnosis of autism; yet, all the
diagnosis data that we have comes from these
manual assessments. This means the labels
are noisy.

• There are demographic limitations in the avail-
able data. The relatively small amount of data
available from manual assessments for autism
is not balanced for important factors including
sex, gender, ethnicity, race, country of origin,
language, age, educational status, or income
status. This means the data is biased.

• Given these concerns, and the growing litera-
ture on biased outcomes of automated assess-
ments for marginalized populations, it is our
position that any decision involving a signifi-
cant outcome for a human being should have
a human involved.

Our long-term goal is therefore not to provide a
machine learning-based "autism test", but to pro-
vide machine learning-based automatic measures
that an assessor can use to examine the acceptabil-
ity of assessment sessions and to inform their own
diagnostic decisions.

7 Conclusions and Future Work

In this work, we explore a method for quantify-
ing interactional coordination in autism assessment.
We use non-verbal movement exhibited through
head, body, and hand positions to capture move-
ment dynamics during conversation and measure
coordination over time. We show that coordination
between interlocutors changes over time for both
children who are typically developing and children
who exhibit symptoms of ASD.

Importantly, we find that the level and stability
(as measured by Lmax and TT) of both inter-and
intra-personal coordination do not generally differ
by diagnostic group. We also find that coordination
delay was significantly lower for the ASD group in
both interpersonal and intra-personal coordination,
which conforms to the existing literature on re-
sponse delay as a symptom of autism. Interestingly,
this finding does provide some insight into how
children in each diagnostic group exhibit different
dynamics, even though these differences were not
captured by ENT . Contextual information such
as subtask type (interview vs. naturalistic) does
influence the degree of coordination between the
interlocutors, but does not affect the child’s coordi-
nation within their own behavior.

In future research, we plan to extend our analy-
sis to other interactional behaviors including non-
verbal cues such as facial expressions, eye gaze and
verbal cues such as acoustic-prosodic behaviors
(pitch, intonation), word usage, and discourse us-
age for measuring interpersonal and intra-personal
coordination during diagnostic conversations.
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