To Burst or Not to Burst: Generating and Quantifying Improbable Text
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Abstract

While large language models (LLMs) are ex-
tremely capable at text generation, their outputs
are still distinguishable from human-authored
text. We explore this separation across many
metrics over text, many sampling techniques,
many types of text data, and across two pop-
ular LLMs, LLaMA and Vicuna. Along the
way, we introduce a new metric, recoverabil-
ity, to highlight differences between human and
machine text; and we propose a new sampling
technique, burst sampling, designed to close
this gap. We find that LLaMA and Vicuna have
distinct distributions under many of the metrics,
and that this influences our results: Recover-
ability separates real from fake text better than
any other metric when using LLaMA. When us-
ing Vicuna, burst sampling produces text which
is distributionally closer to real text compared
to other sampling techniques.

1 Introduction

In recent years, large language models (LLMs)
have risen as the top performing category of models
for many tasks in natural language processing. Pre-
trained on hundreds of millions of examples of text,
these models learn probability distributions over
the next token in a sequence, and these probability
distributions can be used to generate text. However,
while these distributions accurately describe token
distributions at the corpus level, they still lead to
generations which are distinguishable from human
text. In this work, we explore sampling techniques
used to generate text and metrics used to evaluate
such text, under the lens of differences between
human and machine authorship.

Our contributions in this work are threefold. (1)
We introduce a new sampling technique called
Burst Sampling, which is designed to generate text
that is statistically more similar to human-authored
text than other techniques. A description of this
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Figure 1: Illustration of our contributions. A A

probability-ordered token distribution with a long tail,
as is commonly seen when sampling from LLMs. Sam-
pling strategies often truncate the majority of this distri-
bution (red line), leading to many possible tokens that
cannot be sampled. When analyzing real text with an
LLM, we define recoverability as the fraction of tokens
that occur before this cutoff. B Our burst sampling tech-
nique first learns a distribution over bins of token ranks.
To sample, a bin is first selected. C The probabilities of
tokens within the selected bin are renormalized to form
a new distribution, which is sampled.

technique can be found in Section 3. (2) We intro-
duce a new metric over a (sampling strategy,
text example) pair called recoverability, which
captures the degree to which the given sampling
strategy could have generated the text (assuming
some underlying LLM providing token probabil-
ities). This is described further in Section 4. (3)
We compute many text metrics across a variety of
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datasets, across real and synthetic text, across many
sampling methods, and using two underlying lan-
guage models. These selections are explained in
Section 5. The results of these experiments serve as
a stand-alone reference survey of common metrics
and how they differ for human-authored versus gen-
erated text, and it also offers empirical justification
for our recoverability metric and burst sampling
technique. Our results are summarized in Section
6. Our codebase implementing these metrics and
sampling techniques has been open-sourced.

2 Related Work

Text Generation. In this work we focus on causal
language models (CLMs), which predict a distri-
bution over next tokens given all previous tokens.
This family of models is built on the transformer
architecture (Vaswani et al., 2017), and was found
to have performance that is proportional to model
scale (Kaplan et al., 2020), leading to a growth of
models from only a few hundred million param-
eters (Radford et al., 2018) to tens or hundreds
of billions (Brown et al., 2020; Chowdhery et al.,
2022; Zhang et al., 2022).

These models share a similar formulation. Gen-
eration of a sequence x from a probabilistic CLM
with parameters 6 can be defined as below:

T
P(zrr;0) = [ [ Polwilar)
=1

where x; is the next token, conditioned on a previ-
ous token sequence of length ¢ — 1.

Sampling Strategies. Once the language model
has produced a probability distribution over next
tokens, this distribution can be sampled to generate
the next piece of text. However, as this distribution
encompasses tens of thousands of tokens forming
the base vocabulary of the model, it has a very long
tail that sums to a non-negligible probability mass.
To combat against this, special sampling strategies
have been devised. Deterministic decoding such
as greedy selection or beam search (Graves, 2012)
tend to produce repetitive or bland generations as
they favor high probability over variety. Alterna-
tively, sampling-based decoding methods, such as
top-k (Fan et al., 2018) and top-p (Holtzman et al.,
2020), locate a nucleus of linguistically plausible
tokens at the front of the distribution, and sam-
ple from these probabilistically. Other methods

"https://github.com/jhuapl-fomo/burst-sampling

attempt to skew or re-weight the distribution to cor-
rect for undesirable generation artifacts, such as
temperature-based sampling (Ackley et al., 1985),
frequency penalties (Ott et al., 2019), or repetition
penalties (Keskar et al., 2019). Such methods can
be combined as needed for finer control over the
sampling process.

Metrics for Generated Text. When evaluat-
ing sampling techniques and their generations, it is
helpful to quantify certain aspects of the text via
metrics, such as perplexity or diversity (Li et al.,
2016) measures. However, it is quite difficult to
capture exactly what makes text "good" or "bad"
via a direct measure, and an alternative is to mea-
sure how distinguishable generated text is from that
which is truly human-authored. Among other moti-
vations, this is a focus of synthetic text detection.

Detecting Synthetic Text. With text genera-
tion becoming a widely accessible and used tool,
there is widespread interest in being able to reli-
ably detect if a piece of text was authored by a
human or an LLM. Services like GPTZero (Tian
and Cui, 2023) use metrics (among other factors) to
help determine if text has been generated by LLMs.
Meanwhile, tools like DetectGPT (Mitchell et al.,
2023) or OpenAT’s authorship classifier (Solaiman
et al., 2019a) may be trained on specific datasets
of generated text, perhaps specialized to a single
target LLM. Another approach is to make synthetic
text detection a design requirement of an LLM or
an LLM sampling method, as seen in works on text
watermarking (Kirchenbauer et al., 2023).

LLM Analysis of Human Text. An LLM can
also be used to assign probability scores to existing
text rather than to generate new text. Examining
LLM probability scores for real text can be used
to further understand any gaps between the output
of current generative models and human authors.
Previous work (Gehrmann et al., 2019) and (Holtz-
man et al., 2020) have demonstrated that tokens
in human text are often not the highest probability
tokens from a given language model. Especially
seen in (Gehrmann et al., 2019), there are regular
fluctuations in LLM-provided token probabilities
over the course of a human-authored piece of text,
ranging from high probability to very low proba-
bility. We leverage this finding to inspire our new
sampling method.
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3 Burst Sampling
31

Intuitively, we find the design of popular sampling
methods to be contradictory to the the goal of pro-
ducing human-like text. In particular, there is an im-
portant distinction to be made between text that is
highly probable according to an LLM, and text that
is highly similar to human-authored text. LLMs
which undergo pre-training are tasked with pre-
dicting which tokens are most probable given the
previous context. High-probability tokens, by defi-
nition, are low-information bearing, and sampling
techniques which prioritize high probability (top-
p, top-k) are therefore encouraging the generation
of predictable and uninformative text. In contrast
to an LLM, humans author text primarily to com-
municate information, and therefore must include
tokens that are less predictable for their audience
to find value in the text itself (Meister et al., 2022;
Gibson et al., 2019). Inspired by the probability
fluctuations found in (Holtzman et al., 2020), we
introduce an algorithm, Burst Sampling, which ran-
domly includes tokens with high information (low
probability). This is a first attempt to rectify issues
with existing sampling techniques, and we hope it
inspires future work that is concerned with infor-
mation content in synthetic text that more closely
matches human authorship.

Motivation

3.2 Algorithm

As in (Gehrmann et al., 2019), we divide the lan-
guage model’s distribution over the tokens into n
bins by the tokens’ rank. Mimicking (Gehrmann
et al., 2019), each bin is between two powers of ten.
For example, with 4 bins, the boundaries would be
0-10, 10-100, 100-1000, and 1000 to the end of the
distribution.

At each generation step, we sample from a cat-
egorical distribution to select a bin, and we then
sample our tokens exclusively from this bin. We
set all the other probabilities not in the bin to zero
and normalize our distribution. This amounts to a
two-tiered selection: first we select how probable
our token should be, approximated by which bin
we choose, and second we select a specific token
from the given bin. A more in-depth explanation
can be found in Algorithm 1.

The categorical distribution over bins is calcu-
lated before our generation. For any dataset or
style of text we are trying to mimic, we first select
a random subset of samples. Using that subset,
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Algorithm 1 Burst Sampling

Input: The sorted descending distribution over
the tokens at time step 7 represented as
P (x| 21.4—1), the precalculated probabilities
of each bin represented as 8 = (61,62, ...,6,)
where n is the number of bins, and a list of the
set of indices, S in each of the bins represented
as B
Output: The modified distribution P’ (x | 21.,—1)
1: b~ Cat(0)
2: S« B[b
30 Y pes P @] 211)
4: foreach x in P (z | 21.,—1) do
if z € S then
P (x| 214-1) < P (x| 21:4-1) /P
else
P’ (.T ’ xl:i—l) +~0

we compute the frequency with which each bin
is used: we run the model over the representative
data, collect all the frequencies for each token, and
assign them their corresponding rank. We then
bin those values and normalize their frequencies to
probabilities.

4 Recoverability Metric

4.1 Recoverability Intuition

To further highlight and explore the differences
between human-authored text and synthetic text,
we introduce a new metric called recoverability,
which measures the degree to which a given sam-
pling strategy over a given LLM could (re)produce
a piece of text. The tendency of human text to peri-
odically use low-probability tokens means that for
many sampling strategies it is impossible to gener-
ate some examples of human-authored text; we say
that such text is not recoverable under the given
sampling strategy. For example, a sampling strat-
egy like top-k cannot sample any tokens which have
rank>k in the LLM’s output distribution. There-
fore, any text using tokens with rank>k would not
be recoverable under top-k.

To measure the recoverability of an entire pas-
sage of text, we measure the average recoverability
of each token (what fraction of tokens are recover-
able). This soft and normalized definition allows
us to compare recoverability between text samples
or sampling strategies.

Note that this differs from a similar metric called
extractability (Carlini et al., 2023), which is con-



cerned with entire sequences of tokens that have
been memorized by a model and can be explicitly
generated as a result of this memorization. Recov-
erability, by contrast, measures to what extent a
sequence can be produced through the mechanism
of sampling over a given distribution, and does not
directly measure if such a sequence is previously
known to the model.

4.2 Mathematical Definition

Given a nucleus function N which takes a sorted
descending probability distribution over tokens and
partitions out the set of tokens which can be sam-
pled (for example, top-k or top-p), and a sequence
of tokens x of length T":

23;1 1N(P($i|l‘1:i—l))(xi>

Recoverability(zy.7) = T

where 1 is the indicator function, returning 1.0
if P(x;) is in the set produced by N and 0.0 oth-
erwise. For example, if N is the top-k partitioning
process, then we assign 1.0 to each token within the
top k tokens, and 0.0 otherwise, and then average
over all these assignments.

S Experiments

5.1 Overview of Experiments

We evaluate our Burst Sampling technique and Re-
coverability metric as part of a larger survey over
sampling strategies, metrics, and datasets, and the
statistical differences that can be uncovered be-
tween human-authored and synthetic text. For each
dataset of real text, we generate synthetic counter-
parts using selected sampling techniques, and then
compute metrics over the synthetic text in com-
parison to the same metric computed over the real
text.

5.2 Datasets

We consider six English-language datasets from
a diverse set of domains: arXiv (Clement et al.,
2019), CNN/Daily Mail (Nallapati et al., 2016),
Gutenberg (Rae et al., 2020), Stack Exchange (Gao
et al., 2020), Twitter (Rosenthal et al., 2017), and
Wikipedia (Foundation). We repeat our experi-
ments over a variety of datasets to uncover sig-
nificant differences in metrics between types of
text generation.

5.3 Language Models

We consider LLaMA 13B (Touvron et al., 2023) as
the baseline for pre-trained models. We pair that
model with its fine-tuned counterpart Vicuna 13B
(Chiang et al., 2023). These models are both widely
used at the time of this writing, and represent the
two common types of LLM that are most often
used (pretrained and fine-tuned for chat). The 13B
parameter models were selected to balance model
size with the feasibility of such a large survey.

5.4 Experimental Design

Similar to (Holtzman et al., 2020), we randomly
selected 10,000 samples from each dataset to create
a corresponding mini-corpus. To get samples that
fit into the context windows of our models, we
truncated each at 2,000 characters which is roughly
512 tokens. Since entries in the Gutenberg dataset
are extremely long, we used a randomly selected
paragraph from each sample in place of the full
sample itself.

To generate synthetic text samples, we provide
each model with the beginning of a real text sample
and ask it to generate a continuation of 256 tokens.
The provided real context is kept small, usually the
first 10% of the sample (the only exception being
Twitter data which can have very short samples.
For this dataset we used up to 5 words of the origi-
nal tweet.). We computed metrics over the entire
product of the generation routine (real beginning
context and generated continuation), which may
skew our results slightly.

Text continuation was selected as it is most ap-
propriate for pretrained models which are funda-
mentally designed to continue the input text. More
complex prompting blurs the line between a sim-
ple prefix and an instruction, and the latter is not
appropriate for a model that is only pretrained.

5.5 Sampling Strategies

For each dataset and for each model, we gener-
ate synthetic text with multiple top-k, top-p, and
temperature-based sampling methods. For top-k,
we run k values from {30, 40,50}. For top-p, we
generate using values from {0.9,0.95,0.99}, and
for temperature from {0.5,0.7,0.9}. We addition-
ally sample using our Burst Sampling technique
as described in the previous section, in which a
categorical distribution over bins is first learned for
each real dataset, and is then used to select a bin to
sample from at each step.
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5.6 Maetrics

For each dataset, model, and sampling technique
we compute a variety of metrics over the text which
can be used for classifying the text as human or
synthetic, or simply to understand the text in more
depth. Here we review each metric used in our
analysis, in addition to the previously-described
recoverability metric:

Self-BLEU (diversity) (Zhu et al., 2018) For a
given sentence, this metric first computes the
BLEU scores (Papineni 317 et al., 2002) be-
tween this sentence and the rest of the collec-
tion. Self-BLEU score is then calculated as
the average of these scores.

Log Likelihood (Solaiman et al., 2019b)

This approach averages the log probabilities
of each token in a text.

Rank and Log Rank (Gehrmann et al., 2019)
(Mitchell et al., 2023) Rank is calculated by
finding the absolute rank for a token given
its previous context. To calculate the rank
score for a text sample, we average the rank
for each word. To calculate the log rank, we
do the same process except we sum up the
tokens’ log rank.

GLTR (Gehrmann et al., 2019) introduce GLTR
as a way to help distinguish whether text was
generated from a language model. Its scheme
of measuring the fraction of tokens that rank
within a bin (0-10, 10-100, 100-1000, etc.) is
a useful feature for detecting fake text as it
leverages the fact that models prioritize more
probable words.

Per Token K, P, and Top P Burstiness As men-
tioned in Section 3.1, human text fluctuates
frequently in probability at the token level.
The current measure of burstiness included in
detectors like GPTZero (Tian and Cui, 2023)
does not capture that level of granularity. We
instead use a per-token measure of burstiness
by using the coefficient of variation for a mea-
sure. The coefficient of variation is the stan-
dard deviation of the measure divided by the
mean of the measure. We propose to use the
rank of the token (K value), its probability in
the softmax (P), and its cumulative probability
(Top P value).

5.7 Distribution Separation Measures

For each sampling method and metric, we com-
pute the separation between the distribution of the
metric among the generated text samples to the dis-
tribution of that metric for the original text. This
helps highlight, at a distributional level, differences
between generated and real text under a given met-
ric and sampling technique. For most metrics, we
use the Kolmogorov—Smirnov (KS) test to measure
the separation between distributions. For GLTR,
which provides a metric for each bin (instead of a
single value as is typical for a KS test), we train a
logistic regression model to predict if a sample is
real or generated from its GLTR values. We also
train a logistic regression classifier using all met-
rics simultaneously, which can illuminate which
sampling strategies lead to text that is most similar
to real text when taking into account all metrics as
possible decision information.

5.8 Fluency Analysis

Finally, to validate that our burst sampling method
does not lead to text that is so random as to
be "incorrect", we run a fluency analysis from
UniEval (Zhong et al., 2022) across generated
text of 3,000 samples when trying to mimic the
PG19, Wikipedia, and CNN Daily Mail datasets
(the datasets which, subjectively, are closest to full
prose). We additionally provide samples of the gen-
erated text for inspection and detailed statistics of
fluency scores in the appendix (Tables 5 and 6).

6 Results

6.1 Overview of Results

Our primary results consist of common metrics
calculated over many sampling methods and across
six different datasets, each with many thousands of
samples. These results are extensive; please see the
appendix for mean results over all our experiments.
For our analysis, we also considered metrics at
the distributional level, and additionally provide
distance measures between real and synthetic text
for each (model, dataset, sampling method, metric)
combination in the appendix.

We find that there are clear differences in met-
rics between LLaMA and Vicuna, reflecting the
tuning of the latter model. Vicuna has a notably
lower perplexity than LL.aMA, a higher value for
k-burstiness and a lower value for p-burstiness. We
further discuss the two models in 6.5. Average
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Avg. Metric Avg. Separation
Metric LLaMA Vicuna | LLaMA Vicuna
k burst. 7.869 9.673 0.341 0.525
p burst. 0.863 0.577 0.372 0.813
top-p burst. 0.363 0.241 0.392 0.206
log-likelihood -1.887 -1.211 0.467 0.855
log rank 0.851 0.503 0.458 0.820
rank 39.978 39.799 0.317 0.349
perplexity 9.475 4.736 0.467 0.855
diversity 0.795 0.781 0.433 0.417
recov top k=40 0.946 0.966 0.524 0.765
recov top k=50 0.953 0.970 0.522 0.743

Table 1: Average metrics for generated text over all
datasets and sampling methods, and the average separa-
tion between distributions of metric values for real and
generated text. In the separation columns, the highest
value is highlighted in each column, indicating that the
given metric is the best, on average, at providing a dis-
tinction between real and synthetic text.

metric values across our entire set of results can be
found in the central columns of Table 1.

Our recoverability metrics are very successful in
separating real and generated text using LLaMA,
which we discuss in 6.2. Additionally, our burst
sampling method has a distinct effect on the distri-
butions of samples from Vicuna, which we discuss
in 6.3 below. We further validate our burst sam-
pling method with a fluency analysis, discussed in
6.4.

6.2 Recoverability Metric Results

Our recoverability metric is seen to be more suc-
cessful at separating out generated text from real
text when using LLaMA, but not when using Vi-
cuna. That is, the distribution of recoverability
across generated samples is more distinct from the
recoverability of real text, and this separation is
more pronounced than in other metrics. This can
be seen in the right columns of Table 1, which
provide the average separability of metric distri-
butions from those of real text, averaged for each
metric. This can also be visualized as distributions,
as seen in Figure 2 which shows example metrics’
distribution under LLaMA for real text, top-k=50,
top-p=0.99, temperature=0.9, and burst sampling.

It is especially interesting that our recoverability
metric works well across sampling methods, be-
cause it was designed to work for a specific method
at a time. This indicates that recoverability using,
say, k=40, is useful for detecting synthetic text even
if that text was generated with something like top-p
sampling.

real
k=50
p=0.99
t=0.9

600
500
w0
2 400 -
£
£ 3001
200 -
100

.

0 5 10 15 20
Perplexity

0_

800 -
real

k=50
p=0.99
t=0.9

0.85 0.90

0.95
Recoverability k=40

0 T
0.80 1.00

Figure 2: Distributions of perplexity and recoverability
for the CNN Daily Mail dataset with several sampling
methods using LLaMA. Under recoverability, the met-
ric distributions are more separable than under other
metrics.

6.3 Burst Sampling Results

Our burst sampling technique tends to produce
text with metric distributions closer to real text
than other sampling techniques, but only when us-
ing Vicuna as the underlying model. We can see
this notionally in Table 2, which provides the aver-
age separability (KS test result) for each sampling
technique, averaged over all datasets and metrics.
Burst sampling is the lowest (most similar to real
text) under Vicuna, but not an extreme value under
LLaMA.

This can be further visualized as a distribution,
as seen in Figure 3 which shows example metrics
distributions under Vicuna for real text, top-k=50,
top-p=0.99, temperature=0.9, and burst sampling.
The burst sampling is clearly shifted closer to the
real text distribution, which we see repeatedly in
our analysis.

This trend was consistent when training logistic
regression classifiers on GLTR bins to consolidate
them into a single separability measure. Burst sam-
pling lead to the lowest F1 scores when used with
Vicuna, indicating that it produced text which was
harder to distinguish from real text when compared
to other sampling methods. When using burst sam-
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pling with LLaMA, this aspect varied among the
datasets. These results are given in the appendix,
in Table 19.

This trend was also consistent when running a
similar logistic regression analysis using all met-
rics as input features (Table 20). Burst sampling
was slightly harder to detect using Vicuna, but not
using LLaMA, where top-p=0.99 was clearly the
hardest to distinguish. Overall, we found that these
general logistic regression classifiers across all met-
rics performed extremely well, with F1 scores on
LLaMA averaging 0.921 and on Vicuna averaging
0.986. This leads us to believe that this has merit
as a general synthetic text detection mechanism.

Sampling | LLaMA Vicuna
k=30 0.477 0.642
k=40 0.447 0.636
k=50 0.420 0.634
p=0.9 0.347 0.630

p=0.95 0.259 0.640
p=0.99 0.259 0.599
t=0.5 0.699 0.723
t=0.7 0.587 0.696
t=0.9 0.294 0.638
burst 0.504 0.512

Table 2: For each sampling method, average separation
between distributions of metric values for real and gen-
erated text, over all datasets and metrics. The lowest
value is highlighted in each column, indicating that the
given sampling strategy, on average, produced text that
is closest to real text in terms of metrics distributions.
Notation note: k and p refer to top-k and top-p sampling.
t refers to temperature-based sampling.

6.4 Fluency Analysis Results

Our fluency analysis on samples (real and gener-
ated) from CNN Daily Mail, PG-19 and Wikipedia
indicate that most sampling techniques have simi-

Metric | LLaMa Vicuna
real 0.782 0.783
k=30 0.812 0.838
k=40 0.801 0.834
k=50 0.805 0.834
p=0.9 0.790 0.839
p=0.95 0.803 0.843
p=0.99 0.757 0.830
t=0.5 0.835 0.856
t=0.7 0.833 0.851
t=0.9 0.789 0.829
burst 0.604 0.798

Table 3: For each sampling strategy, the computed aver-
age fluency score (0 to 1, 1 is most fluent) when using
LLaMA and Vicuna. We limited this experiment to
CNN Daily Mail, PG-19, and Wikipedia datasets.
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Figure 3: Distributions of P-burstiness and log-

likelihood for the CNN Daily Mail dataset with sev-
eral sampling methods using Vicuna. Burst sampling
(turquoise) is typically closer to the distribution of real
text (blue) than other metrics.

lar average fluency scores, and that this is similar
to scores for real text. The only exception seems to
be burst sampling using LLaMA, which is notice-
ably less fluent than other cases. This may partially
explain why our burst sampling method was less
effective with LLaMA- the generated text is less
fluent than is typical. It is possible that for this
case, our sampling strategy introduces too much
random token selection, to the detriment of the
generated text. It is surprising that this is not the
same for both models. For fluency values across
all sampling methods, please see Table 3.

6.5 Model Differences

Throughout our analysis, we found distinct differ-
ences between the LLaMA and Vicuna models, as
discussed previously with respect to burst sampling
and recoverability. Vicuna typically had higher K
burstiness but lower P burstines and Top-p bursti-
ness, as well as lower perplexity (along with asso-
ciated differences in the related metrics of ranking
and likelihood). However, perplexity was typically
higher on Vicuna when evaluating real text. This
indicates that while Vicuna is less able to generate
realistic text (or at least, finds real text more per-
plexing than LLaMA), this does not extend to text
that is generated by Vicuna itself. We attribute all
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Metric Avg KS Between Models
k burst 0.276
p burst 0.772
top-p burst 0.886
log-likelihood 0.685
log rank 0.669
rank 0.200
perplexity 0.685
diversity 0.209
recov top k=40 0.378
recov top k=50 0.354

Table 4: For each metric, the average separability (KS
test) over all sampling methods between the distribution
when using LLaMA and that when using Vicuna.

of the differences to Vicuna having been special-
ized to chat behavior, a more narrow use-case than
LLaMA, which is multi-purpose. We provide a
visualization of some metric distribution distances
between the two models in Figure 4. We also pro-
vide the degree to which a given metric is different
between the two models in Table 4. Two of our
burstiness metrics (P and Top-p) show substantial
differences between the two models, and could po-
tentially highlight if a model has been fine-tuned.
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1000 - llama:k=40
llama:p=0.95
ﬂ 8001 vicuna:real
E’ 600 4 vicuna:k=40
&K vicuna:p=0.95
400+
200+
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Top-p Burstiness

Figure 4: Distributions of perplexity and Top-p bursti-
ness for LLaMA and Vicuna on the CNN Daily Mail
dataset. Vicuna has clear distributional differences to
LLaMA on certain metrics.

7 Discussion

Our study over many metrics and sampling strate-
gies, including burst sampling and recoverability,
uncovered some interesting data points. A stand-
out trend was the difference between LLaMA and

Vicuna. Our hypothesis is that Vicuna sometimes
produces probability distributions that are more
front-weighted than LLaMA (the first portion of the
sorted distribution carries more probability mass
than in LLaMA). This is supported by our perplex-
ity results- Vicuna has very low perplexity for its
own generations, but high perplexity for real text.
This is to be expected for a fine-tuned model that is
no longer intended for general purpose NLP tasks,
and it is nice to find this reflected quantitatively.

We found that burst sampling is especially help-
ful for Vicuna, and we believe it acts as a correct-
ing mechanism to Vicuna’s overconfidence. For
LLaMA, which has a less-skewed distribution, our
burst sampling is less effective since it is trained
to match the distributions of real text (the same ob-
jective as LLaMA). Thus, for a purely pre-trained
network, it would be a good idea to increase (or
somehow calibrate) the stochasticity of burst sam-

pling.

Recoverability is also impacted by model dif-
ferences. Since we test recoverability with k=40
and k=50 (a fixed rank cutoff), we could expect
that this encompasses much more probability mass
in Vicuna than in LLaMA. Therefore, more of Vi-
cuna’s generations are recoverable, and less separa-
ble from real text. However, when using LLaMA,
more tokens fall beyond this threshold and it is
easier to use recoverability as a separating metric
for real and generated text. We were surprised that
recoverability worked well even for sampling meth-
ods other than top-k, and believe it has merit as a
general metric.

Finally, although we initially introduced logistic
regression over all metrics to test the effectiveness
of burst sampling, we actually found it to be a
very reliable synthetic text classifier, especially on
Vicuna. We would recommend that future synthetic
text detection platforms consider this method as
part of their system. Our analysis also included
our burstiness metrics (K, P, and Top-p burstiness),
which could certainly be further optimized for text
detection by considering the entire pattern of rank
or probability over a text sequence, and using time-
series classification to detect fluctuations that are
more or less natural. This would perhaps motivate
stronger implementations of our burst sampling, to
consider the time dynamics of when improbable
tokens are introduced.

296



8 Conclusions and Future Work

We contributed a study of common metrics over
many datasets and sampling techniques, using a
pretrained model (LLaMA) and a fine-tuned model
(Vicuna). Within this study we tested novel ideas
of recoverability and burst sampling, which illumi-
nated many interesting future directions for study-
ing the differences between human-authored and
machine generated text. We found recoverabil-
ity and a logistic regression over all metrics to be
promising for detecting synthetic text. Future work
could further test the applicability of these results
to more models and sampling methods, in particu-
lar exploring how recoverability could be used for
fine-tuned models. We also found burst sampling to
somewhat correct for distributional differences in
Vicuna, but certainly not completely. Future work
should look to calibrate and amplify burst sampling,
as well as look to characterize the probability distri-
butions between pre-trained and fine-tuned models
in more detail.

9 Ethics Statement

We identify two possible ethical issues with our
work.

First, this paper discusses the use of a sampling
method that could be used to reduce the effective-
ness of fake text detectors for the purposes of cheat-
ing or plagiarism. While there is a drop in detection
ability for some models, the effect is fairly small
and still has the ability to be detected a majority of
times.

In addition, this sampling method looks at differ-
ent parts of the distribution which could have the
possibility of generating toxic or incorrect informa-
tion. No examples of extremely toxic generations
have been reported in the samples we have seen.
As for misinformation, language models already
generate misinformation regularly, and this method
does not balloon its frequency as it only changes a
few tokens per generation.

10 Limitations

We identify the following limitations in our work.

First, our analysis of different model based met-
rics only included two of the latest large language
models. In addition, these models were in only one
of the many sizes released. However, due to the
model agnostic nature, we believe similar patterns
to hold at different scales.

Second, our analysis of detector performance did
not use all state of the art methods like GPTZero,
DetectGPT, etc. and focused on using thresholding
methods. While not state of the art, it gives a pic-
ture into the possible performance of other methods
as they rely on similar modelling techniques.

Third, there was considerable leakage of our
datasets in the training data of LLaMA and thus Vi-
cuna. LLaMA used arXiv, StackExchange, Books
(a superset of PG19), and Wikipedia in its train-
ing set. Despite this leakage of 4 of our datasets,
prompting the model with exact words from these
datasets did not lead to the exact reproduction. This
also can be further seen in the imperfect recover-
ability of the text.
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Appendix
A.1 Burst Sampling Example Generations

Please see Table 5 for a few examples of passages
generated with burst sampling.

A.2 All Metrics

We provide tables of all our metric results and sep-
arability tests, broken down by dataset. Please see
the tables in the subsequent pages.
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LLaMA

Vicuna

CNN Daily Mail

CNN Daily Mail

War correspondent Michael Hastings may have been using mari-
juana to treat post-traumatic stress disorder before his death, but
drug use doesn’t account for the crash that killed him revered
Los Angeles Times reporter. It was a tragic accident. The car
wreck that killed the war writer was caused by a blown tarp on
the freeway below his car, hit him at a dangerous speed and
was not caused by his driving at all, California Highway Patrol
Officer Gisela Arroy said April 21". "He was driving fine. T

War correspondent Michael Hastings may have been using
marijuana to treat post-traumatic stress disorder before his
death, but drug use doesn’t appear to have been a factor
(http://tinyurl.com/kvf39je) in the crash that killed him, accord-
ing to the toxicology report released Tuesday. Hastings, who
wrote for Rolling Stone, BuzzFeed and other publications, was
killed in a fiery car crash in Los Angeles on June 18. The
coroner’s office ruled the death an accident, and said Hastings
appeared to hav

(CNN) — On Tuesday, 47 Republican senators voted against a
measure that would have allowed the Paycheck Fairness Act to
go to a vote in the Senate. Why not let the bill go to a full vote?
The Republican Party didn’t want to confront the "gender wage
gap" head long. The 1991 Lilly Ledbetter Fair Pay Act was a
huge step forward in the fight for worker parity. The new bill
takes that act a step further, and is supported by a majority of the
US Senate. This bill has also been backed widely by wome

(CNN) — On Tuesday, 47 Republican senators voted against a
measure that would have allowed the Paycheck Fairness Act to
go to a vote in the Senate. Why not let the bill go to a full vote?
The Republican Party didn’t want to confront the issue of gender
pay inequality. They were more interested in protecting their
donors, who they know would not be happy about the Paycheck
Fairness Act.

The Paycheck Fairness Act would have helped to close the wage
gap between men and women. It would have provi

PG-19

PG-19

They went slowly down the hill, their heads bent against the driv-
ing rain. They were not thinking about the recurring arguments
re the need discovered of new houses but the new houses which
they had built, their own homes, their own possession. Their
thoughts were of home, busy after a hard days work on Earl
Hood’s farm, a day doubly length but not a moment of which
was spent in waste. It had been a day of satisfaction but Arlene
was thinking at the moment there was more satisfaction in the
tho

They went slowly down the hill, their heads bent under the heavy
burden, their steps lagging wearily behind the eager prisoners,
who were impatient at the slow progress.

The novelty of so many high-born ladies and knights as prisoners
had not quite worn off, and the curiosity of the people was as
keen as ever. Sir EDWARD, whose armor was the finest and
most becoming of the number, was surrounded by a fair group
of admirers, especially young ladies who could fan themselves
with his plumes, and

Altogether, that evening stood out in Ruth Erskine Tyler Sill’s
life as one exemplifying the truth of her favorite saying, “Life’s
a gift. Beware of expectoritions”— a saying that her brother, a
young practising physincin, had originated from the Latin, and
then, when it had become the text of an address in that language,
had rumbled up and down to the astonishment of the facolty.
Ruth’s father was a lawyer of importance, and, in addition to
that, a member.

“Of the legislature?” Ruth’she bro

Altogether, that evening stood out in Ruth Erskine’s mind as a
period of deep loneliness.

As she sat by the solitary candle, thinking of her absent lover,
and of the friends who had deserted her, her thoughts grew more
and more despondent. She began to question whether she was
wise (she wondered) to have refused Mr. Hardcondé, and to have
placed so much reliance on the uncertain future. For the time,
life appeared very dark to her.

But the darkness lifted. The fretful mood passed away, and a

Wikipedia

Wikipedia

The Woolwich pub bombing was an attack by the Provisional
Irish Republican Army in Woolwich, a district of London in the
United Kingdom, as part of The Troubles.

Echoing similar bombings in Dublin, the Woolwich Arsene at-
tack took place fifty yards away from the Royal Artillery Bar-
racks in the Eltham Hill New Town area on the morning of
Wednesday June 9, 1973 when three Irish Republicans planted a
time bomb at the rear of the barracks, which had been evacuated
earlier in the day.

At 10:7:0

The Woolwich pub bombing was an attack by the Provisional
Irish Republican Army in Woolwich, a district of London in the
United Kingdom, as part of The Troubles.

Echoing similar attacks in the Basque Country and Italy, the IRA
carried out the Woolwich bombing in an attempt to disrupt the
Anglo-Republican Treaty and sow chaos in London.

On February 20, 1974, two car bombs were detonated outside
the St. George’s Inn pub in Woolwich, killing four people and
inflicting dozens of injuries. The att

Zornia glabra is a species of legume (Fabaceae), native to Africa,
Australia, Madagascar and the Arab ... Many other species were
once included in the Genus and are now included in ... Zornia
latifolia is a species of legume (Fabaceae), widely used in hor-
ticulture in the N... It is sometimes included in the Genistorus
subgenus of Astragalus. Zornia latifolia is a species of leg.. Phys-
iological responses to water stress in zornia latitifo.. Agriculture
is a vital part of human life. In India agr

Zornia glabra is a species of flowering plant in the legume family
known by several common names, including smooth Apache
plume, smooth sicklepod, sicklepod, and devil’s shoestring. It is
native to several countries in the Americas, including the United
States, Canada, Mexico, and several Caribbean islands. It is an
annual or perennial herb that can grow to a height of about 3
meters (10 feet). The plant produces clusters of small, yellow
flowers and long, thin pods that contain seeds. It is of

Table 5: Randomly selected generations from burst sampling, continuing text from CNN Daily Mail, PG-19, and

Wikipedia. Samples are clipped for display purposes.
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LlaMa Vicuna

Metric | Count | Min Max Mean Variance | Min Max Mean Variance
real 3000 | 0.006 0.971 0.782 0.034 0.018 0.967 0.783 0.033
k=30 3000 | 0.020 0.970 0.812 0.027 0.004 0971 0.838 0.027
k=40 3000 | 0.003 0.969 0.801 0.030 0.003 0971 0.834 0.028
k=50 3000 | 0.013 0.967 0.805 0.028 0.012 0976 0.834 0.028
p=0.9 3000 | 0.003 0.969 0.790 0.032 0.025 0.970 0.839 0.026

p=0.95 3000 | 0.014 0.969 0.803 0.028 0.004 0972 0.843 0.025

p=0.99 3000 | 0.006 0.969 0.757 0.036 0.004 0.974 0.830 0.030
t=0.5 3000 | 0.003 0.976 0.835 0.024 0.011 0971 0.856 0.022
t=0.7 3000 | 0.011 0.967 0.833 0.023 0.003 0.974 0.851 0.023
t=0.9 3000 | 0.026 0.969 0.789 0.031 0.008 0.970 0.829 0.030
burst 3000 | 0.003 0.968 0.604 0.042 0.009 0.969 0.798 0.033

Table 6: Statistics of fluency score (0 to 1, 1 is most fluent) when using LLaMA and Vicuna.

Average arXiv Metrics

LLaMA 13B

Sampling real k=30 k=40 k=50 p=09 p=095 p=099 (=05 (=0.7 (=09 burst
K burst 599 863 836 813 745 665 579 974 865 687 74

p burst 092 084 08 087 084 08 095 06 071 086 1.07
top-p burst 033 036 035 035 034 034 035 039 037 036 041
log-likelihood | -2.24 -172 -1.77 -1.82 -178 -198 225 -1.09 -139 -1.92 -2.75
log rank 1.06 073 077 08 081 094 11 037 055 088 121

rank 4107 1697 1733 178 2054 2436 3579 1578 1791 2885 72.93
perplexity 1036 575 61 639 617 778 1032 308 415 723 1615
diversity: 084 079 08 08 08 081 08 064 073 08 083

recov top k=40 | 0.91 0.98 0.98 0.97 0.95 0.93 0.91 0.98 0.97 0.94 0.91
recov top k=50 | 0.92 0.98 0.98 0.98 0.96 0.94 0.92 0.98 0.97 0.94 0.92
Vicuna 13B

k burst 577 1021 10.13  10.08 9.42 10.04 9.42 109 1064 9.85 8.44
p burst 0.93 0.6 0.6 0.61 0.62 0.58 0.62 0.45 0.5 0.58 0.69
top-p burst 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.24 0.24 0.25
log-likelihood -2.61  -122  -124 -126 -1.32 -1.16 -1.32 -0.83  -094 -1.19 -1.66
log rank 1.19 0.5 0.51 0.52 0.57 0.49 0.57 0.3 0.36 0.49 0.71

rank 59.24 32,62 33.03 33.13 36.45 32.1 3645 2877 30.08 3443 52.89
perplexity 1519  3.73 3.83 3.9 4.23 3.52 4.23 243 2.74 3.63 6.08
diversity: 0.84 0.77 0.78 0.78 0.78 0.77 0.78 0.72 0.74 0.77 0.81

recov top k=40 | 0.89 0.97 0.97 0.97 0.96 0.97 0.96 0.98 0.98 0.97 0.95
recov top k=50 0.9 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.95

Table 7: Average metrics for the arXiv dataset, for each sampling method and each model. Notation note: k and p
refer to top-k and top-p sampling. t refers to temperature-based sampling.
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Average CNN Daily Mail Metrics

LLaMA 13B

Sampling real k=30 k=40 k=50 p=0.9 p=0.95 p=099 =0.5 =0.7 =09 burst
k burst 7.4 8.73 8.54 8.38 6.52 7.42 6.52 10.0 9.1 7.49 8.24
p burst 0.82 0.85 0.86 0.87 0.92 0.88 0.92 0.66 0.74 0.85 0.98
top-p burst 0.32 0.36 0.35 0.35 0.35 0.34 0.35 0.4 0.38 0.36 0.4
log-likelihood -1.8 -1.75 -1.79  -1.82 -2.11 -1.9 -2.11 -1.2 -1.45 -1.86  -2.38
log rank 0.83 0.77 0.8 0.82 1.02 0.9 1.02 0.43 0.6 0.86 1.03
rank 22.61 2448 2487 2532 38.93 29.22 38.93 20.35 2296 3237 71.68
perplexity 6.21 5.95 6.23 6.44 8.79 7.02 8.79 342 4.41 6.72 11.13
diversity: 0.75 0.8 0.81 0.81 0.84 0.82 0.84 0.7 0.76 0.81 0.83
recov top k=40 | 0.95 0.97 0.97 0.97 0.92 0.94 0.92 0.98 0.97 0.94 0.93
recov top k=50 | 0.95 0.98 0.98 0.97 0.93 0.95 0.93 0.98 0.97 0.95 0.94
Vicuna 13B

k burst 7.7 9.92 9.85 9.84  10.01 10.01 9.67 10.74 1045 9.89 9.07
p burst 0.83 0.62 0.63 0.63 0.6 0.6 0.63 0.5 0.54 0.6 0.67
top-p burst 0.21 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.24 0.24 0.24
log-likelihood 2.2 -1.35 -1.37 -1.37 -1.27 -1.27 -1.38 -0.99 -1.1 -1.3 -1.57
log rank 0.93 0.56 0.57 0.57 0.53 0.53 0.58 0.37 0.44 0.54 0.66
rank 33.84 43.0 4358 4333 41.11 41.11 43.77 35.07 37.55 4223 5143
perplexity 9.34 4.28 4.39 4.4 3.93 3.93 4.44 2.82 3.21 4.05 5.39
diversity: 0.75 0.8 0.8 0.8 0.79 0.79 0.8 0.76 0.77 0.79 0.82
recov top k=40 | 0.93 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.95
recov top k=50 | 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.96

Table 8: Average metrics for the CNN Daily Mail dataset, for each sampling method and each model.

Average PG19 Metrics
LLaMA 13B
Sampling real k=30 k=40 k=50 p=09 p=095 p=099 =0.5 t=0.7 t=0.9 burst
k burst 486 797 762 738 5.86 5.86 5.16 10.17  8.45 634  6.71
p burst 1.04 095 097 098 1.01 1.01 1.08 059 076 096 1.23
top-p burst 036 039 039 038 0.37 0.37 0.37 0.39 0.4 039 046
log-likelihood | -2.64 -1.94 -2.02 -2.06 -227 -2.27 -2.6 -1.05  -15 -2.18 -3.13
log rank 128 084 089 093 1.11 1.11 1.31 034  0.59 1.03 1.42
rank 55.02 18.08 19.13 19.54 30.09  30.09 4926 1527 18.6 36.17 99.79
perplexity 16.38  7.32 8.07 837 10.69  10.69 15.1 3.05 4.8 9.65 2374
diversity: 0.88  0.79 0.8 0.8 0.82 0.82 0.84 059 072 0.8l 0.83
recovtopk=40 | 0.89 098 098  0.97 0.92 0.92 0.88 098 097 092 0.88
recov top k=50 | 0.9 098 098 098 0.93 0.93 0.9 098 097 093 0.89
Vicuna 13B
k burst 4.89 9.8 9.67  9.57 9.83 9.41 8.73 10.84 1037  9.35 791
p burst 1.05  0.61 062 062 0.56 0.6 0.65 0.44 0.5 059 0.73
top-p burst 025 026 026 026 026 0.26 0.26 028 027 027 0.28
log-likelihood | -298 -1.19 -1.22 -124 -1.06 -1.18 -1.35 076 -09 -1.18 -1.71
log rank 1.41 048 049 051 0.43 0.49 0.58 026  0.33 0.48 0.74
rank 79.1 22,66 2298 2325 23.07 23.77 27.86 2129 21.73 2525 40.94
perplexity 23.63 3.58 3.8 3.86 3.28 3.68 445 4.13 2.73 3.67 649
diversity: 088 078 079 0.79 0.77 0.78 0.8 072 0.5 078  0.82
recovtopk=40 | 0.87 098 098 0.8 0.98 0.97 0.96 098 098 097 094
recov topk=50 | 0.88 098 098  0.98 0.98 0.97 0.97 098 098 097 095

Table 9: Average metrics for the PG19 dataset, for each sampling method and each model.
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Average StackExchange Metrics

LLaMA 13B

Sampling real k=30 k=40 k=50 p=0.9 p=0.95 p=099 =0.5 =0.7 =09 burst
k burst 7.93 8.46 8.0 7.87 7.72 7.14 6.32 8.93 8.37 7.23 8.18

p burst 0.79 0.79 0.82 0.82 0.77 0.82 0.88 0.58 0.66 0.79 0.97

top-p burst 0.31 0.34 0.34 0.34 0.33 0.33 0.33 0.36 0.35 0.34 0.38

log-likelihood -1.78 -1.59  -1.71 -1.74 -1.59 -1.76 -2.01 -1.07 -1.3 -1.71 -2.41
log rank 0.81 0.69 0.75 0.78 0.73 0.82 0.96 0.4 0.54 0.78 1.04

rank 2592 18.89 2192 2231 23.0 25.18 334 19.92 21.5 28.57 76.04
perplexity 6.78 5.25 5.84 6.08 5.32 6.37 8.36 3.02 3.85 6.02 11.39
diversity: 0.78 0.81 0.81 0.81 0.8 0.81 0.83 0.7 0.76 0.81 0.83

recov top k=40 | 0.95 0.98 0.97 0.97 0.96 0.95 0.93 0.97 0.97 0.95 0.93

recov top k=50 | 0.95 0.98 0.97 0.97 0.96 0.95 0.93 0.98 0.97 0.95 0.93

Vicuna 13B

k burst 7.83 9.01 8.94 8.97 9.32 9.15 8.86 9.61 9.46 9.03 8.17

p burst 0.81 0.58 0.59 0.58 0.52 0.55 0.58 0.45 0.49 0.55 0.65

top-p burst 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.22 0.23

log-likelihood -2.18 -1.23 -1.26  -1.24 -1.05 -1.12 -1.24 -0.89 -098 -1.16 -1.54
log rank 0.92 0.51 0.53 0.52 0.44 0.47 0.53 0.35 0.39 0.49 0.65

rank 39.49 27.7 28.62 2794 2552 26.16 28.5 2396 2486 28.14 3841
perplexity 10.51  4.01 4.22 4.08 3.21 3.51 4.1 2.62 2.91 3.73 5.76

diversity: 0.78 0.75 0.76 0.76 0.74 0.74 0.75 0.71 0.73 0.75 0.77

recov top k=40 | 0.93 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.95

recov top k=50 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96

Table 10: Average metrics for the StackExchange dataset, for each sampling method and each model.

Average Twitter Metrics

LLaMA 13B

Sampling real k=30 k=40 k=50 p=09 p=0.95 p=099 =0.5 t=0.7 t=0.9 burst
k burst 3.13 7.85 7.56  7.32 6.72 6.02 5.29 1037 856 644 4.48
p burst 1.32 096  0.98 0.99 0.98 1.04 1.12 056  0.75 0.99 1.67
top-p burst 0.38 0.39 0.39 0.39 0.37 0.37 0.38 0.38 0.4 0.39 0.5
log-likelihood -3.77 203 211 -2.17  -2.18 -2.43 276 -097  -15 23 -4.47
log rank 1.9 0.9 0.95 0.99 1.05 1.21 1.42 032  0.61 1.11 2.31
rank 13545 40.22 41.11 42.0 48.07 56.63 7828 2533 3411 61.19 307.99
perplexity 64.8 10.57  11.2 1192 1322 16.52 22.59 3.15 586 1424 9475
diversity: 0.98 082 082 083 0.83 0.85 0.86 0.55 0.73 0.83 0.89
recov top k=40 0.8 0.97 0.97 0.96 0.92 0.9 0.86 0.98 096 091 0.75
recov top k=50 | 0.82 0.97 0.97 0.97 0.93 0.91 0.88 0.98 0.97 0.92 0.77
Vicuna 13B

k burst 3.19 9.24 9.17 9.09 8.4 8.92 8.4 104 9.87 8.93 6.62
p burst 1.34 0.61 062  0.62 0.65 0.61 0.65 0.44 0.5 0.6 0.86
top-p burst 0.27 026 026 026 0.26 0.25 0.26 0.27 026  0.26 0.29
log-likelihood -4.14  -127 -129 -132 -144  -1.27 -144  -083 -098 -127 -235
log rank 2.1 054  0.55 0.57 0.65 0.57 0.65 0.31 0.4 0.56 1.06
rank 203.62 53.87 5332 5586 6222 56.61 6222 4497 49.12 5749 103.03
perplexity 92.06 795 8.11 9.65 9.26 8.24 9.26 533 6.69 9.89 17.87
diversity: 0.98 082 082 082 0.83 0.82 0.83 0.75 0.78 0.82 0.88
recov top k=40 | 0.76 0.97 0.97 0.96 0.95 0.96 0.95 0.97 0.97 0.96 0.9
recov top k=50 | 0.79 0.97 0.97 0.97 0.95 0.96 0.95 0.98 0.97 0.96 0.91

Table 11: Average metrics for the Twitter dataset, for each sampling method and each model.
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Average Wikipedia Metrics

LLaMA 13B

Sampling real k=30 k=40 k=50 p=09 p=0.95 p=099 =05 =0.7 =09 burst
k burst 7.23 9.92 9.74 9.62 8.77 8.77 7.86 10.78 10.14  8.73 8.85
p burst 0.72 0.73 0.74 0.75 0.74 0.74 0.79 0.55 0.62 0.73 0.89
top-p burst 0.29 0.32 0.32 0.32 0.31 0.31 0.32 0.34 0.33 0.32 0.37
log-likelihood -1.64 -1.5 -1.54  -1.56  -1.58 -1.58 -1.79 -1.01  -1.19 -1.56 -2.23
log rank 0.72 0.63 0.66 0.67 0.72 0.72 0.83 0.37 0.48 0.69 0.92
rank 32.77 3473 3587 3556 38.61 38.61 4576  34.88 3575 42.04 978
perplexity 5.65 4.81 5.63 5.18 5.52 5.52 6.94 2.96 3.55 - 9.92
diversity: 0.8 0.81 0.81 0.81 0.81 0.81 0.82 0.73 0.77 0.81 0.82
recov top k=40 | 0.95 0.98 0.98 0.97 0.95 0.95 0.94 0.98 0.97 0.95 0.94
recov top k=50 | 0.95 0.98 0.98 0.98 0.96 0.96 0.94 0.98 0.97 0.96 0.94
Vicuna 13B

k burst 7.38 10.8  10.73 10.71 1043 10.71 10.43 11.27 11.04 10.64 9.97
p burst 0.73 0.53 0.53 0.53 0.53 0.51 0.53 0.44 0.47 0.51 0.57
top-p burst 0.2 0.21 0.21 0.21 0.21 0.21 0.21 0.23 0.22 0.21 0.22
log-likelihood -1.97  -1.08 -1.09 -1.09 -1.11 -1.03 -1.11 -0.84  -092 -1.05 -1.26
log rank 0.81 0.43 0.44 0.44 0.46 0.42 0.46 0.31 0.36 0.42 0.51
rank 40.81 4645 48.17 4847 5035 4831 50.35 4411 4549 4838 5447
perplexity 8.0 3.54 3.56 3.61 3.84 3.56 3.84 2.52 2.95 3.26 4.23
diversity: 0.8 0.79 0.79 0.79 0.79 0.79 0.79 0.76 0.77 0.79 0.8
recov top k=40 | 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.96
recov top k=50 | 0.94 0.98 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.97

Table 12: Average metrics for the Wikipedia dataset, for each sampling method and each model.
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arXiv Distribution Distances to Real Text

LLaMA 13B
Sampling k=30 k=40 k=50 p=09 p=095 p=099 (=05 (=0.7 (=09 burst
K burst 041 036 032 022 011 _ 008 059 043 017 021
p burst 025 019 016 027 008 018 093 077 019 065
top-p burst 038 035 033 019 019 023 059 054 039 078
log-likelihood | 0.62 056 05 052 027 006 096 087 035 067
log rank 069 062 054 049 021 012 098 091 034 046
rank 052 051 05 042 032 007 055 05 019 033
perplexity 062 056 05 052 027 006 096 087 035 0.67
diversity 035 031 028 033 022 01 076 059 028 0.09

recovtopk=40 | 095 094 087 0.57 0.28 0.08 093 084 033 024
recov topk=50 | 093 093 092  0.58 0.3 0.08 0.91 0.83 033 025

Vicuna 13B

k burst 0.67 0.66 0.66 0.57 0.66 0.57 0.75 0.73 0.63 047
p burst 0.9 0.89  0.88 0.86 0.91 0.86 0.98 0.97 0.92 0.74
top-p burst 0.12 012 0.12 0.13 0.06 0.13 0.31 0.2 0.16 0.26
log-likelihood 093 092 092 0.89 0.94 0.89 0.98 0.97 0.93  0.77
log rank 092 091 0.9 0.86 0.92 0.86 0.98 096 0091 0.73
rank 045 044 044 0.38 0.44 0.38 049 047 04 0.18
perplexity 093 092 092 0.89 0.94 0.89 0.98 0.97 093 0.77
diversity 0.42 0.4 0.4 0.37 0.45 0.37 0.63 0.57 043 024

recov top k=40 | 0.9 0.9 0.89 0.8 0.88 0.8 094 093 0.87 0.66
recov top k=50 | 0.89 0.89 088 0.79 0.87 0.79 093 092 085 0.63

Table 13: Metric distribution separability for the arXiv dataset, for each sampling method and each model. Each
entry is the result of a KS test between the metrics of the generated text and that same metric over the corresponding
real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.

CNN Daily Mail Distribution Distances to Real Text

LLaMA 13B

Sampling k=30 k=40 k=50 p=09 p=095 p=099 =05 t=0.7 =0.9 burst
k burst 027 025 022 022 0.09 0.22 045 032 0.02 0.17
p burst 0.19 023 026 045 0.27 0.45 078 044 0.18 0.71
top-p burst 0.56 053 051 0.44 0.42 0.44 085 0.79 0.6 0.85
log-likelihood | 0.12  0.04 0.04 043 0.17 0.43 087 061 012 0.82
log rank 0.21 0.1 0.04 044 0.19 0.44 093 069 011 058
rank 0.11 0.1 0.09 034 0.16 0.34 0.17 013 023 058
perplexity 0.12  0.04 004 043 0.17 0.43 0.87 061 0.12 0.82
diversity 0.46 0.5 053  0.69 0.58 0.69 026 0.16 054 0.62

recovtopk=40 | 0.72 0.69 055 0.38 0.12 0.38 0.78 0.6 0.09 0.34
recov top k=50 | 0.68 0.67 0.64  0.38 0.11 0.38 073 058 0.09 0.36

Vicuna 13B

k burst 034 033 033 0.35 0.35 0.3 0.45 0.41 0.33 0.23
p burst 0.82 0.81 0.8 0.85 0.85 0.79 0.97 0.93 0.85 0.68
top-p burst 034 034 034 0.32 0.32 0.33 0.61 0.48 0.39 041
log-likelihood 086 085 0.85 0.88 0.88 0.84 096 094 0.87 0.73
log rank 0.81 079 0.79 0.83 0.83 0.76 0.95 0.91 0.82 0.63
rank 0.16 0.15 0.15 0.16 0.16 0.14 0.19 0.17 0.15 0.18
perplexity 086 085 0.85 0.88 0.88 0.84 096 094 0.87 0.73
diversity 035 037 038 0.31 0.31 0.38 0.11 0.19 032 047

recov top k=40 | 0.73  0.71 0.7 0.7 0.7 0.61 082 078 0.67 047
recov top k=50 | 0.69 0.68 0.68 0.67 0.67 0.58 078 074 0.64 044

Table 14: Metric distribution separability for the CNN Daily Mail dataset, for each sampling method and each
model. Each entry is the result of a KS test between the metrics of the generated text and that same metric over the
corresponding real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.
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PG19 Distribution Distances to Real Text

LLaMA 13B
Sampling k=30 k=40 k=50 p=09 p=095 p=099 (=05 (=0.7 (=09 burst
K burst 051 047 044 017 017 009 078 059 032 036
p burst 033 026 022 011 011 014 094 081 025 061
top-p burst 045 043 04 026 026 031 049 057 045 0.88
log-likelihood | 071 065 06 036 036 007 097 09 043 058
log rank 076 069 064 027 027 008 098 092 039 04

rank 057 056 054 032 032 006 061 055 02 041

perplexity 071 065 06 036 036 007 097 09 043 0.8
diversity 062 06 057 05 0.5 041 086 074 054 043

recovtopk=40 | 094 093 0.88 0.3 0.3 0.07 095 087 038 0.24
recov top k=50 | 093 093 0091 0.3 0.3 0.07 094 086 037 0.25

Vicuna 13B

k burst 072  0.71 0.69 0.73 0.68 0.62 0.83 0.79 0.69 0.55
p burst 093 092 091 0.94 0.92 0.87 0.98 0.97 093 0.78
top-p burst 0.14 0.13 0.13 0.06 0.08 0.13 0.29 0.2 0.16 0.29
log-likelihood 096 095 095 0.96 0.95 0.92 0.98 0.98 095 0.82
log rank 095 095 094 0.95 0.93 0.88 0.98 0.97 0.94 0.78
rank 0.6 0.6 0.59 0.6 0.58 0.53 0.62 0.61 0.56 0.34
perplexity 096 095 0095 0.96 0.95 0.92 0.98 0.98 095 0.82
diversity 0.63 062 0.62 0.66 0.63 0.57 076 072 0.64 047

recovtopk=40 | 095 094 094 093 0.9 0.83 096 095 0.9 0.7
recov topk=50 | 094 094 094 093 0.89 0.82 095 095 089 0.69

Table 15: Metric distribution separability for the PG19 dataset, for each sampling method and each model. Each
entry is the result of a KS test between the metrics of the generated text and that same metric over the corresponding
real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.

StackExchange Distribution Distances to Real Text

LLaMA 13B

Sampling k=30 k=40 k=50 p=09 p=095 p=099 =05 t=0.7 =0.9 burst
k burst 0.16 0.13 0.11  0.08 0.11 0.26 031 021 0.12 0.07
p burst 0.08 0.11 0.12 0.1 0.08 0.19 057 036 007 052
top-p burst 027 026 026 0.18 0.2 0.25 042 037 028 0.67
log-likelihood | 0.24  0.18 0.15 0.21 0.09 0.19 065 047 013 0.62
log rank 026 019 0.15 0.19 0.07 0.23 076 053 011 052
rank 023 012 0.11  0.08 0.06 0.23 0.18 0.13 011 055
perplexity 024 018 0.15 0.21 0.09 0.19 065 047 013 0.62
diversity 0.14 0.16 0.18 0.13 0.19 0.29 033 013 0.16 027

recov top k=40 | 0.67 058 045 0.28 0.06 0.28 0.61 0.5 0.07 042
recov top k=50 | 0.63 0.56 053  0.28 0.06 0.29 057 046 0.08 045

Vicuna 13B

k burst 0.21 0.2 0.2 0.27 0.23 0.19 032 029 022 0.09
p burst 0.6 0.58 0.59 0.72 0.67 0.59 0.86 0.8 0.66 0.44
top-p burst 0.15 0.16 0.16 0.12 0.12 0.14 024 0.18 0.16 0.24
log-likelihood 0.7 0.68 0.69 0.8 0.76 0.68 0.88 0.84 073 0.51
log rank 066 064 0.65 0.75 0.71 0.63 0.86  0.81 0.69 046
rank 032 031 0.31 0.34 0.33 0.3 0.36 0.35 0.31 0.17
perplexity 0.7 0.68  0.69 0.8 0.76 0.68 0.88 0.84 073 0.1
diversity 022 021 0.22 0.31 0.27 0.22 039 034 026 0.13

recov topk=40 | 0.69 0.68  0.67 0.71 0.69 0.62 075 073 0.66 045
recov top k=50 | 0.63 0.62 0.63  0.66 0.64 0.57 0.7 0.68 0.6 0.4

Table 16: Metric distribution separability for the StackExchange dataset, for each sampling method and each
model. Each entry is the result of a KS test between the metrics of the generated text and that same metric over the
corresponding real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.
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Twitter Distribution Distances to Real Text

LLaMA 13B
Sampling k=30 k=40 k=50 p=09 p=095 p=099 (=05 (=0.7 (=09 burst
K burst 071 068 066 062 057 056 094 083 071 053
p burst 067 063 06 061 051 035 096 08 06 068
top-p burst 013 012 012 021 02 017 012 019 015 077
log-likelihood | 0.86 084 084 08 072 057 098 093 077 06l
log rank 085 083 081 073 063 046 097 092 07 056
rank 057 056 056 05 043 025 063 058 037 064
perplexity 086 084 08 08 072 057 098 093 077 061
diversity 085 085 084 08 08 078 095 091 083 07

recovtopk=40 | 0.89 0.88 0.86 0.71 0.6 0.41 094 089 0.66 046
recov top k=50 | 0.88 0.87 0.86 0.7 0.59 0.39 094 087 0.64 049

Vicuna 13B

k burst 083 082 0.82 0.8 0.83 0.8 0.9 0.88 0.84 0.72
p burst 0.9 0.89 0.89 0.87 0.89 0.87 0.95 0.94 0.9 0.73
top-p burst 0.13 0.14 0.13 0.12 0.17 0.12 0.07 0.11 0.12 0.23
log-likelihood 093 093 092 0.9 0.92 0.9 0.96 0095 0.92 0.81
log rank 0.91 0.91 0.9 0.87 0.89 0.87 0.95 0.94 0.9 0.76
rank 0.59 0.6 0.6 0.56 0.59 0.56 0.62 0.61 0.57 0.32
perplexity 093 093 092 0.9 0.92 0.9 0.96 0095 0.92 0.81
diversity 0.8 0.8 0.8 0.78 0.79 0.78 0.86 0.83 0.8 0.68

recov top k=40 | 0.9 0.9 0.89 0.84 0.86 0.84 092 091 087 0.71
recov top k=50 | 0.89 0.89 0.89  0.83 0.86 0.83 0.91 0.9 0.86  0.69

Table 17: Metric distribution separability for the Twitter dataset, for each sampling method and each model. Each
entry is the result of a KS test between the metrics of the generated text and that same metric over the corresponding
real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.

Wikipedia Distribution Distances to Real Text

LLaMA 13B

Sampling k=30 k=40 k=50 p=09 p=095 p=099 =05 t=0.7 =0.9 burst
k burst 037 035 034 024 0.24 0.12 046 038 0.23 0.3
p burst 0.06 0.09 0.12 0.1 0.1 0.23 056 034 004 054
top-p burst 035 033 033 024 0.24 0.28 046 041 034 071
log-likelihood | 0.17  0.12  0.09  0.07 0.07 0.17 066 049 0.09 0.64
log rank 021 016 0.11 0.03 0.03 0.21 073 054 0.07 047
rank 0.09 0.09 0.09 0.16 0.16 0.29 0.08 009 022 056
perplexity 0.17 0.12 0.09 0.07 0.07 0.17 066 049 009 0.64
diversity 0.08 0.1 0.12  0.14 0.14 0.22 031 0.14 0.11 0.19

recov topk=40 | 0.63 0.61 052 0.13 0.13 0.15 061 051 014 024
recov top k=50 | 0.6 059 058 0.13 0.13 0.15 058 049 012 0.27

Vicuna 13B

k burst 043 043 043 0.4 0.43 0.4 049 047 0.42  0.36
p burst 0.68 0.68 0.68 0.66 0.72 0.66 0.86 0.81 0.72  0.58
top-p burst 0.2 0.2 0.19 0.17 0.17 0.17 0.39 0.3 0.21 0.25
log-likelihood 076 0.76  0.75 0.74 0.78 0.74 0.87 0.83 0.77  0.65
log rank 0.71 0.7 0.69 0.67 0.71 0.67 0.84 079 0.71 0.58
rank 0.09 0.08 0.08 0.08 0.08 0.08 0.11 0.09 008 0.13
perplexity 076 076 0.75 0.74 0.78 0.74 0.87 0.83 0.77  0.65
diversity 0.06 0.06 0.06 0.05 0.07 0.05 0.18 0.13 0.07 0.04

recov topk=40 | 0.66 0.66 0.64  0.57 0.62 0.57 0.7 0.67 0.61 049
recov top k=50 | 0.64 0.63 0.62  0.55 0.6 0.55 067 064 059 046

Table 18: Metric distribution separability for the Wikipedia dataset, for each sampling method and each model. Each
entry is the result of a KS test between the metrics of the generated text and that same metric over the corresponding
real text. 1.0 represents completely separate distributions, while 0.0 represents identical distributions.
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GLTR Logistic Regression F1 Scores
LLaMA 13B
Sampling: k=30 k=40 k=50 p=0.9 p=0.95 p=099 =05 =0.7 =09 burst
ArXiv 0.88  0.89 0.9 0.77 0.64 0.59 098 094  0.66 0.6
CNN DailyMail | 0.72  0.77  0.79 0.61 0.6 0.71 096 086 057 0.71
PG-19 093 092 091 0.78 0.65 0.56 099 095 0.69 0.67
StackExchange 0.69 0.65 0.67 0.58 0.5 0.65 0.9 0.79 057 0.75
Twitter 092 091 091 0.86 0.82 0.72 098 095 084 0.78
Wikipedia 0.7 0.71  0.72 0.63 0.53 0.6 0.87 078 0.58 0.68
Vicuna 13B
ArXiv 096 096 095 0.97 0.96 0.93 099 097 096 0.88
CNN DailyMail | 0.92 0.9 0.9 0.95 0.93 0.9 097 096 092 0.86
PG-19 097 097 097 0.97 0.96 0.94 099 099 097 0.89
StackExchange 0.82 0.81 0.81 0.87 0.84 0.82 0.9 0.89 083 0.72
Twitter 095 095 095 0.95 0.94 0.93 097 096 094 0.88
Wikipedia 08 085 084 0.88 0.85 0.85 091 089 0.86 0.8

Table 19: F1 scores for logistic regression classifiers trained to classify real vs synthetic text, using GLTR bins as
features. A high score indicates that based on the GLTR bins, it was easier to detect if a piece of text was real or
generated.

All-Metric Logistic Regression F1 Scores

LLaMa 13B

Sampling: k=30 k=40 k=50 p=09 p=095 p=099 =05 =0.7 =09 burst
ArXiv 097 095 096 094 0.88 0.75 099 099 086 097
CNN DailyMail | 093 093 092  0.95 0.91 0.87 099 098 092 0.99
PG-19 098 097 096 095 0.91 0.83 099 099 091 098
StackExchange | 091 0.87 087 091 0.87 0.8 098 097 0.87 097
Twitter 097 097 096 095 0.93 0.91 099 098 095 094
Wikipedia 0.84 083 0.83 0.86 0.81 0.73 096 091 083 094
Vicuna 13B

ArXiv 099 099 0.99 1.0 0.99 0.99 1.0 099 099 098
CNN DailyMail | 099 099 099 0.99 0.99 0.99 1.0 1.0 099 099
PG-19 099 099 0.99 1.0 1.0 0.99 1.0 1.0 1.0 0.98
StackExchange | 099 098 098  0.99 0.99 0.99 099 099 099 097
Twitter 098 098 098 0098 0.98 0.97 099 098 098 094
Wikipedia 097 097 097 098 0.97 0.97 099 098 098 097

Table 20: F1 scores for logistic regression classifiers trained to classify real vs synthetic text, using all metrics as
input features. A high score indicates that it was easier to detect if a piece of text was real or generated.

309



