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Abstract

Video-grounded Dialogue (VGD) aims to an-
swer questions regarding a given multi-modal
input comprising video, audio, and dialogue
history. Although there have been numerous
efforts in developing VGD systems to improve
the quality of their responses, existing systems
are competent only to incorporate the informa-
tion in the video and text and tend to struggle in
extracting the necessary information from the
audio when generating appropriate responses
to the question. The VGD system seems to be
deaf, and thus, we coin this symptom of current
systems’ ignoring audio data as a deaf response.
To overcome the deaf response problem, Hear-
ing Enhanced Audio Response (HEAR) frame-
work is proposed to perform sensible listening
by selectively attending to audio whenever the
question requires it. The HEAR framework en-
hances the accuracy and audibility of VGD sys-
tems in a model-agnostic manner. HEAR is val-
idated on VGD datasets (i.e., AVSD@DSTC7
and AVSD@DSTC8) and shows effectiveness
with various VGD systems.

1 Introduction

One of the desiderata in our vision-language com-
munity is to build conversational agents that can
look, listen, think and speak as humans. These
agents can potentially be deployed in various sub-
sections of society, including education, security,
entertainment, and visual or other impairments.
To promote natural conversation between humans
and the conversational agents, the Video-grounded
Dialogue (VGD) task (Alamri et al., 2019) has
been designed, aiming to respond to the ques-
tions regarding a given multimodal input com-
prising video, audio, and dialogue history. To
be specific, as shown in Figure 1, given video
V , audio U , dialogue history composed of cap-
tion C and past rounds of Q&A pairs H =
{C, (Q1, A1), ..., (Qr−1, Ar−1)}, and current r-th
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Who is in the video?

What happens next?

𝑷𝒓𝒆𝒅: The video does not have sound.
𝑮𝑻 : You can hear the shuffling of items.

Video (V)

(a) Regarding audio as nonexistent

A man is the only visible 

person in the video.

𝑄1
𝐴1

𝑄𝑟−1
𝐴𝑟−1He sets the remote down 

on the bed.

C

Dialogue History ( H = {C, (𝑄1,𝐴1) ,…, (𝑄𝑟−1,𝐴𝑟−1)} )

Does the video have sound?𝑄𝑟
Question (Q)

caption

Audio (U)

how many people are 

in the video?

Does the pillow have 

an signifigance?

𝑷𝒓𝒆𝒅: There are background noises.
𝑮𝑻 : Yes, the two people speak to each other.

Video (V)

(b) Disregarding audio as background noise

There are two people 

in the video.

𝑄1
𝐴1

𝑄𝑟−1

𝐴𝑟−1

C

Dialogue History ( H = {C, (𝑄1,𝐴1) ,…, (𝑄𝑟−1,𝐴𝑟−1)} )

Do the two people speak or interact?
𝑄𝑟
Question (Q)

caption

Audio (U)(*Sounds from stuff) (*Sounds of talking)

𝐴𝑟 𝐴𝑟

It doesn 't seem like so.

A man is sitting on the bed with a remote in his hand. 

he sets the remote down. the he opens a plastic bag 

and takes two items out.

The video begins in bedroom where a person carries a 

pillow into the bathroom. The other person is in the 

bathroom holding a blanket  and the two people speak.

Figure 1: Current VGD system’s deaf responses on ques-
tions about audio: (a) Audio is considered not present
and (b) Audio is disregarded as background noise.

round question Qr, VGD system is expected to an-
swer in free-form Ar to the question Qr. For this
VGD task, multi-modal interaction has been a pop-
ular solution, including transformer (Vaswani et al.,
2017), where many studies concerning modality
interactions are performed to boost performance
and improve the efficiency of VGD systems.

Unfortunately, these multi-modal interactions
focus only on finding the joint representations be-
tween video and language. As a consequence, cur-
rent agents tend to ignore audio in generating the
response. This symptom of ignoring input audio
in responding to the question will be referred to as
the ‘deaf response’. Figure 1 represents examples
of deaf responses of existing VGD systems (Yoon
et al., 2022c; Li et al., 2021a). To the question
“Does the video have sound?” in Figure 1 (a), the
system is not able to recognize the input audio: It
responds as though the audio is not present. Fur-
thermore, even when the system does recognize the
existence of audio, it lacks the capability to deci-
pher the information within the audio accurately.
This is evident in Figure 1 (b) where all the sounds
of people talking are disregarded as background
noise, resulting in incorrect responses.

Our experimental evidence in Figure 2 also
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Figure 2: Current VGD systems’ performances on
AVSD dataset (validation): (a) Response performances
according to training with and without audio, (b) Aver-
age performance drops on the questions about audio.

shows that the current VGD systems cannot in-
corporate audio information when responding. Fig-
ure 2 (a) shows the performance of response (i.e.,
CIDEr (Vedantam et al., 2015), ROUGE-L (Lin,
2004), BLEU (Papineni et al., 2002)) of current
VGD systems according to training with and with-
out the audio: There are very little differences in
performances between the two cases. Some met-
rics even show a slightly higher performance when
trained without audio. Furthermore, as shown in
Figure 2 (b), when investigating the responses to
audio-related questions1, their performances are
noticeably lower compared to the overall response
performances. Therefore, existing VGD systems
tend to ignore the audio and suffer from the deaf
response, which leads to incorrect answers, espe-
cially to questions pertinent to audio.

To overcome the deaf response problem, we pro-
pose Hearing Enhanced Audio Response (HEAR)
framework, which allows the VGD systems to sen-
sibly listen to audio according to the meaning of the
question and perform enhanced listening to the au-
dio. Thus, HEAR incorporates (1) Sensible Audio
Listening (SAL) that selectively attends to audio
according to a sensible decision of whether to focus
on audio or not and (2) Reconstructive Listening
Enhancement (RLE) that improves the audibility
via establishing a reconstruction upper bound to
connect audio with its surrounding information.
For the sensible decision in SAL, we introduce
two technical contributions: (1) Keyword-based
Audio Sensing and (2) Semantic Neural Estimator.
HEAR is applied on current runner models (Hori
et al., 2019a; Yoon et al., 2022c; Li et al., 2021b) in
a model-agnostic manner, where the effectiveness
is validated on VGD dataset (i.e., AVSD@DSTC7,
AVSD@DSTC8) with steady performance gains
on natural language generation metrics.

1We select the questions that contain words related to audio
such as ‘sound’, ‘speech’, and ‘noise’.

2 Related works

2.1 Video-grounded Dialogues

Visual Question Answering (VQA) (Antol et al.,
2015; Wang et al., 2022) has been one of the proxy
tasks to evaluate the multi-modal understanding of
vision-language systems. In light of recent advance-
ments in generative models in natural language
processing (Devlin et al., 2018; Radford et al.,
2018), VQA has evolved into a more general format
of answering as video-grounded dialogue (VGD)
(Alamri et al., 2019), where VGD aims to gener-
ate open-ended answer sentences from a question
by referring to several input modalities (i.e., video,
audio, and dialogue history). Many multi-modal
interactions have been proposed, where various at-
tention mechanisms (Sanabria et al., 2019; Le et al.,
2019) have been devised to perform cross-modal
interactions. To boost performances, transformer-
based VGD systems (Li et al., 2021b) are utilized
on top of large-scale pre-trained language models
(Radford et al., 2019; Raffel et al., 2020). Another
immense challenge is keeping track of extended
dialogue context, and video, where memory net-
works (Lin et al., 2019; Xie and Iacobacci, 2020)
and multi-step attention (Chu et al., 2020) were
introduced to efficiently store the video and long
episodic dialogue. Graph representations (Kim
et al., 2021; Pham et al., 2022; Le et al., 2021) were
also popular solutions for holding semantic com-
monalities between the dialogue and video. There
have been novel structures (Hori et al., 2019b; Le
et al., 2022) to enhance the multi-modal represen-
tation and frameworks (Le and Chen, 2020; Lee
et al., 2020; Yoon et al., 2022c) to improve the
quality of responses in terms of bias or word selec-
tion. As such, many advances have been made in
the multi-modal understanding of VGD systems,
but mainly between video and language. Thus, the
VGD system’s understanding of audio is still far
from satisfactory. To this end, we first contribute to
improving the ‘listening’ ability of VGD system.

3 Task Definition

Video-grounded Dialogue (Alamri et al., 2019)
(VGD) task aims to generate open-ended answer
sentences to a question regarding multimodal in-
puts composed of video, audio, and dialogue his-
tory. To build a formal task definition of VGD,
a system takes tuples (v, u, h, qr) as input and de-
codes answer sentence ar, where v is video, u is au-
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Figure 3: Illustration of Hearing Enhanced Audio Response Framework (HEAR) for video-grounded dialogue.
HEAR performs sensible listening via (a) Sensible Audio Listening that selectively attends to audio corresponding
to a given question and improves audibility via (b) Reconstructive Listening Enhancement that enhances audio
representations by establishing a reconstruction upper bound to connect audio with its surrounding information.

dio, h is dialogue history, and qr is a question asked
at current round r ∈ {1, · · · , R}. The dialogue his-
tory h = {c, (q1, a1), · · · , (qr−1, ar−1)} is com-
posed of caption c to summarize the video and a
set of question-answer pairs in previous rounds.
For training VGD system, next-word prediction is
performed, where the system predicts t-th answer
word token art from the inputs of tuples (v, u, h, qr)
and partial answer word tokens ar<t before t-th.

4 Hearing Enhanced Audio Response

Figure 3 illustrates Hearing Enhanced Audio Re-
sponse (HEAR) framework designed to enhance
Dialogue Language Model (DLM)2 in terms of two
functionalities on audio: (1) Sensibility that selec-
tively attends on audio according to the meaning
of the question and (2) Audibility that performs en-
hanced listening to input audio. For sensibility, we
propose Sensible Audio Listening (SAL) in Figure
3 (a) which trains the DLM to respond to a question
by selectively weighting to audio corresponding to
the audio-relatedness of the question. For audibil-
ity, we devise Reconstructive Listening Enhance-
ment (RLE) in Figure 3 (b) which enhances audio
representations by establishing a reconstruction up-
per bound to connect audio with its surrounding
information. We alternately train DLM with SAL
and RLE to fully utilize video and audio modalities.

4.1 Input representations

We formally define input feature representations
of v, h, qr, and ar by embedding them into d-
dimensional space. For the video embedding, we
use I3D model (Carreira and Zisserman, 2017) pre-

2Here, we refer to the general ‘VGD system’ as DLM.

trained on the Kinetics dataset (Kay et al., 2017) to
get 4096-dimensional video features v ∈ RL×4096

composed of rgb and optical-flow features, where
L is the number of video frames. For the audio
embedding, we use VGGish model (Hershey et al.,
2017) pre-trained on the AudioSet dataset (Gem-
meke et al., 2017) to get 128-dimensional audio
features u ∈ RL×128, where the L is the number
of audio features3. The aforementioned video and
audio features are concatenated along the feature
dimension axis and embedded into d-dimensional
space as audio-visual features uv as given below:

uv = [u||v]W ∈ RL×d, (1)

where W ∈ R(128+4096)×d is d-dimensional em-
bbeder and [·||·] denotes concatenation.

For the text features, we tokenize all the text
inputs (i.e., h, qr, ar) into a series of WordPieces
(Wu et al., 2016) using the T5 Transformer (Raffel
et al., 2020), such that word token representations
are obtained on top of relative positional embed-
dings and a layer normalization (Ba et al., 2016).
Thus, the formal definitions of text features are as
follows: history h ∈ RLh×d, question q ∈ RLq×d,
and answer a ∈ RLa×d, where Lh, Lq, and La are
the numbers of tokens of each text4.

4.2 Dialogue Language Model

Our proposed HEAR framework is performed in
a model-agnostic manner, such that we first de-
fine Dialogue Language Model (DLM) as a gen-
eral VGD system. For input audio, video, and
texts (i.e., history and question), DLM is trained

3Sample rate is modulated to be aligned with video frames.
4We delete superscripts r in the notations for the simplicity.
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to generate next-word tokens for answer sentences
ar = {ar1, · · · , arm} under cross-entropy loss as:

LDLM (θ) = −log
m∏

t=1

Pθ(a
r
t |uv,h,q,a<t), (2)

where θ is learnable weights and m is the num-
ber of word tokens in the answer sentence. In the
following, our proposed SAL and RLE improve
the DLM’s sensibility and audibility for correctly
responding to questions about audio.

4.3 Sensible Audio Listening

Sensible Audio Listening (SAL) is devised to deter-
mine whether the VGD system should listen to the
audio to answer a given question. If the SAL deter-
mines that listening is required, audio is processed
to be more weighted in the response. To ensure sen-
sible decision-making within SAL, we introduce
two technical decision rules: (1) Keyword-based
Audio Sensing and (2) Semantic Neural Estimator.

Keyword-based Audio Sensing. In many cases,
unlike general questions, audio-related questions
contain specific keywords (e.g., ‘sound’, ‘speech’,
‘listen’) that indicate that the question concerns
audio. Therefore, we conduct an empirical investi-
gation of these keywords. If any of these keywords
are present in a question, SAL identifies it as an
audio-related question. In such cases, we mask the
video features in the inputs, directing more atten-
tion toward the audio component as given below:

uv(q) =

{
[u||v]W ∀ wq /∈ Wkey

[u||mv]W otherwise,
(3)

where wq is all word tokens in the question q and
Wkey = {‘sound’, ‘speech’, ‘listen’, . . . } is key-
word set5 to investigate audio-related questions.
mv ∈ RL×4096 is zero padding on video. Here, we
do not perform any masking when the question is
not an audio-related question (i.e., ∀wq /∈ Wkey),
because other questions excluding audio-related
questions do not show high reliance on a specific
modality. Thus, uv(q) ∈ RL×d is sensible audio-
visual features that make DLM selectively focus on
audio for responding to the audio-related questions.

Semantic Neural Estimator. Figure 4 (a) il-
lustrates audio-related questions identified by

5Appendix provides all the keywords that we used.

(a) Keyword-based audio sensing: 

Predicted audio-related questions 

- Is there any background noise?

- Can you hear any music?

- Is there any sound?

(b) Outliers of keyword-based audio sensing

- Are there any voice?

- Does he say anything during the video?

- Any talking sounds in here?

Keywords in W𝒌𝒆𝒚 Audio-related questions without keywords in the sentence

Non audio-related questions with keywords in the sentence

- Is the washing machine on?

- What happens between these two people?

- How old would you say he is?

- Can you see what it says on her jacket?

Figure 4: Examples of questions: (a) Predicted audio-
related questions by keyword-based audio sensing and
(b) Outliers of keyword-based audio sensing.

keyword-based audio sensing. While the keyword-
based approach effectively identifies the questions
that directly require information about audio, we
were still able to identify outliers that were not
accurately identified in Figure 4 (b). Although
they do not contain keywords, the meanings of
the questions are related to audio. Therefore, we
further devise a semantic neural estimator fϕ that
identifies the audio-related question based on the
meaning of sentences. The semantic neural esti-
mator as a BERT-based classifier takes {wcls, wq}
to form an input instance, where wcls is a token
for classification and the prediction target of wcls
is y ∈ {y0, y1} denoting that y1 = 1 is audio-
related question and y0 = 0 is the other question.
We first train the fϕ with training weights ϕ un-
der L2 loss6 given as ED(y − ŷ)2, where D is
the dataset, ŷ = fϕ(wcls, wq) is prediction score
of the sigmoid (i.e., 0 < ŷ < 1). For labeling
the y, we first include the predictions by keyword-
based audio sensing as a noisy label. We further
include y0 with (1) word-wise random shuffled ver-
sions of audio-related questions and (2) random
swapping versions of non-audio questions using
keyword Wkey. This prevents fϕ from simply pre-
dicting based on the keywords and makes more fo-
cus on the meaning of the audio-related questions
in y1. After training fϕ, we calibrate the audio and
video features according to the estimation of fϕ as:

uv(q) = [r × u||(1− r)× v]W, (4)

where r = fϕ(wcls, wq) ∈ R is estimation score
about audio-related question and uv(q) ∈ RL×d

is our final sensible audio-visual features for SAL.
Based on the sensible audio-visual feature uv(q)
from SAL, we train Dialogue Language Model
(DLM) with cross-entropy loss as given below:

LSAL(θ) = −log
m∏

t=1

Pθ(a
r
t |uv(q),h,q,a<t). (5)

6Regularization is also used to mitigate training imbalance.
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Figure 5: Illustrations of surrounding masking. The
distance n decides the extent of surrounding masking.

4.4 Reconstructive Listening Enhancement

For a better understanding of audio, it is crucial to
improve audio representations based on a common
understanding of a scene in a video. Therefore, our
proposed Reconstructive Listening Enhancement
(RLE) performs masked audio reconstruction by
referring to surrounding information (i.e., video
and audio adjacent to masked audio), which en-
hances the common embedding with its surround-
ings. Especially to perform effective enhancement
in regions closer to the masked target, we propose
Reconstruction Upper Bound in the following.

Audio Reconstruction. Audio reconstruction
aims to predict masked audio based on observa-
tions of their surrounding audio and other modal-
ities (i.e., video and text). We randomly select
input audio with a probability of p (e.g., p=10%)
as um, where um ∈ RM×128 is the target audio
features to be masked, m is the set of indices for
masking, and M is the number of indices. We
also define u\m ∈ RL×128 as surrounding audio
features including masked features of zero vectors
in the indices m. We introduce audio reconstruc-
tion loss Lar for DLM to reconstruct target audio
features um from the inputs of {u\m,v,h,q} as:

Lar(θ) = hθ(um|u\m,v,h,q). (6)

hθ(um|u\m,v,h,q) =
∑M

i=1 ||u
(i)
m − ũ

(i)
m ||22 is l2

regression, where ũm ∈ RM×128 is reconstructed
audio on the masked indices m from the output of
multi-layer perceptron on top of DLM encoder.

Reconstruction Upper Bound. The audio recon-
struction should be based on an understanding of
surrounding semantics rather than simply memo-
rizing audio. To facilitate this, we propose Recon-
struction Upper Bound (RUB) which establishes an
inequality condition to ensure enhanced reconstruc-
tion when the surrounding information is provided

𝑒max
1

2

3

d
is

ta
n

ce
 (
𝒏

)

0

4

5

epoch (𝒆)

(a) Hyperbolic surrounding masking distance scheduling (b) Hyperparameters

𝑛 = round(α 𝑒max − 𝑒) + 1

𝛼 =
𝑛max − 1

𝑒max − 1

𝑛max = 5

𝑒max = 15

𝑛 = round(α 𝑒max − 𝑒) + 1

Figure 6: Hyperbolic function for distance scheduling.

compared to when it is not given as given below:

Lar(θ) < hθ(um|un
\m,vn,h,q), (7)

where the audio reconstruction loss based on sur-
roundings Lar(θ) = hθ(um|u\m,v,h,q) should
be lower than the reconstruction loss without sur-
roundings Ln

ar(θ) = hθ(um|un
\m,vn,h,q) (i.e.,

upper bound). As shown in Figure 5 (a), un
\m,vn

are audio and video features that further mask out
surroundings up to feature distance n (e.g., n = 3)
from the target audio features. To train DLM to
conform this inequality condition, we calculate a
reconstruction upper bound loss Lrub in a format
of ranking loss with margin δ as given below:

Lrub(θ, n) = max(Lar(θ)− Ln
ar(θ) + δ, 0). (8)

After that, we iteratively minimize the upper
bound Ln

ar in a way of narrowing the surrounding
masking with distance n7 as shown in Figure 5 (b).
Here, we construct masking distance scheduling
n = g(e) according to taring epoch e to select
progressively lower n from higher n8. Therefore,
the final objective of RLE is formulated as below:

min
θ,g∼G

Lar(θ) + Lrub(θ, g(e)), (9)

where G : R+ 7→ R+ is a set of scheduling func-
tions and we select hyperbolic function9 as g(e) =
round(α

√
emax − e) + 1 as depicted in Figure 6 to

give stable decreasing of n with α = nmax−1√
emax−1

and
nmax=5, emax=15 are maximum distance and epoch.
Therefore, the final RLE loss is the summation of
two losses: LRLE = Lar + Lrub.

4.5 Optimization and Inference

As shown in Figure 3, we train DLM by alternately
optimizing LSAL and LRLE to allow audio and

7As the surrounding masking is reduced, the DLM can
perform the reconstruction better, thus Ln

ar decreases.
8Empirically found that low n in early training (e.g., S(e)

= 1) ruins training stability, as Lar , Ln
ar were almost similar.

9See more scheduling functions in Appendix B.2.
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AVSD@DSTC7
Methods B1 B2 B3 B4 M R C
EE-DMN (Lin et al., 2019) 0.641 0.493 0.388 0.310 0.241 0.527 0.912
JMAN (Chu et al., 2020) 0.667 0.521 0.413 0.334 0.239 0.533 0.941
CMU (Sanabria et al., 2019) 0.718 0.584 0.478 0.394 0.267 0.563 1.094
COST (Pham et al., 2022) 0.723 0.589 0.483 0.400 0.266 0.561 1.085
MSTN (Lee et al., 2020) - - - 0.377 0.275 0.566 1.115
JSTL (Hori et al., 2019b) 0.727 0.593 0.488 0.405 0.273 0.566 1.118
MTN⋆ (Le et al., 2019) 0.731 0.597 0.490 0.406 0.271 0.564 1.127
MTN-P (Le and Chen, 2020) 0.750 0.619 0.514 0.427 0.280 0.580 1.189
VGNMN (Le et al., 2022) - - - 0.429 0.278 0.578 1.188
SCGA (Kim et al., 2021) 0.745 0.622 0.517 0.430 0.285 0.578 1.201
RLM (Li et al., 2021b) 0.765 0.643 0.543 0.459 0.294 0.606 1.308
PDC (Le et al., 2021) 0.770 0.653 0.539 0.449 0.292 0.606 1.295
THAM (Yoon et al., 2022c) 0.778 0.654 0.549 0.468 0.308 0.619 1.335
HEAR (SAL) 0.784 0.658 0.551 0.471 0.309 0.619 1.347
HEAR (SAL + RLE) 0.791 0.662 0.558 0.472 0.312 0.622 1.376

AVSD@DSTC8
MDMN (Xie and Iacobacci, 2020) - - - 0.296 0.214 0.496 0.761
JMAN (Chu et al., 2020) 0.645 0.504 0.402 0.324 0.232 0.521 0.875
STSGR (Geng et al., 2021) - - - 0.357 0.267 0.553 1.004
MSTN (Lee et al., 2020) - - - 0.385 0.270 0.564 1.073
COST (Pham et al., 2022) 0.695 0.559 0.465 0.382 0.278 0.574 1.051
MTN-P (Le and Chen, 2020) 0.701 0.587 0.494 0.419 0.263 0.564 1.097
SCGA (Kim et al., 2021) 0.711 0.593 0.497 0.416 0.276 0.566 1.123
RLM (Li et al., 2021b) 0.746 0.626 0.528 0.445 0.286 0.598 1.240
PDC (Le et al., 2021) 0.749 0.629 0.528 0.439 0.285 0.592 1.201
THAM (Yoon et al., 2022c) 0.764 0.641 0.538 0.455 0.301 0.610 1.304
HEAR (SAL) 0.767 0.646 0.541 0.459 0.302 0.612 1.324
HEAR (SAL + RLE) 0.777 0.656 0.553 0.465 0.307 0.618 1.359

Table 1: Experimental results on AVSD@DSTC7 (test) and AVSD@DSTC8 (test) dataset. (B: BLEU, M: METEOR,
R: ROUGE-L, C: CIDEr, ⋆: reported in (Kim et al., 2021)). Human Evaluation is also presented in Appendix C.

video to be freely utilized for their purposes. There-
fore, LSAL is optimized when the training iteration
number is odd, and LRLE does in the even number:

LHEAR =

{
LSAL iteration = odd

LRLE iteration = even,
(10)

Here, RLE is only used for training. In an inference,
The DLM generates an answer with SAL.

5 Experiments

5.1 Datasets
AVSD@DSTC7 and AVSD@DSTC8. (Audio
Visual Scene-Aware Dialog) (Alamri et al., 2019;
Hori et al., 2020) is a popular benchmark for VGD
task, where all videos include their summary cap-
tions and dialogue composed of 10 pairs of ques-

tion and answer. The videos are collected from Cha-
rades (Sigurdsson et al., 2016) dataset, which con-
tains natural human activities. AVSD is released at
Dialogue System Technology Challenge (DSTC)
7 and 8, where AVSD@DSTC7 contains 7, 659,
1, 787, and 1, 710 dialogues for training, validation
and test, but AVSD@DSTC8 only provides 1, 710
dialogues for the test. For the test set, 6 reference
answers are available for accurate validation.

5.2 Metrics
We follow official metrics for AVSD benchmark
(i.e., BLEU, METEOR (Banerjee and Lavie, 2005),
ROUGE-L, CIDEr) provided by AVSD challenge
organizers10, where they compute words overlaps
between predicted sentence and reference answer.

10github.com/dialogtekgeek/DSTC8-AVSD_official
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AVSD@DSTC7
Methods B1 B2 B3 B4 METEOR ROUGE-L CIDEr
MTN† (Le et al., 2019) 0.357 0.241 0.173 0.128 0.162 0.355 1.249
MTN† + HEAR 0.382 0.264 0.193 0.144 0.179 0.374 1.314
RLM (Li et al., 2021b) 0.765 0.643 0.543 0.459 0.294 0.606 1.308
RLM + HEAR 0.787 0.660 0.556 0.467 0.308 0.619 1.358
T5RLM (Yoon et al., 2022c) 0.767 0.644 0.542 0.461 0.296 0.608 1.311
T5RLM + HEAR 0.791 0.662 0.558 0.472 0.312 0.622 1.376

AVSD@DSTC8
MTN⋆ (Le et al., 2019) 0.689 0.571 0.470 0.404 0.251 0.551 1.049
MTN⋆ + HEAR 0.714 0.596 0.496 0.421 0.271 0.569 1.121
RLM (Li et al., 2021b) 0.746 0.626 0.528 0.445 0.286 0.598 1.240
RLM + HEAR 0.772 0.651 0.554 0.462 0.303 0.617 1.323
T5RLM (Yoon et al., 2022c) 0.749 0.631 0.529 0.445 0.290 0.600 1.263
T5RLM+ HEAR 0.777 0.656 0.553 0.465 0.307 0.618 1.359

Table 2: Experimental results on AVSD@DSTC7 (test) and AVSD@DSTC8 (test) for applying HEAR on VGD
runner models (B1: BLEU1, ⋆: reconstruction-based results, †: single reference results).

SAL RLE BLEU1 ROUGE-L CIDEr
k s Lar Lrub

0.302 0.348 1.367

✓ 0.310 0.355 1.427
✓ 0.316 0.366 1.434
✓ ✓ 0.329 0.375 1.467
✓ ✓ 0.311 0.357 1.415
✓ ✓ ✓ 0.341 0.384 1.492

Table 3: Ablation studies of model variants on
AVSD@DSTC7 (validation, single reference). k:
Keyword-based Audio Sensing, s: Semantic Neural
Estimator, Lar: Audio Reconstruction, Lrub: Recon-
struction Upper Bound

5.3 Results on AVSD benchmark

Table 1 summarizes the experimental re-
sults of HEAR on the AVSD@DSTC7 and
AVSD@DSTC8. HEAR shows state-of-the-art
performances on all the metrics compared to
previous works (i.e., please refer to Related Work
for their detailed captions.). Our baseline DLM
is T5 Transformer (Raffel et al., 2020), which is
the same baseline (i.e., T5RLM) of THAM (Yoon
et al., 2022c), but here, our proposed SAL shows
more gains, and further improvements are also
shown by applying RLE. As our proposed HEAR
is performed in a model-agnostic manner, we
also validate other VGD models with HEAR in
Table 2. We utilize the public codes and papers for
MTN, RLM, and T5RLM, where steady gains in
all metrics are shown for all the models.

1

1.1
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1.3

1.4

1.5

1.6

1.7

Total questions Intuitive audio-related

questions

Visual-aided audio-related

questions

RLM T5RLM QAL (Ours)

(CIDEr)

1.372 1.384

1.492

1.144

1.274

1.667

1.248
1.296

1.576

(a) Total question
(b) Audio-related questions 

(Semantic Neural Estimator)

(c) Audio-related questions

(Keyword-based Audio Sensing)

Response performances on audio-related questions

RLM THAM HEAR (Ours)

Figure 7: VGD systems’ response performances on
audio-related questions of AVSD@DSTC7 (validation):
(a) Total questions, (b) Audio-related questions pre-
dicted by Semantic Neural Estimator (questions with
estimation score r > 0.7), (c) Audio-related questions
predicted by Keyword-based Audio Sensing.

5.4 Ablation Study

Table 3 summarizes the ablative results of the pro-
posed modules in HEAR framework. The first
section of Table 3 is about our base DLM perfor-
mances. In the second section, for the variants of
SAL, smaller gains are obtained when only using
keyword-based audio sensing. We think that us-
ing it alone was not beneficial in answering some
audio-related questions that require referencing the
videos, as this method unconditionally screens out
video features as long as the given questions are re-
lated to audio. In the case of RLE, the audio recon-
struction loss Lar generally gives a positive effect
on the system performances. However, the recon-
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Figure 8: Ablative results on validation losses according
to epochs: (a) SAL loss LSAL with and without RLE
loss LRLE , (b) Audio reconstruction loss Lar with and
without reconstruction upper bound loss Lrub.

struction upper bound loss Lrub becomes effective
only when the Lar and Lrub are used together. This
denotes that the ranking loss in the Lrub is founded
on well-reconstructed audio features.

One may wonder if HEAR really helps answer
audio-related questions. Figure 7 shows the re-
sponse performances in terms of VGD systems
including HEAR according to questions. HEAR
performs new state-of-the-art performances on top
of previous runner models, but it is also meaningful
that the gains are mainly obtained from improving
responses to audio-related questions. From the
results in Figure 7 (b), (c) and Table 2, it is con-
cluded that HEAR framework can be applied to
any VGD system, where it exclusively contributes
to improving systems’ audibility and generating
correct responses to given audio-related questions.

Furthermore, we found that our proposed RLE
also contributes to the efficient learning of sensible
audio listening (i.e., optimizing LSAL). Figure 8
(a) shows validation losses (LSAL) according to
training epochs, where it can be seen that the LSAL

is further reduced when RLE loss (LRLE) is ap-
plied. Figure 8 (b) shows the ablation studies of
audio reconstruction loss Lar with and without re-
construction upper bound Lrub. The yellow curve
shows the upper bound loss Lg(e)

ar for Lrub, where
the it decreases according to our masking distance
scheduling g(e)11. The green curve denotes the
Lar with Lrub and it shows further optimizing com-
pared to without Lrub as the Lg(e)

ar decreases. This
denotes that neural networks can be further opti-
mized according to the training epochs by calibrat-
ing their training objectives, which is also validated
in other multi-modal systems (Yoon et al., 2023;
Zheng et al., 2022) in other ways.

11We use a hyperbolic curve for g(e). Appendix also con-
tains more diverse surrounding masking scheduling.

Video (V)

Audio (U) (Punk music sound)

Dialogue History (H)

𝑄1 is there any sound in the video?

𝐴1Yes, there is audio. The person plays 

a music video from his laptop.

What genre of music is playing?𝑄2
Question (Q)

𝑯𝑬𝑨𝑹 𝑷𝒓𝒆𝒅: I can’t be sure, but i think it’s punk music.

𝑮𝑻 : Here, I think 2000 ' s punk rock song.

A person is watching something on their laptop placed on the 

kitchen counter. They then open the window start cleaning it.
C

caption

𝐴2

Figure 9: HEAR responses to an audio-related question.

Questions K S H

(a) Can you hear any sounds? T 0.99 T
(b) Do they speak to each other? T 0.99 T
(c) Who is outside the door? F 0.77 T
(d) Is the vacuum cleaner working? F 0.74 T
(e) Can you tell where he goes? T 0.32 F
(f) What color is his hair? F 0.01 F

Table 4: Predictions on questions about audio related-
ness. K: Keyword-based Audio Sensing, S: Semantic
Neural Estimator, H: human rating, T : true, F : false.

5.5 Qualitative Results

Figure 9 illustrates the HEAR’s responses to audio-
related question. HEAR is given the question “what
genre of music is playing?” as the audio-related
question, and it generates the answer sentence “I
can’t be sure, but I think it’s punk music.” Here,
HEAR precisely predicted that the given audio was
punk music despite the challenging work of dis-
cerning what the sound is in the video. The more
interesting fact is that HEAR represents its opinion
as “I can’t be sure” about predicting music. When
we listened to that audio in Figure 9 (a), it was
really quiet and difficult to identify what the sound
is. We guess the HEAR also learned the knowledge
about which sounds are difficult for humans to dis-
tinguish. Table 5 shows predictions on questions
by Keyword-based Audio Sensing and Semantic
Neural Estimator. As the keyword-based approach
could not understand the meaning of the question, it
shows incorrectness in some questions (i.e., (c,d,e)).
The neural estimator presents the score 0 < r < 1
denoting whether the question is related to the au-
dio, which provides proper distinctions between
audio-related questions (i.e., (a,b,c,d)) and the oth-
ers (i.e., (e,f)) based on the meaning of the question.
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6 Conclusion

We propose Hearing Enhanced Audio Response
(HEAR) framework for Video-grounded Dialogue
systems. HEAR proposes Sensible Audio Listen-
ing and Reconstructive Listening Enhancement,
which solve the deaf response problem of VGD
systems and validate model-agnostic effectiveness
on top of current VGD systems.

Acknowledgements

This work was supported by Institute for Infor-
mation & communications Technology Promo-
tion(IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2021-0-01381, Development
of Causal AI through Video Understanding and
Reinforcement Learning, and Its Applications to
Real Environments) and partly supported by a grant
of the KAIST-KT joint research project through
AI2XL Laboratory, Institute of convergence Tech-
nology, funded by KT [Project No. G01220646,
Visual Dialogue System: Developing Visual and
Language Capabilities for AI-Based Dialogue Sys-
tems].

Limitations

Our research aims to enhance the audibility of
Video-grounded Dialogue (VGD) systems, where
we devise Hearing Enhanced Audio Response
(HEAR) Framework. As a limitation of our work,
we are more focused on the methodology. We need
to have a better understanding of the limitation of
the proposed method to overcome any failure cases.
As shown in the failure case in Appendix, our pro-
posed method has limitations, and we would need
to consider other architecture and training methods
to incorporate all the necessary information that
speech holds. To understand human speech, current
audio features seem necessary to be trained more
by large-scale audio speech recognition datasets
(Panayotov et al., 2015; Garofolo, 1993). Further-
more, although our proposed HEAR mitigates this
problem in a methodological idea, we also think
that the deaf problem can also be cured by expand-
ing the audio feature dimension (i.e., 128) up to a
comparable scale with video (i.e., 4096), such that
they include more detailed information. To be spe-
cific, we are currently changing the current audio
feature extractor (i.e., VGGish) into wav2vec 2.0
(Baevski et al., 2020), which can provide a larger di-
mensional audio feature (i.e., 768 dimension). We

will also make the audio features (i.e., wav2vec 2.0
features) publicly available and perform a further
study on this as our future work.

Ethics Statement

Video-grounded Dialogue system is one of the con-
versational AI agents, which is designed to provide
assistance to various subsections of our environ-
ments including security, entertainment, education,
and visual impairments. Our proposed Hearing
Enhanced Audio Response framework contributes
to improving responses to queries about audio by
enhancing the audibility of VGD system. Recently
chatbot systems (e.g., ChatGPT) has shown over-
whelming performance, as such, we should also
think about the potential negative societal impact
of these systems. In this respect, we came up with
two negative impacts: (1) unreliable vague informa-
tion by conversational agents and (2) fairness issues
in agents’ responses. Therefore, word sense disam-
biguation techniques (Yoon et al., 2022a) and multi-
modal debiasing solutions (Yoon et al., 2022b; Niu
et al., 2021) should also be applied to the dialogue
systems.
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A Experimental Details

Training. Proposed HEAR is trained on NVIDIA
Quadro RTX 8000 (48GB of memory) GPU.
The optimization details are as follows. The
AdamW optimizer (Loshchilov and Hutter, 2017)
is used with parameters as β1 = 0.9, β2 = 0.999,
and ϵ = 10e-8. Due to the efficient usage of re-
sources, the previous 3 question-answer pairs (i.e.,
{C, (Qr−3, Ar−3), (Qr−2, Ar−2), (Qr−1, Ar−1)})
as a dialogue history are introduced into HEAR for
answering current questions Qr. For the learning
rate, we first set it as lr = 6.24e− 5 and it linearly
decreases following a piecewise linear curve up
to lr = 3.63e − 10 and the model is trained the
model during 15 epochs. The hyperparameters are
δ = 0.05 for the margin in LRLE . For the joint
d-dimensional space, all modalities (i.e., video,
audio, words) are embedded d = 768 dimensional
space. The best model is decided by the lowest
loss of the validation set on AVSD@DSTC7
(i.e., AVSD@DSTC8 contains only test set for
evaluation.). It takes 14 hours to finish the training
and the model is fully optimized in about 10 hours.

Inference. In the inference, answer word tokens
are generated in a sequence with a probability,
where the beam search is applied to avoid prompt
word selection with a beam size of 5. The max
length for the answer word tokens is set to 20 with
a length penalty of 0.3. In the Experiment of the
main paper, every performance of HEAR is aver-
aged 15 times with a random seed number.

B Additional Experiments

To improve the reproducibility of proposed mod-
ules (i.e., SAL, RLE) in HEAR, we give detailed
explanations about them with additional results and
illustrations of the method.

B.1 Keyword lists for keyword-based audio
sensing

For details of Section 4.3, we list the keywords that
we used for keyword-based audio sensing as given
below:

Wkey = {noise, sound, voice, speech,

speak, talk, listen, hear, say, sing,

music, audio, call, hum, loud,

tones, utter, volume, song},

(11)

where we also considered all the keywords’ plural
forms in Wkey. Figure 10 summarizes the propor-
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10.1%
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talk hear sound say noise audio speak etc

Proportion of audio-related questions according to keywords

Figure 10: Chart for representing the proportion of
audio-related questions according to keywords in Wkey .

Number of keywords BLEU 1 ROUGE-L CIDEr

17 0.327 0.367 1.458
18 0.333 0.368 1.466
19 0.335 0.371 1.469
20 0.331 0.366 1.468
21 0.324 0.363 1.465
22 0.321 0.361 1.460

Table 5: Performance variations according to the num-
ber of keywords for Keyword-based Audio Sensing on
AVSD@DSTC7 validation set

tion of audio-related questions according to each
keyword, where ‘talk’, ‘hear’, and ‘sound’ are the
most related words to the audio questions. We ad-
ditionally considered more keywords (e.g., ‘tell’,
‘background’), but they rather degrade the motiva-
tion of keyword-based audio sensing by finding
other questions (e.g., ‘can you tell me...’, ’can you
see something in the background’) excluding audio-
related questions. To be specific, we extend the
evaluations for SAL in terms of Keyword-based
Audio Sensing (Table A). We investigate the per-
formance variations according to the quantity of
audio-related keywords utilized. The results show
a positive correlation between the number of key-
words and the enhancement. However, surpassing
a specific number (i.e., 19) leads to a reversal in
this trend, revealing a detrimental correlation. This
implies that the pool of keywords starts to include
words that lack sensibility in effectively categoriz-
ing audio-related questions. Thus, we employ 19
keywords for SAL listed in Appendix B.1

B.2 Surrounding Masking Scheduling

For the reconstruction upper bound in Section 4.4,
we provide further ablation studies about distance
scheduling for surrounding masking. The surround-
ing mask is designed for promoting ranking loss in
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Figure 11: Illustrations of distance scheduling for surrounding masking. The distance n decides how much mask
video and audio features for establishing upper bound Ln

ar: (a) linear curve, (b) logistic curve, (c) hyperbolic curve.
Audio reconstruction losses with reconstruction upper bound using (d) linear curve scheduling, (e) logistic curve
scheduling, (f) hyperbolic curve scheduling.

Lrub by ensuring that the audio reconstruction Lar

based on the surrounding information has an im-
proved quality than audio reconstruction Ln

ar with-
out the surrounding information. To make more
effective Lrub, Ln

ar can be designed to minimize its
loss by By reducing the distance n of the surround-
ing mask. To this end, we leverage the extent of the
surrounding mask under our designed various mod-
elings n = g(e) for masking scheduling in Figure
11. We narrowed down the extent of surrounding
masking based on three different curves: linear
curve, logistic curve, and hyperbolic curve. The hy-
perbolic curve and linear curve show effectiveness
in optimizing validation loss. However, the logistic
curve shows some deterioration in the optimization.
We think this is because the logistic curve makes
the surrounding masking applied to a very narrow
area from the beginning of training, which acts like
a hard negative that is almost similar to the posi-
tive reconstruction (i.e., reconstruction from only
masked target audio). Providing hard negatives in
early training is considered to hinder optimization
when the learnable weights of the model are not
properly trained. Therefore, surrounding masking
with hyperbolic scheduling is the most effective.

Table 6 summarizes the results of HEAR ac-
cording to the distance n on the validation split of

nmax BLEU1 ROUGE-L CIDEr
2 0.310 0.362 1.436
3 0.348 0.371 1.475
4 0.341 0.384 1.492
5 0.316 0.369 1.438
6 0.314 0.368 1.436

Table 6: Ablation study on the distance of negative
masking of HEAR on valid split of AVSD@DSTC7.

AVSD@DSTC7 under distance scheduling with the
hyperbolic curve. When nmax is small (e.g., nmax
= 2 or 3), L∗

ar makes audio reconstruction based
on the nearest video and audio from the target au-
dio. This can be effective in terms of improving
the connectivity of neighboring video and audio
at a narrow distance, however since the distance
is too close, there is no significant difference from
the positive audio reconstruction, which hinders
reconstruction. Based on results in Table 6, neg-
ative masking was effective when nmax = 4 or 5.
In this case, the surrounding modalities’ features
for audio reconstruction were properly removed
by masking, in the meanwhile the surroundings
were not masked excessively. Thus the masking
contributes on hard negative audio reconstruction.
When nmax is large (e.g., nmax = 6), the perfor-
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Type HEAR THAM RLM GT
semantic 2.41 2.15 1.81 2.86
grammatical 2.35 2.24 2.16 2.76
fluency 2.62 2.58 2.41 2.81

Table 7: Human evaluation on responses to 50 audio-
related questions with respect to semantic adequacy,
grammatical correctness, fluency. The scores are as-
signed as (“1: not at all", “2: neutral", “3: correct"), GT:
Ground-Truth response.

mance again degrades. For this case we guess that
the negative reconstruction is quite different from
the positive, so it would not be an effective nega-
tive. These studies were also conducted for a larger
nmax, but no further improvement was confirmed.

C Human Evaluation

To assess the improvement of HEAR framework in
the responses to audio-related questions, we con-
duct a Human Evaluation. We selected a total of
50 audio-related questions and generate their re-
sponses from 3 models (i.e., HEAR, THAM, RLM).
We evaluate all responses based on a scale of 1 to
3, considering three key perspectives: semantic
adequacy, grammatical correctness, and fluency.
Each score denotes that “1: not at all", “2: neu-
tral", “3: correct". Table 7 shows the human eval-
uation scores based on 11 evaluators. Evaluators
rate the responses based on three categories, where
HEAR outperformed recent runner models in all
three categories, receiving higher ratings. Further-
more, through empirical validation, we have con-
firmed the presence of inappropriate answer re-
sponses within the Ground-Truth. As a result, the
human evaluation scores appropriately reflect this
by not consistently obtaining a score of 3.0 or a
value close to it.

D Additional results and Failure case

Figure 12 illustrates additional results of HEAR
framework. When presented with the question,
"Can you hear the TV?" our HEAR provides an
affirmative response, stating, "Yes, I can hear the
TV." This response is generated by considering
both the audio input of the TV and the visual con-
text of the TV image. Although our proposed
HEAR improves the understanding of audio, there
were instances of failure when it comes to ques-
tions pertaining to speech recognition. As shown in
Figure 13, the HEAR framework demonstrates lim-

Video (V)

Audio (U) (TV sounds)

Dialogue History (H)

𝑄1 How many people are in the room?

𝐴1There is just one man there.

Can you hear the tv?𝑄2
Question (Q)

𝑯𝑬𝑨𝑹 𝑷𝒓𝒆𝒅: Yes, i can hear the tv.

𝑮𝑻 : Yes, you can hear the tv.

Guy is sitting on bed and turns of tv with the remote control. He gets 

up and goes to whatever is on the floor to examine it.
C

caption

𝐴2

Figure 12: Illustration of additional results of HEAR

Video (V)

Audio (U)

Dialogue History (H)

caption

𝑄1 Are there any background 

noises? 𝐴1Just a person talking in the 

back ground.

Can you understand the speech , and what is said?𝑄𝑟
Question (Q)

𝑯𝑬𝑨𝑹 𝑷𝒓𝒆𝒅: No, i can 't understand the speech.

𝑮𝑻 : The person saying 1560 and 25 

(Human speech)

C A man is standing holding a laptop , sneezing , then sitting and playing 

with clothing.

𝐴𝑟

Figure 13: Illustration of failure case of HEAR

itations in accurately comprehending the language
within audio inputs. Our empirical studies found
that this challenge is prevalent among various di-
alogue language models, including our model. It
is noted that the current audio feature used in the
HEAR framework is pre-trained with the environ-
mental sounds dataset, such as AudioSet (Gem-
meke et al., 2017). However, it appears that further
data training is necessary to enhance the system’s
ability to understand speech effectively. To address
this challenge, our future work will focus on in-
corporating audio features, such as wav2vec 2.0
(Baevski et al., 2020), which have been trained
specifically for audio speech recognition tasks. By
leveraging these advanced audio features, we aim
to enhance the model’s ability to accurately under-
stand and process speech-related information.
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