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Abstract

Modelling taxonomic and thematic relatedness
is important for building AI with comprehen-
sive natural language understanding. The goal
of this paper is to learn more about how tax-
onomic information is structurally encoded in
embeddings. To do this, we design a new
hypernym-hyponym probing task and perform
a comparative probing study of taxonomic and
thematic SGNS and GloVe embeddings. Our
experiments indicate that both types of embed-
dings encode some taxonomic information, but
the amount, as well as the geometric properties
of the encodings, are independently related to
both the encoder architecture, as well as the em-
bedding training data. Specifically, we find that
only taxonomic embeddings carry taxonomic
information in their norm, which is determined
by the underlying distribution in the data.

1 Introduction

Research on probing (Ettinger et al., 2016; Shi
et al., 2016; Veldhoen et al., 2016; Adi et al., 2017)
has gained significant momentum in the NLP com-
munity in recent years, helping researchers explore
different aspects of text encodings. While its po-
tential for application is broad, there are still many
NLP tasks the framework has not been applied
to. Specifically, it seems the majority of impact-
ful probing work focuses on analysing syntactic
properties encoded in language representations, yet
the rich and complex field of semantics is compara-
bly underrepresented (Belinkov and Glass, 2019).
One particular semantic problem that has not been
explored at all in the context of probing is the dis-
tinction between the taxonomic and thematic di-
mensions of semantic relatedness (Kacmajor and
Kelleher, 2019): words or concepts which belong
to a common taxonomic category share properties
or functions, and such relationships are commonly
reflected in knowledge-engineered resources such
as ontologies or taxonomies. On the other hand,

thematic relations exist by virtue of co-occurrence
in a (linguistic) context where the relatedness is
specifically formed between concepts performing
complementary roles in a common event or theme.
This distinction informs the theoretical basis of
our work, as we wish to explore the tension be-
tween taxonomic and thematic representations by
examining how their information is structurally en-
coded. Indeed, the vast majority of pretrained lan-
guage models (PTLMs) are trained solely on natu-
ral language corpora, meaning they mainly encode
thematic relations. Consequently, most probing
work is applied to thematic embeddings, while tax-
onomic embeddings remain unexplored. We thus
use the probing framework to study and compare
taxonomic and thematic meaning representations.
In addition, one aspect of embeddings that has
not received much attention is the contribution of
the vector norm to encoding linguistic information.
We have recently highlighted this gap in the liter-
ature and developed an extension of the probing
method called probing with noise (Klubic¢ka and
Kelleher, 2022), which allows for relative intrinsic
probe evaluations that are able to provide structural
insights into embeddings and highlight the role of
the vector norm in encoding linguistic information.
We find taxonomic embeddings to be particularly
interesting for probing the role of the norm, as we
suspect that the hierarchical structure of a taxon-
omy is well suited to be encoded by the vector
norm—given that the norm encodes the vector’s
magnitude, or distance from the space’s origin, it
is possible that the depth of a tree structure, such
as a taxonomy, could be mapped to the vector’s
distance from the origin in some way'. Applying
the probing with noise method to taxonomic em-
beddings on a taxonomic probing task could shed
some light on this relationship. In order to draw

'A hypothesis based on the finding that the squared L2
norm of BERT and ELMo can correspond to the depth of the
word in a syntactic parse tree (Hewitt and Manning, 2019).



broader comparisons, we apply the same evaluation
framework to taxonomic and thematic SGNS and
GloVe embeddings.

2 Related Work

Hypernymy, understood as the capability to relate
generic terms or classes to their specific instances,
lies at the core of human cognition and plays a cen-
tral role in reasoning and understanding natural lan-
guage (Wellman and Gelman, 1992). Two words
have a hypernymic relation if one of the words
belongs to a taxonomic class that is more general
than that of the other word. Hypernymy can be
seen as an /S-A relationship, and more practically,
hypernymic relations determine lexical entailment
(Geffet and Dagan, 2005) and form the IS-A back-
bone of almost every ontology, semantic network
and taxonomy (Yu et al., 2015). Given this, it is
not surprising that modelling and identifying hy-
pernymic relations has been pursued in NLP for
over two decades (Shwartz et al., 2016).

While research on hypernym detection has been
plentiful, work applying any probing framework to
identify taxonomic information in embeddings is
scarce, and the existing work does nor probe for
it directly, but rather infers taxonomic knowledge
from examining higher-level tasks. For example,
Ettinger (2020) identified taxonomic knowledge in
BERT, but rather than using a probing classifier,
BERT’s masked-LM component was used instead
and its performance was examined on a range of
cloze tasks. One of the relevant findings was that
BERT can robustly retrieve noun hypernyms in this
setting, demonstrating that BERT is strong at asso-
ciating nouns with their hypernyms. Ravichander
et al. (2020) build on Ettinger’s work and investi-
gate whether probing studies shed light on BERT’s
systematic knowledge, and as a case study examine
hypernymy information. They devise additional
cloze tasks to test for prediction consistency and
demonstrate that BERT often fails to consistently
make the same prediction in slightly different con-
texts, concluding that its ability to correctly re-
trieve hypernyms is not a reflection of larger sys-
tematic knowledge, but possibly an indicator of
lexical memorisation (Levy et al., 2015; Santus
et al., 2016; Shwartz et al., 2017).

Aside from this recent focus on BERT, little
work has been done in the space of probing embed-
dings for hypernym information. However, work
on modelling hypernymy has a long history that

stretches back before large PTLMs and includes
pattern-based approaches (Hearst, 1992; Navigli
and Velardi, 2010; Lenci and Benotto, 2012; Boella
and Di Caro, 2013; Flati et al., 2014; Santus et al.,
2014; Flati et al., 2016; Gupta et al., 2016; Pavlick
and Pasca, 2017) that are based on the notion of dis-
tributional generality (Weeds et al., 2004; Clarke,
2009), as well as distributional approaches (Tur-
ney and Pantel, 2010; Baroni et al., 2012; Rei and
Briscoe, 2013; Santus et al., 2014; Fu et al., 2014,
Espinosa-Anke et al., 2016; Ivan Sanchez Carmona
and Riedel, 2017; Nguyen et al., 2017; Pinter and
Eisenstein, 2018; Bernier-Colborne and Barriere,
2018; Nickel and Kiela, 2018; Roller et al., 2018;
Maldonado and Klubicka, 2018; Cho et al., 2020;
Mansar et al., 2021). We highlight the work of
Weeds et al. (2014), who demonstrated that it is
possible to predict a specific semantic relation be-
tween two words given their distributional vectors.
Their work is especially relevant to ours as it shows
that the nature of the relationship one is trying
to establish between words informs the operation
one should perform on their associated vectors, e.g.
summing the vectors works well for a co-hyponym
task. We consider this in §3.

In terms of evaluation benchmarks for model-
ing hypernymy, in most cases their design reduces
them to binary classification (Baroni and Lenci,
2011; Snow et al., 2005; Boleda et al., 2017; Vyas
and Carpuat, 2017), where a system has to decide
whether or not a hypernymic relation holds between
a given candidate pair of terms. Criticisms to this
experimental setting point out that supervised sys-
tems tend to benefit from the inherent modeling
of the datasets in the task, leading to lexical mem-
orization phenomena. Some attempts to alleviate
this issue involve including a graded scale for eval-
uating the degree of hypernymy on a given pair
(Vuli€ et al., 2017), or reframing the task design as
Hypernym Discovery (Espinosa-Anke et al., 2016).
The latter addresses one of the main drawbacks
of the binary evaluation criterion and resulted in
the construction of a hypernym discovery bench-
mark covering multiple languages and knowledge
domains (Camacho-Collados et al., 2018).

3 Probing Dataset Construction

Conneau et al. (2018) state that a probing task
needs to ask a simple, non-ambiguous question,
in order to minimise interpretability problems
and confounding factors. While we acknowledge



the hypernym discovery framing as an important
benchmark, and the cloze tasks used by Ettinger
(2020) as an enlightening probing scenario, we
suspect neither is suitable for our probing exper-
iments, for which we require a simpler task that
more directly teases out the hypernym-hyponym
relationship. We thus opt to construct a new tax-
onomic probing task: predicting which word in a
pair is the hypernym, and which is the hyponym.
This dataset is directly derived from WordNet
(Fellbaum, 1998) and contains all its hypernym-
hyponym pairs. Thus each word pair shares only
an immediate hypernym-hyponym relationship be-
tween the candidate words: a word in a pair can
only be a hyponym or hypernym of the other.

However, in our experiments we wish to probe
both taxonomic and thematic encoders. Given that
we are mostly using pretrained thematic and taxo-
nomic embeddings (see §4), their vocabulary cov-
erage might vary dramatically. We wish to mitigate
confounders by comparing like for like as much as
possible, so to retain a higher integrity of interpreta-
tion when comparing models, we prune the dataset
to only use the intersection of vocabularies of all
the used models—we only include word pairs that
have a representation for both candidate words in
all the embedding models.

Note here that one of the goals of our work
is to use the probing with noise method to learn
about embeddings and the way they encode differ-
ent types of information in vector space. We assert
that a prediction of the relationship between a pair
of words cannot be fairly done without the classi-
fier having access to representations for both words
in the pair. Yet, our probe is a classifier which can
only take a single vector as input. Informed by
the work of Weeds et al. (2014) we considered op-
tions such as averaging or summing the individual
word vectors, but found that these were not suit-
able for our framing as they muddled the notion
that the classifier is receiving two separate words
as input. We instead concatenate the word vectors
in question and pass a single concatenated vector
to the classifier (similar to approaches used by Adi
et al. (2017)). This approach allows us to formulate
the task as a positional classification task: given
a pair of words, is the first one the hypernym or
the hyponym of the other? We can then assign
each instance in the corpus a binary label—O or
1—representing the class of the first word in the
pair. The probe can then predict if the left half of

the vector is the hyponym (0) of the right half, or
whether it is its hypernym (1).

Finally, the inherent tree structure of WordNet
means that a smaller number of words will be hy-
pernyms, while a larger number will be hyponym:s.
We want to avoid the probe memorising the subset
of words more likely to be hypernyms, but rather
to learn from information encoded in the (differ-
ences between) vectors themselves. In an attempt
to achieve this, we balance out the ratio of class
labels by duplicating the dataset and swapping the
hypernym-hyponym positions and labels. Before
duplicating, we also define a hold-out test set of
25,000 instances, so as to exclude the possibility
of the same word pair appearing in both the train
and test split—thus, the probe will be evaluated
only on unseen instances. This duplication resulted
in a final dataset of 493,494 instances, of which
50,000 comprise the test set and 443,494 comprise
the training set. Here are some example instances:

0, north, direction
1, direction, north
0, hurt, upset
1, upset, hurt

4 Experimental Setup
4.1 Chosen Embeddings

In our experiments we probe taxonomic and the-
matic SGNS embeddings, and make an analogous
comparison with taxonomic and thematic GloVe
embeddings. Usually pretrained taxonomic em-
beddings are not as easy to come by as thematic
ones, but fortunately we were able to include a set
of freely available taxonomic embeddings that are
based on a random walk algorithm over the Word-
Net taxonomy, inspired by the work of (Goikoetxea
et al., 2015). In short, the approach is to generate a
pseudo-corpus by crawling the WordNet structure
and outputting the lexical items in the nodes vis-
ited, and then running the word embedding train-
ing on the generated pseudo-corpus. Naturally,
the shape of the underlying knowledge graph af-
fects the properties of the generated pseudo-corpus,
while the types of connections that are traversed
will affect the kinds of relations that are encoded
in this resource. A Python implementation has
been made freely available” and the embeddings

https://github.com/GreenParachute/
wordnet—randomwalk—python


https://github.com/GreenParachute/wordnet-randomwalk-python
https://github.com/GreenParachute/wordnet-randomwalk-python

have been shown to encode taxonomic information
(Klubicka et al., 2019). Ultimately we chose these
embeddings as they allow us to be methodologi-
cally consistent by creating taxonomic embeddings
that employ the same encoder architectures used to
obtain thematic embeddings.

word2vec (SGNS) For traxonomic SGNS repre-
sentations® we opt for embeddings trained on the
pseudo-corpus that yielded the highest Spearman
correlation score on the wn-paths benchmark (in-
troduced by Klubicka et al. (2020)), i.e. the cor-
pus with 2 million sentences, with the walk going
both ways and with a 2-word minimum sentence
length. The lack of a directionality constraint pro-
vides higher vocabulary coverage and a smaller pro-
portion of rare words, while the 2-word minimum
sentence length limit ensures that we only have rep-
resentations for words that are part of WordNet’s
taxonomic graph and have at least one hypernym-
hyponym relationship, which makes them suitable
for this task. For the thematic SGNS embeddings
we use a pretrained model, and opt for the gensim*
word2vec implementation which was trained on a
part of the Google News dataset (about 100 billion
tokens) and contains 300-dimensional vectors for

3 million words and phrases”.

GloVe To train taxonomic GloVe embeddings, we
use a popular Python implementation of the GloVe
algorithm®’ and, importantly, train it on the same
2m-both-2w/s pseudo-corpus as the above taxo-
nomic SGNS was trained on®. For the thematic
GloVe embeddings we use the original Stanford pre-
trained GloVe embeddings’, opting for the larger
common crawl model, which was trained on 840
billion tokens and contains 300-dimensional em-
beddings for a total of 2.2 million words.

Note that when we concatenate the two word
embeddings required for an instance in the train
or test set, they become a 600-dimensional vector
which is then passed on as input to the probe.

Shttps://arrow.dit.ie/datas/12/
*nttps://radimrehurek.com/gensim/
Sword2vec-google-news-300
*https://github.com/maciejkula/
glove-python
"We used the following training parameters: window=10,
no_components=300, learning_rate=0.05, epochs=30,
no_threads=2. Any other parameters are left as default.
$https://arrow.dit.ie/datas/9/
‘https://nlp.stanford.edu/projects/
glove/

4.2 Probing with Noise

The method is described in detail in Klubicka and
Kelleher (2022)'%: in essence it applies targeted
noise functions to embeddings that have an abla-
tional effect and remove information encoded ei-
ther in the norm or dimensions of a vector.

We remove information from the norm (abl.N)
by sampling random norm values and scaling the
vector dimensions to the new norm. Specifically,
we sample the L2 norms uniformly from a range be-
tween the minimum and maximum L2 norm values
of the respective embeddings in our dataset'!.

To ablate information encoded in the dimensions
(abl.D), we randomly sample dimension values and
then scale them to match the original norm of the
vector. Specifically, we sample the random dimen-
sion values uniformly from a range between the
minimum and maximum dimension values of the
respective embeddings in our dataset'>. We ex-
pect this to fully remove all interpretable informa-
tion encoded in the dimension values, making the
norm the only information container available to
the probe.

Applying both noise functions to the same vector
(abl.D+N) should remove any information encoded
in it, meaning the probe has no signal to learn from,
a scenario equal to training on random vectors.

Even when no information is encoded in an em-
bedding, the train set may contain class imbalance,
and the probe can learn the distribution of classes.
To account for this, as well as the possibility of a
powerful probe detecting an empty signal (Zhang
and Bowman, 2018), we need to establish informa-
tive random baselines against which we can com-
pare the probe’s performance. We employ two
such baselines: (a) we assert a random prediction
(rand.pred) onto the test set, negating any infor-
mation that a classifier could have learned, class
distributions included; and (b) we train the probe
on randomly generated vectors (rand.vec), estab-
lishing a baseline with access only to class distri-
butions.

Importantly, while we use randomised baselines

Code available here: https://github.com/
GreenParachute/probing-with-noise
""Thematic SGNS: [0.6854, 9.3121]
Taxonomic SGNS: [2.1666, 7.6483]
Thematic GloVe: [3.1519, 13.1196]
Taxonomic GloVe: [0.0167, 6.3104]
>Thematic SGNS: [-1.5547, 1.7109]
Taxonomic SGNS: [-1.8811, 1.7843]
Thematic GloVe: [-4.2095, 4.0692]
Taxonomic GloVe: [-1.3875, 1.3931]


https://arrow.dit.ie/datas/12/
https://radimrehurek.com/gensim/
https://github.com/maciejkula/glove-python
https://github.com/maciejkula/glove-python
https://arrow.dit.ie/datas/9/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/GreenParachute/probing-with-noise
https://github.com/GreenParachute/probing-with-noise

as a sense check, we use the vanilla SGNS and
GloVe word embeddings in their respective eval-
uations as vanilla baselines against which all of
the introduced noise models are compared. Here,
the probe has access to both dimension and norm
information, as well as class distributions from the
training set. However, given the lack of probing tax-
onomic embeddings in the literature, it is equally
important to establish the vanilla baseline’s per-
formance against the random baselines: we need
to confirm that the relevant information is indeed
encoded somewhere in the embeddings.

Finally, to address the degrees of randomness
in the method, we train and evaluate each model
50 times and report the average score of all the
runs, essentially bootstrapping over the random
seeds (Wendlandt et al., 2018). Additionally, we
calculate a confidence interval (CI) to make sure
that the reported averages were not obtained by
chance, and report it alongside the results.

4.3 Probing Classifier and Evaluation Metric

The embeddings are used as input to a Multi-
Layered Perceptron (MLP) classifier, which pre-
dicts their class labels. We used the scikit-learn
MLP implementation (Pedregosa et al., 2011) us-
ing the default parameters'®. The choice of evalua-
tion metric used to evaluate the probes is not trivial,
as we want to make sure that it reliably reflects a
signal captured in the embeddings, especially in an
imbalanced dataset where the probe could learn the
label distributions, rather than detect a true signal
related to the probed phenomenon. Following our
original approach (Klubicka and Kelleher, 2022),
we use the AUC-ROC score!'#, which is suited to
reflecting the classifier’s performance on both posi-
tive and negative classes.

5 Experimental Results

Experimental evaluation results for taxonomic and
thematic embeddings on the hypernym-hyponym
probing task are presented in Tables 1 and 2. Note
that all cells shaded light grey belong to the same
solver="adam’, max_iter=200,

learning_rate_init=0.001,
early_stopping=False,

Bactivation="relu’,
hidden_layer_sizes=100,
batch_size=min(200,n_samples),
weight init. W ~ N (0, \/6/(fanm + fanout)) (scikit
relu default). See: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

“https://scikit-learn.org/stable/

modules/generated/sklearn.metrics.roc_
auc_score.html

SGNS
Model THEM TAX
auc +CI auc +CI

rand. pred. | .5000 | .0009 | .4997 | .0009
rand. vec. 5001 | .0012 | .5001 | .0011
vanilla 9163 | .0004 | .9256 | .0003
abl. N 9057 | .0004 | .9067 | .0005
abl. D 5039 | .0008 | .5294 | .0010
abl. D+N 4998 | .0010 | .5002 | .0009

Table 1: Probing results on SGNS models and baselines.
Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs.

distribution as random baselines on a given task,
as there is no statistically significant difference be-
tween the different scores; cells shaded dark grey
belong to the same distribution as the vanilla base-
line on a given task; and all cells that are not shaded
contain a significantly different score than both the
random and vanilla baselines, indicating that they
belong to different distributions.

SGNS Starting with thematic SGNS (THEM), Ta-
ble 1 shows that the random baselines perform com-
parably to each other, as would be expected, and
their score indicates no ability to discriminate be-
tween the two classes. We can see that the vanilla
representations significantly outperform the ran-
dom baselines, indicating that at least some taxo-
nomic information is encoded in the embeddings.
The norm ablation scenario (abl.N) causes a
statistically significant drop in performance when
compared to the vanilla baseline. In principle, this
indicates that some information has been lost. If in-
stead of the norm, we ablate the dimensions (abl.D),
we see a much more dramatic performance drop
compared to vanilla, indicating that much more in-
formation has been removed. Unsurprisingly, the
difference in the probe’s performance when apply-
ing both noising functions (abl.D+N) compared
to random baselines is not statistically significant,
meaning there is no pertinent information left in
these representations. Notably, once just the dimen-
sion container is ablated, its performance drops to
extremely low levels and approaches random base-
line performance, yet it does not quite reach it—as
small as it is, the difference is statistically signifi-
cant, indicating that not all information has been
removed in this setting. While significant, given
how minor this difference is, one might argue it
does not convincingly indicate the norm’s role in


https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

GloVe
Model THEM TAX
auc +CI auc +CI

rand. pred. | 4999 | .0011 | .4998 | .0010
rand. vec. 5001 | .0010 | .5001 | .0008
vanilla 9327 | .0004 | .8824 | .0005
abl. N 9110 | .0004 | .8435 | .0008
abl. D 5002 | .0008 | .6621 | .0008
abl. D+N .5000 | .0011 | .5006 | .0011

Table 2: Probing results on GloVe models and baselines.
Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs.

encoding taxonomic information.

However, we observe a much crisper signal in
the taxonomic SGNS (TAX) results. The random
baselines perform comparably, while the vanilla
baseline significantly outperforms them, while also
significantly outperforming the THEM vanilla base-
line, confirming that the taxonomic embeddings
encode more taxonomic information than thematic
embeddings. The norm ablation scenario causes
a statistically significant performance drop from
vanilla, while ablating the dimension container
yields a larger drop, but does not reach the random-
like performance achieved when ablating both con-
tainers. Here the difference in scores between ab-
lating just the dimensions and ablating both dimen-
sions and norm is also significantly different from
random, but notably also an order of magnitude
larger than in the THEM example. This indicates
that the taxonomic SGNS embeddings use the norm
to encode taxonomic information more so than the-
matic ones.

GloVe In Table 2 we see that thematic GloVe
(THEM) vanilla performance dramatically outper-
forms the baselines, but the scores drop when the
norm is ablated. After ablating the dimension in-
formation, there is a substantial drop in the probe’s
performance and it is immediately comparable to
random baselines with no statistically significant
difference. Furthermore, performance does not sig-
nificantly change after also ablating the norm.
Meanwhile, the taxonomic GloVe embeddings
tell a different story. Firstly, while vanilla embed-
dings outperform the random baselines, they per-
form much worse than THEM vanilla GloVe, indi-
cating an inferior representation for the hypernym-
hyponym prediction task, even though they were
trained on WordNet random walk pseudo-corpora

(we discuss this in §6). Ablating the dimensions
causes a significant drop in performance, but it
is nowhere near the random performance reached
when ablating both dimensions and norm. This is
a really strong signal that indicates the norm en-
codes some hypernym-hyponym information. This
echoes the findings on SGNS, showing that taxo-
nomic embeddings tend to use the norm to encode
taxonomic information more so than thematic ones.

5.1 Dataset Validation Experiments:
Dimension Deletions

Our experimental design is based on the assump-
tion that providing the probe with a concatenated
vector of word embeddings would allow it to infer
the asymmetric relationship between the words and
use that signal to make predictions. While we have
taken some steps to ensure this and mitigate lexical
memorisation (see §3), there is still a concern that
the models could have memorised other regulari-
ties encoded in the individual word representations
and used that information to make predictions. For
example, while many candidate words can indeed
be both hyponyms or hypernyms, given the tree
structure of the taxonomy and the distribution of
edges, the frequencies at which a word takes on
a hypernym or hyponym role are still skewed. It
is thus more likely that any given word will be a
hyponym than a hypernym, and it is possible that
the embeddings implicitly encode the frequency at
which a word takes on a hypernym role, versus a
hyponym role.

To validate that the probe is actually learning
a relationship between the candidate words, we
run an additional batch of probing experiments to
establish another set of baselines specific to this
particular probing task. We examine the impact of
two scenarios on the probe’s performance: given
the same labels, a) what if the probe’s input was
only one word vector, and b) what if the probe’s
input was only half of each word vector in the pair?

We denote this line of enquiry as deletion ex-
periments, given that in practice a) can be seen as
deleting half of the concatenated vector, and b) as
deleting one half each vector before concatenating.
The crucial difference is that in a) the probe can
only learn from one word vector without having
any access to a representation of the other word,
meaning it can only predict whether the candidate
word is a hyponym or a hypernym by relying on
the probability derived from its frequency. In b) the



SGNS GloVe
Model THEM TAX Model THEM TAX
auc +CI auc +CI auc +CI auc +CI

rand. pred. | .5000 | .0009 | .4997 | .0009 rand. pred. | .4999 | .0011 | .4998 | .0010
rand. vec. 5001 | .0012 | .5001 | .0011 rand. vec. 5001 | .0010 | .5001 | .0008
vanilla 9163 | .0004 | .9256 | .0003 vanilla 9327 | .0004 | .8824 | .0005
del. ea. 1h | .8929 | .0004 | .8998* | .0005 del. ea. 1h | .9120* | .0003 | .8727 | .0005
del. ea. 2h | .8927 | .0004 | .9039 | .0004 del. ea. 2h | .9179 | .0004 | .8730 | .0006
del. ct. 1h | .8496 | .0004 | .8525 | .0004 del. ct. 1h .8522 | .0004 | .8405 | .0004
del. ct. 2h | .8495 | .0004 | .8523 | .0003 del. ct. 2h .8522 | .0004 | .8406 | .0004

Table 3: Probing results on SGNS deletions and base-
lines. Reporting average AUC-ROC scores and confi-
dence intervals (CI) of the average of all training runs.

probe has a representation for both vectors, mean-
ing it could leverage the relationship between them,
but the individual vectors are truncated, meaning
that half of the dimensions are gone for each word,
making this inferior to the vanilla setting”.

We ran these experiments for taxonomic and
thematic SGNS and GloVe embeddings and when
performing deletions assessed the impact of both
halves of the vectors. All dimension deletion re-
sults are included in Tables 3 and 4, where scenario
a) is denoted as del.ct.1h/2h (deleted 1st/2nd half
of concatenated vector) and scenario b) is denoted
as del.ea.1h/2h (deleted 1st/2nd half of each vec-
tor). When comparing the deletions of the different
halves, in cases where there is a statistically signifi-
cant difference between their scores, the lower of
the two scores is marked with an asterisk (*).

SGNS Unsurprisingly, deleting half of the vector
in either scenario causes a statistically significant
drop in performance when compared to vanilla. We
also observe a larger drop in both del.ct. settings
versus the del.ea. settings, which confirms that
predicting a word’s relationship to an “imaginary’
other word is the more difficult task.

However, strikingly, the performance is also sig-
nificantly above random, which indicates that the
probe likely did learn some frequency distributions
from the graph. It is possible that this is a reflection
of the imbalance inherent to WordNet, given the
large number of leaf nodes in the taxonomic graph.

Even still, the significant difference in scores
between the two settings demonstrates that having
access to both words, even at the cost of half the

>

5This choice is motivated by a desire to make this setting
comparable to a) in terms of dimensionality—had we simply
compared it to vanilla, it would have the advantage of having
access to twice as many dimensions.

Table 4: Probing results on GloVe deletions and base-
lines. Reporting average AUC-ROC scores and confi-
dence intervals (CI) of the average of all training runs.

information in each word’s dimensions, is more
informative than having a full representation of a
single word, indicating that the probe is inferring
the relevant relationship between them.

GloVe The GloVe deletion results echo the find-
ings on SGNS in most settings. Deleting half of
the vector in either scenario causes a significant
performance drop, which is largely above random
performance, and the drop is larger in the del.ct.
setting versus the del.ea. setting. This provides
further indication that, while there is an inherent
imbalance in the underlying data, the probe is infer-
ring the relevant relationship between the candidate
words when given a concatenation of two word vec-
tors. The probe benefits significantly from having
access to a representation of both words, or even
just two halves of each representation. Even when
it is not explicitly told that it is actually getting two
inputs, it is able to pick up on the fact that there is
a difference between them which can be helpful in
deciding on a label.

6 Discussion

There are a number of points to take away from
our experimental results. Firstly, we see that both
vanilla thematic embeddings encode taxonomic
information and the GloVe vanilla model signif-
icantly outperforms the SGNS vanilla model. This
is at least partially due to the fact that the pre-
trained SGNS and GloVe thematic embeddings
were trained on unrelated corpora, which differ
in terms of size, topic and coverage: the corpus
that GloVe was trained on is over 8 times larger
than the one used to train the SGNS model, and
belongs to a different, much more varied genre of
text data. Thus, word representations derived from



these resources are likely very different and it is
possible that due to the broader scope and much
larger size of the GloVe corpus, the GloVe repre-
sentations reflect more taxonomic knowledge.

However, these encoders exhibit the opposite
behaviour when trained on the same WordNet ran-
dom walk pseudo-corpus: expectedly, vanilla tax-
onomic SGNS scores improve upon its thematic
version, yet vanilla taxonomic GloVe scores signif-
icantly underperform compared to thematic. While
we would expect it to mirror what was observed
in SGNS, taxonomic GloVe is in fact our worst-
performing vanilla model. Given the significant dif-
ferences in model architectures, it is possible that
this unexpected behaviour is due to an interaction
between the architecture and training data'®. While
this may play a role, we suspect that the dominant
factor is rather training corpus size. The Word-
Net pseudo-corpus used for training taxonomic
embeddings was only about 9 million tokens in
size (which is sufficient to encode taxonomic re-
lations, as shown by Maldonado et al. (2019)),
whereas SGNS and GloVe were trained on 100
and 840 billion tokens respectively. It is not sur-
prising that GloVe trained on a small and relatively
sparse pseudo-corpus underperforms compared to
training on a large natural corpus. If anything, it
is encouraging that SGNS trained on a 9-million-
token pseudo-corpus outperforms one trained on a
100-billion-token natural corpus.

Another important finding from our experiments
is the strong evidence that word embedding models
can use the norm to encode taxonomic informa-
tion, regardless of what is encoded in the vector
dimensions. We find the clearest example of this
in taxonomic GloVe after ablating dimension infor-
mation, where the score remains as high as ~0.66,
meaning that the difference of 0.16 points is solely
due to information in the norm. This is a very
large difference given our understanding of the un-
derlying mechanics, where it is well known that
dimensions contain most, if not all information rel-
evant for a task (e.g. Durrani et al. (2020, 2022)),
and this is much more than has been demonstrated
on any of the sentence-level experiments in our
previous work (Klubicka and Kelleher, 2022). Ad-
ditionally, this is the only case where deleting half
of each word vector yields a significantly higher
score (~20.87) than ablating the norm (~20.84). This

"The interested reader might consult Klubicka (2022,

pages 121-123) for some speculation as to what that inter-
action might be.

suggests that more information is lost when the
norm is ablated than when half of the dimensions
are removed. This is a strong indicator that in this
case the norm encodes information that is not at
all available in the dimensions. Certainly, the ma-
jority of the information in an embedding is and
will always be encoded in the dimensions, but it is
striking how much of it is present in the norm in
this case.

Generally, when it comes to dimension deletion
experiments, it is expected that the performance
would drop dramatically in comparison to vanilla
embeddings. However, an important takeaway is
that in all settings the drop is much smaller than
might be expected, being quite close to vanilla per-
formance and largely above random performance.
This points to a redundancy within the dimen-
sions themselves, seeing as either half of the vector
seems to carry more than half the information re-
quired to model the task, indicating that not many
dimensions are needed to encode specific linguis-
tic features. This is consistent with the findings
of (Durrani et al., 2020), who analysed individual
neurons in PTLMs and found that small subsets
of neurons are sufficient to predict certain linguis-
tic tasks. Our deletion results certainly corrobo-
rate these findings, given how small the drop in
the probe’s performance is when half the vector is
deleted.

For additional insight into the norm, we examine
the norm values. We calculate the norms of the
individual hypernym and hyponym word vectors
in our dataset and present the results in Figure 1.
The median norm value shows that the difference
between hypernym and hyponym norms seems to
be minor in both thematic embedding types (GloVe:
6.26 and 6.24; SGNS: 2.78 and 2.76), whereas the
difference is an order of magnitude larger in both
taxonomic representations (GloVe: 2.03 and 2.67;
SGNS: 5.64 and 5.80). The difference is also quite
large between taxonomic GloVe and SGNS, and it
seems to be what is reflected in our experimental
results, which show that GloVe stores the most
hypernym-hyponym information in the norm.

The median norm measurements show that, on
average, the norm of hypernyms is larger than the
norm of hyponyms. This means that hypernyms,
which are higher up in the tree, are positioned fur-
ther away from the origin of the vector space than
hyponyms, which are positioned lower in the tree
and are closer to the origin. Notably, this is only
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Figure 1: Box plots depicting the median values of the
L2 norm in the different sets of word vectors, separate
for hyponyms and hypernyms. There is a marked differ-
ence observed between hyponym and hypernym norms
in taxonomic GloVe and SGNS, but not in thematic.

true in taxonomic embeddings, but not the the-
matic ones, indicating that in taxonomic embed-
dings there is a mapping between the taxonomic
hierarchy and distance from the origin.

Finally, in spite of the fact that taxonomic GloVe
(TAX) is the worst-performing vanilla model, it
is interesting that its norm also encodes the most
taxonomic information. We base our interpreta-
tion of this result on the following: i) in many
embeddings there is a high correlation between
the norm and word frequency (Goldberg, 2017),
and ii) WordNet pseudo-corpora reflect hypernym-
hyponym frequencies and co-occurrences. We sus-
pect the principal signal that plays a role in the way
taxonomic embeddings encode taxonomic knowl-
edge is precisely these word co-occurrences, which
GloVe is designed to capture. In turn, the norm
can be seen as analogous to the hierarchical nature
of taxonomic relationships and becomes the most
accessible place to store this information. The the-
matic corpora reflect thematic co-occurrences and
frequencies and hence GloVe (THEM) does not
store taxonomic information in the norm, as such
relations are not hierarchical in nature.

7 Conclusion

In this paper we applied the probing with
noise method to two different types of word
representations—taxonomic and thematic—each
generated by two different embedding algorithms—
SGNS and GloVe—on a newly-designed taxo-
nomic probing task. The overall findings are that
(a) both taxonomic and thematic static embeddings
encode taxonomic information, (b) that the norm of
static embedding vectors carries some taxonomic
information and (c) thus the vector norm is a sep-
arate information container at the word level. (d)
While in some cases there can be redundancy be-
tween the information encoded in the norm and
dimensions, at other times the norm can encode
information that is not at all available in the dimen-
sions, and (e) whether the norm is utilised at all is
sometimes dependant on training data, not just the
encoder architecture.

We also show that in the case of SGNS, taxo-
nomic embeddings outperform thematic ones on
the task, demonstrating the usefulness of taxo-
nomic pseudo-corpora in encoding taxonomic in-
formation. Indeed, this work serves to further em-
phasise the importance of the norm, showing that
the taxonomic embeddings use the norm to supple-
ment their encoding of taxonomic information. In
other words, random walk corpora can improve tax-
onomic information in word representations, which
is not always the case for natural language corpora.
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