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Abstract

We present a new dataset consisting of vari-
ous quantifier expressions to evaluate the gen-
eralization abilities of language models. The
dataset contains 18,360 prompts encompassing
diverse quantifiers, forming the basis of a new
framework for assessing semantic understand-
ing in this domain. We test the effectiveness of
our dataset using Pythia models, ranging from
410 million to 6.9 billion parameters, showing
that quantifier-based tasks can be challenging
for current language models. We make our
code and data publicly available!, such that the
dataset can be easily extended or updated based
on different evaluation needs.

1 Introduction

In recent years, the Natural Language Processing
(NLP) community has witnessed the rise of increas-
ingly larger and more sophisticated language mod-
els (LMs) capable of generating coherent texts over
extended passages. However, the ability of these
models to understand and generate human language
that aligns with the underlying semantics remains
a topic of debate (Yogatama et al., 2019). Neural
language models may rely on heuristics learned
from the training data to generate seemingly co-
herent texts, but fail to generalize to scenarios that
are more complex and cannot be solved by simple
heuristics (McCoy et al., 2019). Whether language
models can acquire meaning when trained only on
text is also a topic of ongoing debate. Bender and
Koller (2020) have argued, through thought exper-
iments, that LMs cannot learn semantics through
texts since they lack access to explicit representa-
tions of the external world. We hope to contribute
to this ongoing dicussion by releasing this dataset
on quantifiers, which will enable more research on
this direction.

In this paper, we introduce a new framework that
uses formal semantics to test the generalization
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capabilities of language models, by developing a
dataset that assesses LMs’ understanding of quan-
tifier semantics. We ask the question — to what
extent do language models capture the semantics
of quantifiers?

Quantifiers are well-suited for evaluating lan-
guage model generalization because compared to
other linguistics objects, their meanings are more
abstract, and can be fully specified in theoretical
terms that do not require grounding. Common
examples of quantifiers include some, all, a few,
many, etc. To construct the dataset, we use a de-
terministic algorithm to generate prompts and gold
labels automatically, covering 15 different quanti-
fiers in the English language. In each prompt, we
ask the LM to give a truth value judgment (true or
false) to a statement about a given quantifier in a
constructed scenario.

This dataset does not exhaust common quanti-
fiers in English, but is designed to enable more re-
search on evaluating LMs’ understanding of seman-
tic objects. More specifically, the dataset will allow
further investigation into different axes of general-
ization in this domain, i.e. for the same quantifier,
does using different nouns in the prompts affect
LM’s acquisition of the semantics of the quanti-
fier? And how do different number ranges or differ-
ent word orders affect LM’s understanding of the
same quantifier? The dataset presented in this paper
provides a valuable framework for researchers to
study these types of questions, grounded by rich for-
mal semantics literature on quantifiers. As demon-
strated in section 3, the data generation pipeline
can be easily extended to study new quantifiers,
nouns, and number ranges. Given initial native
speaker annotated prompts and quantifiers, the data
can also be easily extended to different languages.

This paper is structured as follows. In section
2, we discuss the literature on quantifiers in formal
semantics and demonstrate how they can be useful
for evaluating LMs. In section 3, we discuss how
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the dataset is constructed and how LMs are evalu-
ated. We discuss future work directions in section
4 and remark on limitations at the end.

2 Background

2.1 Quantifiers

Quantifiers are semantic objects expressed by de-
terminers. In formal semantics, determiners can be
considered as generalized quantifiers that describe
the relations between two subsets in a discourse
(Barwise and Cooper, 1981). Examples of quan-
tifiers include some, a few, all, most, etc. They
are useful for evaluating language models’ gener-
alization ability because their semantics is well-
defined. Unlike content words, such as common
nouns, quantifiers’ semantics is fully abstract and
can be specified in set-theoretic terms. Therefore,
when measuring the alignment between language
models and quantifier semantics, the evaluation can
be completed fully unsupervised without human
annotations while achieving high accuracy.

Based on literature in formal semantics (Bar-
wise and Cooper, 1981; Peters and Westerstl, 2006;
Szymanik, 2016; Steinert-Threlkeld and Szymanik,
2019), we define a quantifier to be a relation be-
tween two subsets A and B of a given discourse
domain M. For example:

[atleast n] = {(M,A,B) : |[ANB| > n}
[all] = {(M,A,B): |ANnB|=|AUB|}

[more than half] = {(M, A, B) : |AN B| > |A\B|}

[afew] = {(M, A, B) : |AnB| > 1}

We use [@] to denote the semantic meaning
of quantifier (). For the quantifier "at least n",
[at least n] describes sentences that satisfy |A N
B| > n when interpreted in model M.? For ex-
ample, let set A denote the flowers, and set B
denote the red objects in a discourse. Suppose
|A| = 5,|B| = 5,|]AN B| = 5, then the sen-
tence “at least 5 flowers are red” would be true,
because the situation (M, A, B) would belong to
to [at least 5] since it satisfies |A N B| > 5.

Given a prompt as a way of representing a situ-
ation M, A, B in natural language, we can define
the meaning of a quantifier according to a language

2See Peters and Westerstl (2006) for a more detailed dis-
cussion.

model as:

[[Q o _{<M’A7B>:

prompt
LM(prompt(Q, M, A, B)) =T},
We can then measure how similar [Q]5p is to
the true underlying [Q]. The LM and the prompt
are considered as parameters that need to be speci-
fied by the researcher.

2.2 Related Work

Benchmarks and Datasets There have been
many benchmarks and datasets developed to eval-
uate the language understanding abilities of NLP
models. Benchmarks such as SuperGLUE (Wang
et al., 2019) and WinoGrande (Sakaguchi et al.,
2021) test commonsense and logical reasoning abil-
ities of LMs. In NLI datasets such as SNLI (Bow-
man et al., 2015) and LAMBADA (Paperno et al.,
2016), designed to measure LMs’ reasoning abil-
ities through quantifiers. In AMBIENT, Liu et al.
(2023) have curated a linguist-annotated dataset
with various kinds of linguistic ambiguities, includ-
ing quantifier scope ambiguity, to measure the dis-
ambiguation abilities of LMs. Understanding the
relationships between quantifiers is important for
LMs to perform well in these NLI datasets 3, but
whether LMs can correctly acquire the semantics
of quantifiers has not been systematically tested.

LMs and Semantics Bender and Koller (2020)
have argued that LMs cannot acquire full meanings
from text data alone, since they have no access to
the explicit representations of entities in the world.
In response, Li et al. (2021) demonstrate that lan-
guage models can use contextual word representa-
tions to model changes of entities in a discourse,
which presents preliminary empirical evidence sug-
gesting that neural language models are capable of
encoding partial representations of meaning when
trained only on text data. Patel and Pavlick (2022)
show that language models can learn to map a con-
ceptual domain (such as color or direction) onto
a grounded world representation. Utilizing psy-
cholinguistic tests, Ettinger (2020) have shown that
the BERT model has difficulty acquiring generaliz-
able meanings of negation quantifiers.

3e.g. "A soccer game with multiple males playing" entails
"Some men are playing a sport." (Bowman et al., 2015), but
not vice versa
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3 Methodology

3.1 Dataset Creation

We use a deterministic algorithm to generate the
prompts in the dataset. Demonstrated in algorithm
1, we iterate through all available object and quan-
tifier combinations, and generate a prompt for each
combination. n is the number of objects in total
and ¢ is the number of objects modified by the first
predicate (i.e. "are large" in the first example in Ta-
ble 4), or by the second predicate (i.e. "are small")
in the current iteration.

The GENERATE_PROMPT function can be fully cus-
tomized by the user. In this work, we use the
prompt template "There are 50 items. n of the
items are large. m of the items are small. Are )
of the items small / large? Answer with only one
word, true or false.” for all 18,360 prompts in the
dataset.

For the vanilla GQG dataset, we set n = 50, and
the two predicates to be “are large” and “are small”.
Researchers can use the framework to easily gen-
erate more prompts with different number ranges,
predicates, and noun objects, to test various kinds
of LM generalization.

Label Generation The gold labels in the dataset
are generated using lambda functions that represent
the exact semantics of the quantifiers — e.g. for
quantifier "at least 3", its function would be

An,a,b:a>=3,

where n is the total number of objects, a is the
number of objects modified by the first predicate,
and b is the number of objects modified by the
second predicate. Using the notation presented in
section 2.1, we have n = |M|, a = |A N B|, and
b= |M|—-]|ANB].

The lambda functions are manually coded by
human experimenters, and it is the only place that
requires human labeling in this evaluation frame-
work (besides creating the prompt template).

Number of prompts The number 18,360 comes
from 18360 = 12 x 15 x 51 x 2, where

* 12: number of objects
* 15: number of quantifers

* 51: (0 to 50) number of objects modified by
the predicate

* 2: we have 2 predicates, so for the same
quantifier, number of objects, and nouns, we
prompt for both the first predicate and for the
second predicate. For example, if n = 50,
g = {atleasthalf} , o = {apples} , i = 5,
there will be two prompts generated, one ask-
ing "are at least half of the apples large?" with
gold label false, and the other one asking "are
at least half of the apples small?" with gold
label true.

Algorithm 1 Data Generation

Inputs: set of quantifiers (), set of objects
O, function GENERATE_PROMPT, number range
m,n (m < n)

for o in O do
for ¢ in Q) do
for i := mtondo
append
GENERATE_PROMPT (0, q,%,1)
to prompts
end for
end for
end for

return prompts

3.2 Data Statistics

We present some statistics of the vanilla GQG
dataset in this section. The dataset is consisted
of prompts describing different scenarios using var-
ious quantifiers and noun objects shown in Table 2
and Table 3. The GQG framework is highly modu-
lar, allowing researchers to easily extend the vanilla
dataset beyond the scope of the lexical items pre-
sented in this paper.

Number of prompts 18360

Average # of tokens

per prompt 31.9

# of prompts with

true label 8592 (46.8 %)
# of prompts with

false label 9768 (53.2 %)

Table 1: Data Statistics
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List of Quantifiers:
No. | Quantifier
1 at least 3
2 | atleast4
3 at most 5
4 | at most 6
5 more than 1
6 | more than 5
7 | more than 10
8 | all
9 none
10 | between 4 and 6
11 | between 2 and 10
12 | at most half
13 | more than half
14 | less than half
15 | atleast half

Table 2: Quantifiers in the dataset

List of objects:

Object

[ S —y Z
e R i B I

tables
chairs
circles
squares
apples
bikes
pans
shelves
trees
birds
penguins
mountains

Table 3: Objects in the dataset

Prompt Label

There are 50 tables. 50 of the tables
are large. O of the tables are small
Are at least 3 of the tables

small? Answer with only one
word, true or false. false

There are 50 circles. 7 of the
circles are large. 43 of the circles
are small. Are at least 4 of the
circles small? Answer with only
one word, true or false. true

There are 50 apples. 49 of the
apples are large. 1 of the apples

is small. Are less than half of

the apples large? Answer with only
one word, true or false. false

There are 50 mountains. 24 of the
mountains are large. 26 of the mountains
are small. Are at most half of the
mountains large? Answer with only

one word, true or false. true

Table 4: Examples of prompts in the dataset

3.3 Evaluation

We use both accuracy and F scores to measure the
alignment between quantifier semantics and LMs’
understanding. Since the data is not perfectly bal-
anced (> 53% of prompts have false gold labels),
a language model can easily perform better than
random by always answering “false”.

During evaluation, a parser is used to process
the output from the LM. When the parser encoun-
ters a token that matches with the string “true”™, it
will consider the LM as giving a positive response.
Otherwise, the parser considers the LM as giving
a negative response to the prompt. Constrained
decoding is used during evaluation — the LM’s re-
sponse must contain either the token “true” or the
token “false”.

This approach has its limitations, since how good
the language models are at following instructions
can affect the performance. Language models may
also leak their training data when being prompted
in this manner — we have observed that instead of
answering the question, the LM will output texts
resembling multiple choice questions when given
the prompt, which may be part of its training data.
We discuss the potential issues of our evaluation

“when converted to lowercase, with punctuations and
whitespace removed
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method in Limitations.

3.4 Generalization Testing

The GQG dataset enables researchers to test LM
generalization in quantifier understanding across
different lexical items. For example, given a quan-
tifier ¢, does changing the noun objects o in the
prompts affect LMs’ understanding of [¢]]? In
other words, we can use the GQG framework to
test whether LMs’ understanding of the semantics
of a quantifier is consistent with respect to different
nouns used in the prompt.

Testing generalization with respect to different
axes is also possible, by fixing different elements
in the dataset. For instance, one can test whether
LMs have the same level of understanding across
different quantifiers by fixing the noun o and only
alternating ¢ in the prompts. It should be noted that
the vanilla GQG dataset does not support testing
generalization in arbitrary axes; however, such data
can be easily constructed using the code framework
released in the paper.

3.5 Experimental Results

MOdEI Accuracy F1 Precision Recall
size

410M 0.464 0418 0.412 0.425
1B 0.503 0.289 0.216 0.437
14B  0.519 0.355 0.283 0.476
28B 0515 0.626 0.283 0.476
69B  0.484 0.639 0.976 0.475

Table 5: Performance of Pythia models on vanilla GQG

Highlighted by low accuracies and F; scores”,

the GQG dataset can be quite challenging for the
Pythia language models. It’s intriguing to observe
that the test accuracy does not increase significantly
as the model size increases — the test accuracy for
the 6.9B model is even lower than the 1B model.

We also perform a small pilot study on LM gen-
eralization across lexical items with different fre-
quencies in the corpus, using Mistral-7B (Jiang
et al., 2023) language model. As seen in Figure 1,
the test accuracy of Mistral-7B drops as the nouns
used in the prompts become less common.

For each word group, we use 10 different words
with similar frequencies to generate prompts, using
q = {at least half}, m = 0,n = 50.

3 scores are included during evaluation since the dataset
does not have a perfectly balanced True/False label ratio.

Mistral-7B accuracy with ¢ = “at least half”
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Figure 1: Mistral-7B accuracy with respect to word
frequencies

Since The Pile dataset (Gao et al., 2020) that was
used by Pythia LMs is not publicly available at the
time of publication, we used the Leipzig Corpora
(Richter et al., 2006; Goldhahn et al., 2012) to ap-
proximate the frequencies of tokens in Pythia train-
ing data. In each word group, the authors randomly
select 10 different words with similar ® frequencies
in the Leipzig Corpora. Words that are in a less
frequent group are guaranteed to have lower fre-
quencies’ than those in high-frequency groups. Ex-
amples of common words include “books”, “doors”,
and “reports”; examples of rarest words include
“lidars”, “medullas”, and “ornamentals”. See Ap-
pendix A for the full list of words in each group.

The result of this small-scale experiment shows
that large language models can be sensitive to the
frequency of lexical items used in the prompt in
certain scenarios. It also showcases the diverse
kinds of research and generalization testing the
GQG framework can enable.

4 Conclusion

This paper presents a new dataset to evaluate lan-
guage models’ understanding of quantifier seman-
tics. The dataset can be easily extended to different
languages and quantifiers, enabling more research
on assessing language models’ understanding of
semantic objects and investigation into different
axes of generalization. The poor performance of

Sthe difference between frequencies is less than 3
"in the Leipzig Corpora
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the Pythia models during evaluation shows the
dataset can be challenging for neural language
models, but more research is required to under-
stand how instruction-tuned LMs (and more sophis-
ticated prompt-engineering) will perform on this
dataset. We also note the limitations of our study,
particularly on evaluation methods, and hope that
this dataset will be a basis well-grounded in the-
oretical literature for more research on LMs and
semantics.

Future work includes developing datasets in
more diverse prompt formats, analyzing how LMs’
performance can differ based on different types of
quantifiers or linguistic objects, and investigating
how finetuning can affect model performance.

Limitations

Monolingual Dataset We note that our dataset
is curated only in English. How LMs may per-
form in low-resource languages has not been tested.
What kind of impact will languages with more com-
plex morphology/syntax have on benchmark per-
formance also has not been investigated.

Prompt Format Our data is generated using one
type of prompt format. Other types of prompt tem-
plates, including those designed in an adversarial
manner, have not been evaluated in this paper. How
the prompt is structured can also be an interesting
axis of generalization to investigate — i.e. for the
same quantifier and nouns, does different word-
ings of the prompt change how the LM acquire the
semantics?

Finetuning The LMs tested have not been fine-
tuned on the dataset. Whether finetuning can im-
prove LMs’ performance on understanding the se-
mantics of quantifiers is a promising direction of
future research.

Evaluation on LLMs The dataset has only been
tested on Pythia models (Biderman et al., 2023).
Larger and more recent language models such as
GPT-4 (OpenAl, 2023), Llama-2 (Touvron et al.,
2023), etc. have not been evaluated.

Ethics Statement

The data in this paper is artificially generated using
a deterministic algorithm and does not violate any
copyright laws. The dataset does not contain any
content that is explicitly triggering, offensive, or
toxic.
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A Appendix

Examples of LM Leaking Training Data When
given the prompt: "There are 50 tables. 28 of the
tables are large. 22 of the tables are small. Are all
of the tables small? Answer with only one word,
true or false.", Pythia LMs will sometimes generate

A. True
B. False

C. It is not possible to determine

as its response.®

Experiment Infrastructure All experiments
were run on a single NVIDIA RTX 3090 GPU.
For all Pythia models, step 143000 (the last model
checkpoint) and temperature 1.0 were used during
inference.

Constrained Decoding The constrained decod-
ing used during evaluation is implemented using

8listed example is a generated text from Pythia-2.8B given
the prompt
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Huggingface force_words_ids during generate;
beam search is used during generation with
num_beams=4.

Words in Different Frequency Group

common = ["books", "chairs", "doors", "par-
ticipants", "activities", "systems", "wars",
"blocks", "words", "reports"]

’

less common = ["crowds", "negotiations",
"cup holders", "arteries", "identifiers", "pay-
rolls", "hostages", "coupons", "remedies",
"butterflies"]

non
B

non
’

e rare = ["jaws", '"turbines", "rooftops",
"hikers", "purses"”, "empires", "insurers",
"camels", "entitlements", "coils"]

rarer = ["auroras", "borrowers", "fasteners",
"headscarves", "hickories", "geneticists", "cat-

apults”, "blurbs"”, "glaciers", "eyewitnesses"]

rarest = ["ocean basins", "jests", "lidars",
"inequalities", "microchips", "humanoids",
"philanthropies”, "medullas", "ornamentals",
"jabs"]

non
2

An example prompt using a word from the rare
group:

There are 50 empires. 10 of the empires
are large. 40 of the empires are small.

Are at least half of the empires large?
Answer with only one word, true or false.

GenBench 2023 Evaluation Card The Gen-
Bench evaluation card (Hupkes et al., 2023) is at-
tached.

Shift locus: Pretrain-test.

Motivation
Practical Cognitive Intrinsic Fairness
(] g
Generalisation type
Compo- Structural Cross  Cross Cross  Robust-
sitional Task Language Domain  ness
O g
Shift type
Covariate Label Full Assumed
g
Shift source
Naturally Fartitioned Generated shift Fully
occuring natural generated
d
Shift locus
Train—test Finetune  Pretrain—train Pretrain—test
train—test
a
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