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Abstract

Natural language understanding(NLU) is chal-
lenging for finance due to the lack of annotated
data and the specialized language in that do-
main. As a result, researchers have proposed
to use pre-trained language model and multi-
task learning to learn robust representations.
However, aggressive fine-tuning often causes
over-fitting and multi-task learning may favor
tasks with significantly larger amounts data,
etc. To address these problems, in this paper,
we investigate model-agnostic meta-learning
algorithm(MAML) in low-resource financial
NLU tasks. Our contribution includes: 1. we
explore the performance of MAML method
with multiple types of tasks: GLUE datasets,
SNLI, Sci-Tail and Financial PhraseBank; 2.
we study the performance of MAML method
with multiple single-type tasks: a real scenario
stock price prediction problem with twitter text
data. Our models achieve the state-of-the-art
performance according to the experimental re-
sults, which demonstrate that our method can
adapt fast and well to low-resource situations.

1 Introduction

It has been a trading practice tradition to utilize
textual data to improve modeling of the financial
market dynamics(Xing et al., 2018). Nowadays
financial operators have access to a growing vol-
ume of information, provided by financial reports,
news articles, press releases, etc. The enrichment
of text sources has also lead to diverse types of
unstructured and structured data, for example, so-
cial media websites like Twitter, Facebook, etc. are
generating rich text content, which can be used
as a supplement to support prediction. As a re-
sult, there have been increasing attempts to try to
utilize deep learning methods on solving financial
tasks, including financial opinion mining and ques-
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tion answering (Maia et al., 2018), financial senti-
ment analysis(Araci, 2019), financial named entity
recognition(Wang et al., 2014) and other natural
language understanding(NLU) tasks.

However, traditional deep neural network based
methods faces several drawbacks. First, they of-
ten require vast amount of annotated data which
requires high manual labeling cost. Second, lan-
guage model that trained on Wikitext or other gen-
eral dataset may be ineffective in solving financial
tasks (Araci, 2019) because text data in financial
field often exhibits a different pattern compare to
text data collected in other domain. Thus, aiming
at solving this issue, researchers and investors in fi-
nancial NLU field has shifted their attention to use
transfer learning technique, i.e. to learn a general
representation of financial text and adapt it to other
new tasks.

Researchers have presented several approaches
for transfer learning in Finance NLU field. One
of the approach is FinBERT(Araci, 2019), which
exploits the powerful pre-trained language model,
BERT(Devlin et al., 2019) fine-tunes it using texts
in financial field then uses it for new tasks. Fur-
ther, another approach is to apply multi-task learn-
ing to representation learning, where (Liu et al.,
2019) proved that BERT model could be improved
with multi-task learning strategy as the MT-DNN
model. It has achieved descent results on GLUE
datasets. However, (Dou et al., 2019) pointed out
that multi-task learning may prefer tasks with sig-
nificantly larger datasets than others and further
suggested meta-learning algorithms for multiple
types of low resource language understanding tasks.
Meta-learning algorithms try to learn a meta-policy
for updating model parameters or a good initial-
ization that can be useful for fine-tuning on vari-
ous tasks with minimal training data, which makes
them promising alternatives to multi-task learn-
ing. Meta-learning has been proved useful in few-
shot learning(Finn et al., 2017),single-type multi-
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tasks learning. Indeed, (Gu et al., 2018) extends
meta-learning algorithm for low-resource neural
machine translation, framing low-resource trans-
lation as a meta-learning problem and adapting
to low-resource languages based on multilingual
high-resource language tasks.

Inspired by these work, in this paper, we in-
vestigate the applications of meta-learning algo-
rithms, specifically the Model-Agnostic Meta-
Learning(MAML) algorithm(Finn et al., 2017), to
try to solve the fundamental representation learning
issue in financial text data.

The main contribution of this paper is two-fold:

• We study the performance of MAML method
with multiple types of tasks. We combine the
MAML algorithm with MT-DNN model, train
the model using four high-resource datasets,
evaluate it on other low-resource datasets, and
then adapt the model to Financial PhraseBank,
a financial sentiment analysis dataset, where
we achieve the state-of-the-art. Our experi-
ments also justify the superior property in fast
adaptation and over-fitting avoidance of the
MAML model.

• We study the performance of MAML method
with multiple tasks in single type. We de-
velop a few-shot learning method for the
task of stock price movement prediction with
news texts, and propose a competitive MAML-
BERT model for stock price prediction.

The rest of the paper is structured as follows:
Section 2 briefly describes the relevant literature
in multi-task learning, meta-learning and financial
natural language understanding tasks. Then, Sec-
tion 3 introduces the methods we use: BERT model
and MAML algorithm. In Section 4, we present
multiple experiments being conducted, including
datasets, implementations and their results. We con-
clude with Section 5 and discuss the future work in
Section 6.

2 Related Work

In this section, we introduce the relevant literature
in multi-task learning, meta-learning and two finan-
cial natural language understanding tasks including
financial sentiment analysis and stock price predic-
tion.

2.1 Multi-Task Learning

Multi-task learning (MTL) is a sub-field of ma-
chine learning, which exploits commonalities and
differences across tasks and solves multiple learn-
ing tasks at the same time. Biologically, we often
apply the knowledge we have acquired in related
tasks to learning new tasks. For example, a baby
first learns to recognize faces and can then recog-
nize other objects by applying this knowledge. Sim-
ilarly, multi-task learning can result in improved
learning efficiency and prediction accuracy for the
task-specific models, compared to training the mod-
els separately (Baxter, 2000).

Multi-task learning penalizes all complexity uni-
formly, and as a result, regularization induced by
requiring an algorithm to perform well on a related
task can be superior to regularization that prevents
over-fitting. One situation where MTL may help is
if the tasks share significant commonalities and are
generally slightly under sampled[ (Hajiramezanali
et al., 2018)].

In the context of Deep Learning, it’s the most
commonly approach for multi-task learning to use
hard parameter sharing, generally applied by shar-
ing the hidden layers between all tasks, while keep-
ing task-specific output layers. MT-DNN model is
a one of the typical hard parameter sharing applica-
tion in NLU tasks(Liu et al., 2019).

2.2 Meta Learning

Meta-learning, or learn-to-learn, has recently at-
tracted much attention in the machine learning com-
munity (Lake et al., 2015). Basically the goal of
meta-learning is to train a learner that is able to fast
adapt to new task with limited training data.

There are three common approaches to
meta-learning: metric-based, model-based, and
optimization-based.

Metric-based Metric-based meta-learning is sim-
ilar to nearest neighbors algorithm and kernel den-
sity estimation. The model predicts a probability
y over a set of known labels by a weighted sum of
labels of support set samples. The weight is gener-
ated by a kernel function kθ, which measures the
similarity between two data samples.

Pθ(y|x, S) =
∑

(xi,yi)∈S

kθ(x, xi)yi

To train a successful metric-based meta-learning
model requires researchers to specify a good kernel
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that could learn the distance function over objects
well. However, kernel functions are highly depends
on specific problem, the inputs and the representa-
tion space of tasks.

Most of the frequently-used metric-based mod-
els learn embedding vectors of input data explicitly
and use them to design proper kernel functions,
see Convolutional Siamese Neural Network(Koch
et al.), Relation Network (Sung et al., 2018), etc.

Model-based Model-based meta-learning model
requires a model designed for fast learning. By
modifying the internal model architecture or adding
an additional meta-learner model on top of original
model, it could achieve the fast learning goal, i.e. to
update its parameters rapidly within a few training
steps.

The representative works in this category include
Memory-Augmented Neural Network(Santoro
et al., 2016), Meta Network(Munkhdalai and Yu,
2017), etc.

Optimization-based Optimization-based meta-
learning algorithms aim to achieve the fast adap-
tation goal by adjusting the optimization algo-
rithms. As we all know, deep learning models learn
through back-propagation of gradients. Yet, since
the gradient-based optimization does not work well
on small number of training samples and won’t
converge within a small number of optimization
steps, a model is designed to modify the gradient
based optimization algorithm.

The most popular optimization-based meta-
learning algorithm is model-agnostic meta-
learning(MAML), which is also what we mainly
aim to investigate in this paper. (Finn et al., 2017)
achieved state-of-the-art performance by directly
optimizing the gradient towards a good parameter
initialization for easy fine-tuning on low resource
scenarios without introducing any additional archi-
tectures or parameters.

Figure 1 visually illustrates the differences be-
tween classical multi-task learning and meta multi-
task learning. The classical multi-task learning
tends to get to a point where the current gradients
from different tasks are balanced, which may still
result in over-fitting and tend to favor tasks with
significantly larger amounts of data than others,
while meta-learning aims to minimize the future
loss of different task respectively.

2.3 Financial NLU Applications

2.3.1 Financial Sentiment Analysis
General sentiment analysis aims to extract people’s
opinions or tendency from language. Yet there is a
key specialty in financial sentiment analysis that the
purpose of financial sentiment analysis is usually
targeted towards the market. Indeed, it usually aims
to analyze the text data to facilitate understanding
of how the markets will react with the information
presented in the text.

Most popular methods in solving sentiment anal-
ysis tasks include RNN, LSTM network models.
Extending upon these models, (Maia et al., 2018)
adds a text simplification layer and then applies it
to LSTM network. Despite the success in general
sentiment analysis, there is still a huge gap to uti-
lize the neural networks to their fullest potential in
solving tasks in finance domain due to the lack of
high quality annotated datasets in the domain.

(Araci, 2019) has tackled this issue with Fin-
BERT model. As we have discussed before, it es-
sentially is to initialize the model with pre-trained
values and fine-tuning the model with respect to
the classification task. In FinBERT, the author used
Reuters data to pre-training the BERT model and
achieved promising results on Financial Phrase-
Bank.

We address this problem from a different per-
spective. We utilize the meta learning model by
training it with multiple NLU tasks to facilitate
learning of a more robust and generalized represen-
tation. Then fitting the model to Financial Phrase-
Bank dataset so that the model can quickly adapted
on learning the sentimental relations in the text. We
have compared our results against their reported
accuracy.

2.3.2 Stock Price Prediction
Stock price prediction has long attracted re-
searchers and investors. In financial natural lan-
guage processing field, the two primary content re-
sources for stock market prediction are public news
and social media data (mainly from twitter). Classi-
cal research relies primarily on feature engineering
but their results tends to be highly volatile. With
the prevalence of deep learning(Le and Mikolov),
event driven approaches were studied and models
with LSTM, RNN become dominant. More re-
cently, (Hu et al., 2019) proposed a novel method
to feed news sequence directly from text with hi-
erarchical attention mechanisms for stock trend
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Figure 1: The illustrative comparisons between representations learned by (a) classical multi-task learning and (b)
meta multi-task learning.

prediction. Further, language model such as BERT
has also inspired researchers with development of
new models.

However, stock price prediction is widely con-
sidered difficult due to three factors: high mar-
ket stochasticity, chaotic market information and
temporally-dependent prediction. Stock prices
are not influenced solely by news information or
tweeter information. Other factors influencing the
stock price are not directly observable or measur-
able. Thus the traditional prediction are mainly
resulting in a random-walk pattern(Malkiel, 1996).

In order to tackle the temporally-dependent pre-
diction issue, researchers choose to frame the data
to fit for a time series problem. In other word, they
have to incorporate the temporal dependency be-
tween stock prices movements in to the model. For
example, when a company experienced some good
news on day d1, its stock price will be slowly af-
fected and thus will have an upward trend pattern
in the following days until dn. Similarly, when
a company suffered from some scandal, its stock
price will needs time to absorb the affect of the
scandal in the following n days.

Yet the time series model explained above did
not address the chaotic market information issue.
Different stock may correlated in different level
with text data. Some stock may suffer from ineffi-
cient data issue. Transfer learning provides a viable
way to alleviate this issue by using meta-learning.
Previously, Zhaojiang has used MAML in tackling
a similar issue: use text data from Chinese Weibo
to predict sales for different company(Lin et al.,

2019). This strategy used non-parametric model to
leverage historical information of other brands, and
used them as prior knowledge and thereby allows
the model for fast adaptability.

In this paper, we are going to adopt the method-
ology of MAML to test the effectiveness of MAML
on stock price prediction task.

3 Method

In this section, we present the main methods used:
pre-trained Language Model of BERT and Model-
Agnostic Meta-Learning algorithm, and how we
combine them.

3.1 Pre-trained Language Model: BERT

We use Bidirectional Encoder Representations
from Transformers (BERT)(Devlin et al., 2019) as
our pre-trained model, which will be shared across
all the tasks.

BERT is first trained on unlabelled text, includ-
ing Brown Corpus and English Wikipedia which
has more than 2.5 billions of words. Fine-tuned
on downstream nature language processing jobs,
BERT has obtained state-of-art results on 11 differ-
ent tasks, such as text classification, named entity
recognition, sentiment analysis and question an-
swering. Unlike ELMo which predicts the next
word of an ordered sequence of tokens, BERT is
trained on the entire sentence by randomly masking
15% of the set of words. Therefore, instead of learn-
ing the context based on the previous or next word,
it can learn the representation of words through all
words in the sentence simultaneously. With trans-
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former and bi-directional structure implemented,
BERT helps with disambiguation of polysemous
words and homonyms by focusing attention on a
specific token.

BERT has two versions: BERT-Base, with 12
encoder layers, hidden size of 768, 12 multi-head
attention heads and 110M parameters in total, and
BERT-Large, with 24 encoder layers, hidden size
of 1024, 16 multi-head attention heads and 340M
parameters. Considering about the computation
resources, we only use BERT-Base in our experi-
ments.

3.2 Algorithm: Model-Agnostic
Meta-Learning

The basic idea of MAML(Finn et al., 2017) and
its variants is to use a set of source tasks to find
the initialization of parameters, and by using that
parameters, it would require only a small number
of training examples to learn a target task.

Given a set of tasks {T1, ..., Tk} drawn from a
distribution of p(T ), which consist of a training
set train(T ) and a testing set test(T ), consider a
model represented by a parameterized function fθ
with parameters θ.

When adapting to new tasks Ti, we can update
the model’s parameter θ to θ′i using one or more
gradient update(We use one gradient update here
to simplify the case, but usually real applications
use multiple gradient updates):

θ′i = θ − α∇θLTi(f(θ))

This is the inner loop update, where LTi is the
loss function for Ti.

To achieve a good generalization across various
tasks, we aim to optimize the meta-objective, which
is as follows:

min
θ

∑
Ti∼p(T )

LTi(f(θ′))

=
∑

Ti∼p(T )

LTi(f(θ − α∇θLTi(f(θ))))

We perform the meta-optimization over the
model parameters θ, with the objective computed
using the updated model parameters θ. As a result,
a few gradient steps on a new task will produce
maximum influence on that task.

So for the outer loop, model parameters θ are
updated as follows:

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi(f(θ))

where β is the meta step size. The full algorithm is
outlined in Algorithm 1, adapted from (Finn et al.,
2017).

3.3 Proposed Framework

The architecture of the MAML model is similar
to MT-DNN(Liu et al., 2019). A word sequence
(either a sentence or a pair of sentences packed to-
gether) is firstly input to BERT, which is the shared
semantic representation trained by our meta multi-
task objectives. On the top are the task-specific
layers, where for each task, task-specific represen-
tations are generated by task-specific layers. And
after that, there are some necessary operations for
classification, relevance ranking, etc.

Generally, there are three steps in our method:
the pre-training step as in BERT, the meta-learning
step and fine-tuning step. In meta multi-task learn-
ing step, we use stochastic gradient descent (SGD)
for inner loop update and Adamax optimizer for
outer loop adaptation. In each epoch, a batch of
tasks is selected, and the model is updated accord-
ing to the sum of all multi-task objectives over the
tasks.

4 Experiments

In this section, we discuss two specific instantia-
tions of MAML for multi-task learning settings.
One is multi-types of NLU tasks and another is
multiple NLU tasks in single type, which differ in
the loss function’s form and in how data is gener-
ated by the tasks and presented to the model, but
the same basic adaptation mechanism are applied
in both cases.

4.1 Multi-Types NLU Tasks

In this part, we study the performance of MAML
model with multiple types of tasks.

4.1.1 Datasets
We briefly describes the GLUE, SNLI, and SciTail
datasets, as summarized in Table 1.

GLUE The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is a tool for evaluating and analyzing the perfor-
mance of natural language understanding models
across nine NLU tasks: Single-Sentence Tasks,
Similarity and Paraphrase Tasks and Inference
Tasks.

Four high-resource datasets(MNLI, QQP, SST,
QNLI) are used as training datasets, and four other
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Algorithm 1: Model-Agnostic Meta-Learning(MAML)
Require: p(T ):distribution over tasks
Require: α,β: step size hyperparameters
randomly initialize θ;
while not done do

Sample batch of tasks Ti ∼ p(T );
forall Ti do

Evaluate ∇θLTi(f(θ)) with respect to K examples;
Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(f(θ));

end
Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(f(θ));

end

low-resource datasets(CoLA, MRPC, STS-B, RTE)
are used as testing datasets, according to (Dou et al.,
2019). In our experiments we do not train or test
models on the WNLI dataset because of previous
work (Devlin et al., 2019).

SNLI The Stanford Natural Language Inference
dataset (Bowman et al., 2015) is a naturalistic cor-
pus of 570k sentence pairs labeled for entailment,
contradiction, and independence.

We use this dataset to examine the algorithm’s
fast adaptation ability in this study.

Sci-Tail This is a Textual Entailment Dataset
from Science Question Answering (Khot et al.).
Hypotheses from science questions are created
while the corresponding answer candidates and
premises from relevant web sentences are retrieved
from a large corpus. These linguistically challeng-
ing sentences, combined with the high lexical simi-
larity of premise and hypothesis for both entailed
and non-entailed pairs, makes the new entailment
task particularly difficult.

We use this dataset examine the algorithm’s fast
adaptation ability in this study.

Financial PhraseBank(FPB) The sentiment
analysis dataset (Malo et al., 2013) consists of 4845
english sentences selected randomly from financial
news found on LexisNexis database, which is an-
notated by 16 people with finance and business
background. The annotators were asked to give la-
bels according to how they think the information in
the sentence might affect the mentioned company
stock price.

This dataset is our first step to generalize our
model to financial domain in this study.

4.1.2 Implementation Details
Our implementation of MAML is based on Py-
Torch implementation of MT-DNN (Liu et al.,
2019). We use Adamax with a learning rate of
5e-5 as our outer optimizer, batch size of 32 and
the maximum number of epochs of 5. We also
set the update step to 3 and α, the inner learning
rate of SGD to 5e-5. The dropout rate of all task
specific layers is 0.1, except 0.3 for MNLI and
0.05 for CoLA. A linear learning rate decay sched-
ule with warm-up over 0.1 is used. The gradient
norm is clipped within 1 to avoid exploding gradi-
ent problem. The pre-trained BERT-Base is used to
initialize the model. Tasks are sampled according
to the size of their datasets.

An Amazon p3.8.xlarge EC2 instance with 4
GPUs, and 90 GiB of host memory is used to train
the models.

Experiment details are presented in Figure 2. We
compare our MAML model against various state-
of-the-art baselines.

For GLUE, SciTail and SNLI datasets, We use
the public code of BERT-Base (Devlin et al., 2019)
model and MT-DNN model(Liu et al., 2019) to ob-
tain their results. For Financial PhraseBank dataset,
we target the results in FinBert model(Araci, 2019).

4.1.3 Results
The experiment results on GLUE, SNLI, SciTail
and Financial PhraseBank datasets are the follow-
ing.

GLUE Main Results We first train the MAML
model using four of the GLUE datasets and their
fine-tuned results are presented in Table 2. Then
we test the model with four GLUE datasets. The
results for the testing datasets are presented in Table
3.
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Corpus Task Train Dev Test Label Metrics

CoLA Acceptability 8.5k 1k 1k 2 Matthews Corr
SST-2 Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy(match/mismatch)
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman Corr

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy
SNLI NLI 549k 9.8k 9.8k 2 Accuracy
SciTail NLI 23.5k 1.3k 2.1k 2 Accuracy

FPB Sentiment 2.9k 1.0k 1.0k 3 Accuracy

Table 1: Benchmarks: GLUE, SNLI, SciTail, FPB

Figure 2: Multi-types NLU Tasks Learning

Basically, the MAML model achieves better or
equal performance in almost all tasks, which indi-
cates the effectiveness and reliability of our model.

Fast Adaptation on SNLI and SciTail We trans-
fer our model to two new tasks. We randomly sam-
ple 0.1%, 1%, 10% and 100% of their training data
and thus obtain four sets of training data for Sci-
Tail including 23, 235, 2.3k, 23.5k training samples,
and four sets for SNLI including 549, 5.5k, 54.9k
and 549.3k training samples respectively.

We observe that MAML model outperforms the
BERT and MT-DNN baselines with fewer train-
ing examples used, with more details provided in

Model MNLI QQP SST QNLI

BERT 84.6/83.4 71.2 93.5 90.5
MT-DNN 84.3/84.5 86.9 92.9 90.8
MAML 84.0/84.4 87.1 92.7 90.5

Table 2: Training Results on GLUE Datasets. MAML
and MT-DNN uses BERT-Base to initialize their shared
layers. We fine-tuned three models for each of the four
GLUE task using task-specific data.

Table 4. For example, with only 0.1% of the Sci-
Tail training data, MAML achieves an accuracy of
77.531% while BERT’s is 51.2% and MT-DNN’s
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Model CoLA MRPC STS-B RTE

BERT 52.1 84.8/88.9 66.4 87.1/85.8
MT-DNN 55.9 87.2/90.5 74.4 89.6/89.6
MAML 56.9 87.3/90.7 78.3 89.3/89.3

Table 3: Testing Results on GLUE Datasets. MAML and MT-DNN uses BERT-Base to initialize their shared layers.
We fine-tuned three models for each of the four GLUE task using task-specific data.

is 66.411%.
Similar results are also verified in SNLI dataset.

Figure 3: Results on SNLI Dataset. The X-axis indicates
the amount of domain-specific labeled samples used for
adaptation.

Figure 4: Results on Scitail Dataset. The X-axis indi-
cates the amount of domain-specific labeled samples
used for adaptation.

Domain Adaptation on Financial Dataset
Based on above experiments, we further extend our
model to Financial PhraseBank dataset. From Ta-
ble 5, we could see that the MAML model achieves
an accuracy as good as FinBert, without any finan-
cial specific further pre-training. Moreover, with
only 1% or 10% training data, it reaches a fairly
good performance.

4.2 Single-Type NLU Tasks - Stock Price
Prediction

The experiments above show the effectiveness of
MAML in handling multiple tasks together. In this
part, we aim to apply MAML to solve single-type
financial NLU task, stock price prediction.

4.2.1 Dataset
We obtain the dataset from (Xu and Cohen, 2018).
There are two main components in our dataset, a
Twitter dataset and a historical price dataset. The
historical prices for the 88 selected stocks to build
the historical price dataset from Yahoo Finance.
the text data includes two-year price movements
from 01/01/2014 to 01/01/2016 of 88 stocks sepa-
rated into 9 industries: Basic Materials, Consumer
Goods, Healthcare, Services, Utilities, Conglomer-
ates, Financial, Industrial Goods and Technology.
The table blow shows that there is an imbalance
issue lies within stocks and industries which we
have to deal with in training/evaluation phase.

4.2.2 Implementation-Single Stock Price
Prediction Task

Inspired by (Xu and Cohen, 2018), we assume that
predicting the stock movement between trading day
d and d+1 can be benefit from historical prices of
previous days and previous price movements on
its former trading days. Under this premise, we
adopt the data processing techniques from (Xu and
Cohen, 2018). First, we find all T eligible trading
days referred in a sample stock and group them by
t ∈ [1, T ]. Thus each sample should contain twitter
text and stock price data with in the range of t days.
Let us use S = [s1, s2, ..., st], P = [p0, p2, ...pt] to
represent the twitter text collected in each sample
which collected by aligning to each trading day.
Then we transform the text data and stock price in
to the features we desired. We calculate stock price
movement Y = [p1 − p0, p2 − p1, ..., pt − pt−1].
Note here we further transform the Y into three
classes: moving up, moving down, no movement.
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SNLI(Dev Accuracy %)

#Training Data 0.1% 1% 10% 100%
BERT 52.5 78.1 86.7 91.0
MT-DNN 81.6 84.7 88.0 91.08
MAML 82.0 84.9 88.2 91.4

Sci-Tail(Dev Accuracy %)

#Training Data 0.1% 1% 10% 100%
BERT 51.2 82.2 90.5 94.3
MT-DNN 66.411 90.874 92.638 94.862
MAML 77.531 89.801 91.648 95.015

Table 4: Domain Adaptation Results on SNLI and Sci-Tail using the shared embeddings generated by MAML,
MT-DNN and BERT, respectively.

FPB(Dev Accuracy %)

#Training Data 1% 10% 100%
Fin-Bert - - 86.00
MAML 61.26 77.38 86.47

Table 5: Domain Adaptation Results on Financial
PhraseBank.

Number of Twitter Text Per Industry

#Industry #Num Twitter Text

Material 4405
Consumer Goods 22491
Healthcare 7984
Services 19025
Utilities 6095
Cong 268
Finance 9291
Industrial Goods 5764
Tech 31015

Table 6: Number of Twitter Text Per Industry During
01/01/2014 - 01/01/2016.

The architecture of the model is shown below.
We first use BERT to process the twitter data and
concat it with the previous days stock price. Then
we feed it into a RNN model with T layers which
represent T days in the lag. Finally, we integrate
the final result with a softmax function in order
to output the confidence distribution over up and
down.

4.2.3 Implementation- MAML-BERT Model
We then transform the model to multitask structure
by adding multiple tasks together and applying
MAML method to it. The scenario is, suppose we
are given a new stock with limited twitter text data,
with MAML model pre-trained on multiple stock-
text data, the model should be able to capture the
intrinsic parameters for this new stock quicker and
thus reach good accuracy faster.

To test our hypothesis scenario, we design ex-
periments by selecting 8 stocks to train the meta
learner for 10 epoch and test the model with a
new stock dataset. We conduct 4 experiments and
finally evaluate its accuracy against a direct predic-
tion model listed in 4.2.2. The setting structure is
shown in Figure 6.

4.3 Results

As described in previous sections, stock prediction
is a challenging task and a minor improvement
could lead to large potential profits. An the accu-
racy of 56% is generally reported as a satisfying re-
sult for binary stock movement prediction(Nguyen
and Shirai, 2015). We evaluate the model in the fol-
lowing four settings and the results are illustrated
in the graph below. The selection of the stocks is
according the the amount of twitter text data we
obtain.

As shown in the table and graph below, we have
reached promising evaluation accuracy on all dif-
ferent models. The highest result is generated by
Mixed Model. It is trained on 8 stocks with the
maximum number of twitter text data from all in-
dustry and evaluated on AAPL stock which is not
included in the industry for all training stock. The

9



Figure 5: The architecture of Single Stock Prediction Task. We use the main target tn for prediction and the lag size
of n for illustration

Figure 6: MAML-Model task structure

Model Industry Train Stocks Eval Stock (Train Acc %) (Eval Acc%)

Consumer PG,BUD,KO,PM,TM,PEP,.. AAPL 59.21 57.14
Services AMZN,BABA,WMT,CMSCA,.. MCD 58.82 56.91
Tech GOOG, MSFT,FB,T,CHL,ORCL,.. CSCO 58.42 56.15
Mixed CELG,PCLN,JPM,GE,FB.. AAPL 60.27 57.94

Table 7: Training and Evaluation Results on Different Groups of Stock Data.

final dev accuracy we have reached is of 57.94%
for MAML-mixed model.

We have also evaluate the adaptation rate of our
model(MAML-Mixed) against a baseline model
that was not pre-trained on other stocks. The graph
below shows that the MAML model converged in
a faster rate compared to the baseline model.

5 Conclusions

In this paper, we investigate model-agnostic meta-
learning algorithm for general NLU tasks, and also
evaluate its performance on two financial applica-
tions - financial sentiment analysis and stock price
prediction. Experiments show our MAML model
is able to learn general representations, which can
be adapted to new tasks with limited samples effec-
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Stock Price Prediction (Dev Accuracy %)

RAND 50.89
ARIMA 51.39
BERT-Baseline 54.07
BERT-MAML-Mixed 57.94
Stocknet (Xu and Cohen, 2018) 57.64

Table 8: Domain Adaptation Results on Stock Price
Prediction Tasks.

Figure 7: Results on Stock Price Prediction Task from
BERT Model and BERT-MAML model

tively, and is also robust to the task specific scales
without over-fitting. Our study suggests promising
applications of meta-learning algorithms in low-
resource financial natural language understanding
tasks.
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