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Abstract

Lexical semantic relations (LSRs) character-
ize meaning relationships between words and
play an important role in systematic generaliza-
tion on lexical inference tasks. Notably, sev-
eral tasks that require knowledge of hypernymy
still pose a challenge for pretrained language
models (LMs) such as BERT, underscoring the
need to better align their linguistic behavior
with our knowledge of LSRs. In this paper,
we propose BALAUR, a model that addresses
this challenge by modeling LSRs directly in
the LM’s hidden states throughout pretraining.
Motivating our approach is the hypothesis that
the internal representations of LMs can provide
an interface to their observable linguistic behav-
ior, and that by controlling one we can influ-
ence the other. We validate our hypothesis and
demonstrate that BALAUR generally improves
the performance of large transformer-based
LMs on a comprehensive set of hypernymy-
informed tasks, as well as on the original LM
objective. Code and data are made available at
github.com/mirandrom/balaur.

1 Introduction

Pretrained language models (LMs) trained on ever-
increasing compute and data have achieved state-
of-the-art performance on a wide variety of NLP
benchmarks. However, they are still known to
struggle on certain tasks, notably those involving
reasoning and world knowledge (Liu et al., 2021).
In particular, previous work has found that these
models make errors on tasks involving lexical se-
mantic relations (LSRs) such as hypernymy: no-
tably cloze completions such as “A fox is a type of
”, where the hypernym “canine” is a valid com-
pletion (Ettinger, 2020); and monotonicity-based
inferences such as “Bob saw a fox” entailing “Bob
saw a canine” (Geiger et al., 2020).

This represents an important limitation of current
LMs. Besides the specific classes of inferences in
which they are involved, LSRs are crucial because
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Figure 1: BALAUR learns to transform LM hidden states
(contextual token embeddings) in LSR-specific vector
spaces, modeling relatedness as similarity constraints.

they provide a dimension along which LMs can
perform class-based generalization to new events in
a sample-efficient manner. For example, knowing
that a Xoloitzcuintli is a dog breed allows a model
to infer many plausible properties about them, even
without many occurrences of this word in training.
This improved modelling of LSRs could in turn
improve generalization and data efficiency in LMs.

We propose BALAUR (Figure 1), an approach to
Transformer LM pretraining which directly mod-
els LSRs in the latent representations of the LM.
BALAUR consists of a modular neural architecture
with multiple heads, each head modeling a distinct
LSR (e.g. hypernymy, synonymy, or antonymy).
Each LSR is modelled as a learned vector transfor-
mation, with constraints injected in the resulting
vector space to reflect structural properties of the
LSR. Concretely, a BALAUR head transforms con-
textual token embeddings (e.g. fox) and static
concept embeddings (e.g. (canine) ) such that
related pairs are similar in the corresponding LSR
vector space (e.g. hypernymy).
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Previous work has proposed to integrate LSRs
with LMs, for example augmenting LM pretraining
with hypernym class prediction (Bai et al., 2022).
However, these approaches do not encode known
structural properties of LSRs, modeling these in-
directly without accounting for e.g. hypernymy
being transitive, or antisymmetric with hyponymy.

In contrast, our method draws inspiration from
work on semantic specialization, which models
LSRs as constraints in the vector space of static
word embeddings (e.g. Mrksic¢ et al., 2017). We
show how similar insights can be applied to mod-
ern Transformer LM architectures such that the
resulting LM’s hidden states have inductive biases
useful for LSR-informed tasks. More broadly, we
demonstrate that our method creates an interface
between the model’s latent representations and its
linguistic behaviour, and that we can control the
latter by injecting LSR information into the former.

We evaluate BALAUR on several tasks which
require knowledge of hypernymy. These include
cloze completion, monotonicity-informed natural
language inference (NLI) , and finetuning effi-
ciency on the previous two tasks in a transfer learn-
ing setting. We find that BALAUR generally im-
proves performance on these hypernymy-informed
tasks, as well as the on the original LM objective.

Contributions

e We introduce BALAUR, a method aimed at im-
proving the generalization of pretrained language
models on tasks involving lexical semantic rela-
tions, specifically hypernymy and hyponymy.

e By modeling hypernymy and other lexical seman-
tic relations in the hidden states of language models
during pretraining, BALAUR consistently improves
performance on language modeling and in a com-
prehensive set of hypernymy-informed tasks.

e Our evaluation brings together previous work
on evaluating hypernymy in language models, pro-
viding a comprehensive view of how well hyper-
nymy is captured in the linguistic behavior of LMs
on tasks involving prompt completion, natural lan-
guage inference and transfer learning.

e Finally, as part of this evaluation, we create
and HYPCC, a dataset of hypernymy-informed
cloze completion prompts improving on previous
datasets with a better coverage of hypernymy and
hyponymy. We also identify important challenges
in creating such datasets from lexical resources.

2 Related Work

2.1 LM Pretraining with Hypernymy

Incorporating LSRs into LM pretraining, particu-
larly hypernymy, has been approached from differ-
ent angles. Lauscher et al. (2020) create supple-
mental training instances consisting of two words,
where the model must predict whether they are
semantically related using the next sentence predic-
tion objective of Devlin et al. (2019). In contrast
to our work, this approach combines synonymy,
hypernymy and hyponymy into one relation and
requires a large number of additional training ex-
amples during pretraining. Levine et al. (2020)
avoid the need for additional training data by modi-
fying the LM objective to jointly predict a word’s
supersense in addition to the word itself, while
Bai et al. (2022) create a curriculum where LMs
learns to predict a word’s hypernym before predict-
ing the word itself. However, these methods aim
to improve LMs more broadly and do not target
specific hypernymy-informed tasks or attempt to
disentangle hypernymy from other relations during
pretraining. In contrast, our work presents a novel
method based on semantic specialization, where
hypernymy and other LSRs are jointly modeled in
the latent representations of LMs to improve per-
formance on targeted evaluations of hypernymy.
To the best of our knowledge there has been no
work successfully using finetuning to incorporate
task-agnostic knowledge of LSRs into LMs such
as BERT, and adapting our method to finetuning
consistently led to catastrophic forgetting.

2.2 Lexical Semantic Specialization

Prior to the advent of pretrained LMs, distributional
word embeddings were augmented with LSRs us-
ing a class of techniques known as semantic spe-
cialization (Yu and Dredze, 2014; Glavas and Vuli¢,
2018; Vuli¢ et al., 2018, i.a.). These methods
learn a transformation of the original distributional
vector space that better captures relational knowl-
edge such as LSRs, modeling relatedness as con-
straints in the resulting vector space. Our work
most closely resembles that of Arora et al. (2020)
which learns multiple relation-specific subspaces in
the original vector space of word embeddings, and
Gajbhiye et al. (2022) which use BERT-based bi-
encoders to predict whether commonsense concept-
property pairs are related based on the similarity of
their transformed embeddings.
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2.3 Evaluating Lexical Semantics in Models

There have been various approaches at evaluating
how well a model’s representations capture lexical
semantics. In particular, there exists a plethora
of intrinsic evaluations which probe representa-
tions directly, particularly for hypernymy relations.
These typically take the form of relation prediction
between term-pairs (e.g. Bordea et al., 2015; San-
tus et al., 2015; Bordea et al., 2016; Shwartz et al.,
2016) with variants such as hypernym wordsense
prediction (Espinosa-Anke et al., 2016), graded
relation prediction (Vuli€ et al., 2017), hypernym
retrieval from corpora (Camacho-Collados et al.,
2018), and probing of LM representations (Vuli¢
et al.,, 2020). However, such probing methods
suffer from several limitations in the context of
LMs, discussed by Rogers et al. (2020). Notably,
probes tell us only what information can be recov-
ered from LM representations, not how (or even
if) the LM uses it in practice (Tenney et al., 2019).
Because of these limitations and the fact that our
approach explicitly models LSRs in LM represen-
tations, we do not conduct such intrinsic evalua-
tions. In contrast, extrinsic evaluations measure
LM performance on downstream inference tasks
requiring knowledge of hypernymy (e.g. Geiger
et al., 2020; Rozen et al., 2021). A fundamental
challenge for such approaches is understanding
whether performance is attributable to a model’s
learned representations or to finetuning. To ad-
dress this, recent work has evaluated pretrained
LMs in zero-shot prompt completion and finetun-
ing efficiency (Talmor et al., 2020). Building on
this work Ettinger (2020), Ravichander et al. (2020)
and Hanna and Marecek (2021) demonstrate that
modern LMs fail to generalize systematically on
zero-shot cloze-style prompts informed by hyper-
nymy. Our paper builds on this line of work in two
ways. First, we present HYPCC, a dataset of cloze
prompts with better coverage of hypernymy and
hyponymy. Second, we bring together inference
and prompt completion tasks into a comprehensive
evaluation of hypernymy in LMs.

2.4 Lexical and Distributional Semantics

More broadly, these lines of work explore the inter-
play between lexical and distributional semantics,
specifically how the first (in the form of LSRs)
helps inform the second (in the form of training
and evaluating LMs or word embeddings). Con-
versely, there is a rich body of work that has at-

tempted to inform lexical semantics with distribu-
tional semantics. Of particular relevance to our
work is the extraction from corpus data of hyper-
nymy (Caraballo, 1999; Snow et al., 2004) and
meronymy (Poesio et al., 2002) relations, typically
based on Hearst patterns (Hearst, 1992). Simi-
larly, Mohammad et al. (2008) leverage the co-
occurrence hypothesis (Charles and Miller, 1989)
to identify antonymy. Bridging the gap between
lexical and distributional semantics, there is work
like Agirre et al. (2009) which combines both ap-
proaches, noting that while distributional methods
help alleviate out-of-vocabulary issues in lexical
resources, they struggle to distinguish semantic
similarity from relatedness. Our work attempts to
address this issue, explicitly modeling LSRs in LM
representations so they can be distinguished.

3 The BALAUR Head Architecture

In this section, we present the neural architecture of
BALAUR heads, describing how they model LSRs
in the hidden states of LMs, how this is translated
into an optimizable loss function, and how they
interface with LMs during pretraining.

Assumptions We take the term (neural) language
model (LM) to refer to a neural network that pre-
dicts a token given its context, including commonly
used masked LMs like BERT (Devlin et al., 2019)
and auto-regressive LMs like GPT (Radford et al.,
2018). These LMs encode a sequence of tokens
into latent representations known as hidden states
or contextualized token embeddings 7', using these
as inputs to a classification head that predicts the
target token. Meanwhile, we represent a lexical
semantic relation R as a set of related lexical item
pairs (X; — X;) € R, noting that LSRs can be
directed, e.g. (corgi — dog) resides in hypernymy
while (dog — corgi) resides in hyponymy.

3.1 Modeling Lexical Semantic Relations

Our goal is to model LSRs in 7', where T is the LM
hidden state for token 7. However, modeling LSRs
between pairs of in-context tokens is challenging
because related tokens often do not co-occur in the
same context. One solution would be to model
LSRs for related token pairs across different con-
texts, however this becomes intractable as the num-
ber of possible context pairs grows combinatorially.

Instead, we model LSRs as (T; — C}) € R,
where C'is a set of context-independent concept
embeddings learned during pretraining. Modeling
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LSRs between token-concept pairs not only ad-
dresses the issue of related token co-occurrence,
but also enables us to capture concepts that would
otherwise fall outside the model’s vocabulary.

For a given relation R, the corresponding BAL-
AUR head learns to transform 7" and C such that
related token-concept pairs are similar in the result-
ing relation-specific vector space. We implement
these as two-layer neural networks with GELU ac-
tivation functions (Hendrycks and Gimpel, 2020):

TR = W2 (GELU(T x WET 4+ BRT)),

tXb bxb txd dxb 1xb (1)
C? = W? (GELU(C x WRC + BRC)),
cxXb bxb cxd dxb 1xb

where ¢ and c are the number of token and con-
cept embeddings, and d and b are their original and
transformed dimensionalities. W%, WHT WhC,
B®T, BRC are learned projection and bias matri-
ces that parameterize the transformations for .
These learned transformations enable BALAUR
heads to model and disentangle multiple LSRs in
the vector space of 7', i.e. ensuring a token’s re-
lated concepts can be predicted from its contextu-
alized embedding, distinguishing across different
relations. Moreover, by parametrizing LSRs as
learned transformations, our approach can model
LSRs inductively; i.e. generalize from instances of
related pairs to a functional representation that can
extrapolate to unseen pairs (Vuli¢ et al., 2018).

3.2 Optimizing a BALAUR Head

To translate our similarity constraint into a learn-
ing objective, we adapt the supervised contrastive
loss of Khosla et al. (2020) which maximizes the
inner product similarities .S between each related
token-concept pair (4, j), while minimizing it for
unrelated pairs (i, k). Optimizing this loss thus
enables us to predict a token’s related concepts
from its contextual embeddings, encoding the cor-
responding LSR in the LM’s hidden states:

R R
1 exp (S7%)
L= —3 —log =2 (2
7] (Z ® % oxp (553
Zv]) k‘<C ’
§% =T% x (C7)T 3)
txe tXxb cXb

where ¢ indexes the set of token embeddings, while
j and k index the set of concept embeddings.

3.3 Interfacing with Language Models

During LM pretraining, 7" is computed in the for-
ward pass and used as input to the LM’s classifica-
tion head for token prediction. Each BALAUR head
also takes 7' as input, along with concept embed-
dings C and relation-specific sets of indices (¢, j)
— where 7 indexes 1" and the corresponding token
in the training batch, while 5 indexes a concept in
C related to T; by the corresponding relation R.
Each head then computes its loss £ and these are
averaged before being added to the LM loss.

4 Method

In this section, we detail our methods for LM pre-
training with BALAUR, using LSRs and concepts
extracted from WordNet. We also present the ar-
chitecture and hyperparameters for the LM in our
experiments, a variant of BERT[ ,zgg suitable for
academic budgets. While our experiments are lim-
ited to masked language modeling and LSRs, our
method can be extended to autoregressive language
modeling and other forms of relational knowledge.

4.1 Extracting LSRs from WordNet

As a first step, we extract related token-concept
pairs for hypernymy, hyponymy, antonymy and
synonymy from WordNet’s noun hierarchy (Miller,
1995). To do this, we begin by mapping the model’s
vocabulary to corresponding WordNet synsets (re-
ferred to throughout this paper as concepts) us-
ing NLTK (Bird and Loper, 2004). For example,
the token dog maps to the concept of a pet dog
(dog.n.01),orahotdog (frank.n.02).
Next, using the resulting set of concepts, we
extract related concept-concept pairs from Word-
Net and convert these to token-concept pairs. For
example (canine.n.01) is a hypernym of
(dog.n.01), while (sausage.n.01) is a
hypernym of (frank.n.02); but both are ex-
tracted as hypernyms of the token dog. To im-
prove coverage of WordNet, we consider multi-
hop hypernymy up to depth 3, such that e.g.
(animal.n.01) is extracted as a hypernym of
both dog and canine. The resulting set of token-
concept pairs contains 15, 612 unique concepts.
Manual sampling and inspection of the resulting
pairs revealed several known issues associated with
WordNet, including inaccurate lemmatization (Mc-
Crae et al., 2019), and too fine-grained word senses
(McCarthy, 2006), further discussed in §7. To help
address these potential sources of noise in BAL-
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AUR, we filter tokens, concepts and token-concept
pairs using the criteria described in A.1.1.

4.2 Incorporating BALAUR into Pretraining

We then use these token-concept pairs to optimize
a BALAUR head for each LSR throughout LM
pretraining. First, we randomly initialize C' as a
15612 x 768 embedding layer. Second, training
examples are annotated with relation-specific sets
of indices (i,7), where i indexes a token in the
training sequence and j indexes a related concept
in C. Lastly, the hidden states 1" are computed
in the LM’s forward pass, and fed into each BAL-
AUR head, along with C' and the sets of indices
(4,7), to compute L£* as described in §3.3, using a
transformed dimensionality b of 768. To prevent se-
quentially iterating over BALAUR heads, we adopt
the parallelization technique from multi-head atten-
tion (Vaswani et al., 2017). Specifically, we learn
one set of transformations (1) but multiply b by
|R| so the resulting transformed vector space can
be partitioned across relations. To reduce memory
overhead, we only input the subset of 7" containing
LSRs into BALAUR, reindexing ¢ on this subset.

4.3 Language Model Pretraining Setup

Our LM architecture, pretraining procedure, and
hyperparameters are based on 24hBERT (Izsak
et al., 2021) which enables rapid pretraining with
limited resources, while reaching comparable per-
formance with the original BERT models (Devlin
etal., 2019). Specifically, we pretrain a BERTy sgrce
architecture to perform masked language modeling
(MLM) on 128-token sequences for 25,000 steps
with a batch size of 4,096 and using 16-bit preci-
sion. We optimize using AdamW (Loshchilov and
Hutter, 2019) and a peak learning rate of 2e-3 with
warm-up over the first 1,500 steps and linear de-
cay. The pretraining data is a snapshot of English
Wikipedia from 2022-03-01, and BookCorpusOpen
(Bandy and Vincent, 2021), with 0.5% withheld
for validation. These datasets were downloaded
from and preprocessed with the dataset s library
(Lhoest et al., 2021) which provided licenses such
as CC-BY-SA 3.0 and GFDL for Wikipedia.

5 Evaluating BALAUR Language Models

In this section, we evaluate whether BALAUR heads
can improve performance on tasks that are in-
formed by LSRs, specifically hypernymy and hy-
ponymy. To this end, we compare BERT[ prgg mod-

els that were pretrained with and without BALAUR
heads. Throughout this section, we refer to these as
BERT+BALAUR and BERT (OURS) respectively.

Drawing from the observation that LSRs con-
strain language production, understanding, and
learning in humans (Nagy and Gentner, 1990;
Fass, 1993); we assemble a gauntlet of hypernymy-
informed evaluations that broadly mirror these
three capabilities, providing a comprehensive view
of different ways LMs can capture hypernymy in
their linguistic behavior:

Language modeling (§5.1): to complement our
evaluation, we verify the effect BALAUR has on the
original LM objective, with particular attention to
performance on tokens with hypernymy relations.
Prompt completion (§5.2): models must predict
the correct token given a cloze-style prompt de-
scribing a hypernymy or hyponymy relation, e.g.
“a dog is a type of [mask]”.

Monotonicity NLI (§5.3): models must predict
whether a sentence entails another, when hyper-
nymy and monotonicity determine entailment, e.g.
“drive a taxi” entails “drive a car”.

Finetuning Efficiency (§5.4): we compare how
efficiently models transfer-learn when finetuned
on the two previous tasks, disambiguating what is
learned during pretraining versus during finetuning.

5.1 Language Modeling

In Table 1, we see that incorporating BALAUR into
the LM pretraining procedure of Izsak et al. (2021)
increases both negative log likelihood (NLL) and
mean reciprocal rank (MRR) for the original
masked language modeling objective. We observe
similar improvements when masking random to-
kens as when masking only tokens with LSRs, in-
dicating the improvements introduced by BALAUR
extend beyond the modeling of LSRs. Lastly, we
note that improvements in the original MLM ob-
jective begin early and are consistent throughout
pretraining, as seen in Figure 2.

RANDOM TOKENS LSR TOKENS
MODEL NLL MRR NLL MRR
BERT (OURS) 1.659 0.733 3.359 0.482
BERT+BALAUR 1.587 0.743 3.201 0.503
A(%) 4.3 14 4.5 4.1

Table 1: Validation MLM performance, shown for mask-
ing random tokens and for only masking tokens with
LSRs (i.e. modeled by BALAUR during pretraining).
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Figure 2: Validation MLM loss throughout pretraining.

5.2 Prompt Completion

Task Description We create HYPCC: a dataset of
cloze-style prompts taking the form “In the context
of hypernymy, a(n) x is a type of y.” where x, y are
hyponym-hypernym pairs of tokens in our model’s
vocabulary, and either is masked out to be predicted
by the model. This evaluation builds on the work
of Ettinger (2020) and Ravichander et al. (2020),
which draws from human psycholinguistic tests to
create cloze prompts. In contrast to previous work,
our evaluation includes hypernyms beyond Fischler
categories, evaluates hyponym prediction, consid-
ers tokens with multiple word senses, and includes
clozes with multiple valid completions. The result-
ing dataset contains 17,556 hyponym-hypernym
pairs; 5,217 hypernym prediction prompts; and
4,115 hyponym prediction prompts. We report ad-
ditional details for the creation of HYPCC in A.1.2,
and discuss several limitations in §7.2.
Evaluation Method In line with previous work,
models are evaluated on HYPCC in a zero-shot
manner (i.e. using masked language modeling
to complete the cloze prompt); and performance
measured with accuracy and mean reciprocal rank
(MRR) for both the open and closed vocabulary
settings. In the closed setting, metrics are calcu-
lated using only the set of possible hypernyms or
hyponyms in HYPCC, while the open setting con-
siders the model’s entire vocabulary. Importantly,
these metrics are adjusted to account for multi-
ple valid completions in a prompt: ignoring other
valid completions when computing a completion’s
rank (i.e. if a model’s top three predictions are
valid, the average accuracy will be 100% instead of
33%). To prevent a skewing of results by prompts
with a larger number of completions, metrics are
first averaged over completions, then averaged over
prompts.

Results and Discussion In Table 2, we find that
BALAUR improves performance on hypernymy-
informed prompt completion across settings
and metrics, even outperforming the original
BERT] arge implementation of Devlin et al. (2019).

However, we note that both of our models strug-
gle with Acc @1 when compared to 1BERT argk,
despite general improvements of BALAUR over our
baseline. A closer inspection of model predictions
reveals that, similar to findings of Ettinger (2020),
models often repeat the hypernym or hyponym in
the context (e.g. predicting “a daisy is a type of
daisy”). In Table 3, we find that our baseline pre-
training procedure exacerbates this problem, ex-
plaining the discrepancy in ACC@ 1 performance.

Moreover, a qualitative analysis of selected
clozes similar to Arora et al. (2020), shown in Ta-
ble 4, suggests that BALAUR better disentangles hy-
pernymy from other forms of semantic relatedness.
These results agree with Agirre et al. (2009), who
showed similar improvements combining lexical
and distributional semantics in word embeddings.

It is also interesting to note that BALAUR spreads
its probability mass more evenly across predictions,
better capturing the one-to-many nature of hyper-
nymy relations. However, we observe that many
of the seemingly valid completions are not actu-
ally gold-standard completions in HYPCC. This is
because HYPCC considers only direct hypernymy
relations in WordNet, while several completions
are indirect hypernymy relations or not in WordNet.
We further discuss these limitations in §7.

CLOSED VOCAB OPEN VOCAB

MODEL Acc@1/5 MRR Acc@1/5 MRR
HYPERNYM PREDICTION

TBERTLArGE 3.53/14.13 0.092 1.78/11.77 0.071

BERT (OURS) 5.18/18.61 0.121 0.88/14.72 0.080

BERT+BALAUR 5.31/19.65 0.128 1.60/15.44 0.089
HYPONYM PREDICTION

TBERTLArGE 3.60/14.95 0.097 2.76/12.87 0.083

BERT (OURS) 2.69/12.22 0.081 2.03/10.65 0.069

BERT+BALAUR 3.49/1791 0.110 1.85/14.56 0.084

Table 2: Zero-shot results on HYPCC. BALAUR gener-
ally improves performance across metrics when com-
pared to a baseline BERT model with the same 24hBERT
pretraining procedure, as well as the published check-
point of TBERTy srge (Wolf et al., 2020). More extensive
comparisons are included in §A.2.1.
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MODEL HYPERNYM REPETITION HYPONYM REPETITION
TBERTLarGE 50.17 47.08
BERT (OURS) 87.81 64.20
BERT+BALAUR 69.59 69.38

Table 3: Rates of repetition on HYPCC. BALAUR re-
duces repetition for hypernym prediction, with compa-
rable rates of repetition for hyponym prediction.

In the context of hypernymy, a church is a type of [mask].

BERT church  religion structure building worship
(OURS) 74.78 2.83 1.25 1.11 0.86
BERT+ church  building structure  place object
BALAUR  27.33 21.45 15.57 2.41 1.83

In the context of hypernymy, a [mask] is a type of poem.

BERT poem poet poetry verse word
(OURS) 91.72 0.84 0.55 0.50 0.35
BERT+ poem verse song poetry “r

BALAUR  66.23 3.80 3.46 2.47 1.67

In the context of hypernymy, a volcano is a type of [mask].

BERT volcano lava cone rock eruption
(OURS) 88.30 1.59 1.11 0.94 0.88
BERT+ volcano mountain structure  object rock
BALAUR  69.54 13.27 2.55 0.80 0.69

Table 4: Top-5 completions and probability percentages
for selected clozes, showcasing how BALAUR can help
disentangle hypernymy from other forms of semantic
relatedness (related but invalid completions are bolded).

5.3 Monotonicity NLI

Task Description Our second evaluation is taken
from Geiger et al. (2020), who create MoNLI: a
challenge NLI dataset where entailment is deter-
mined by hypernymy. For instance, “A man is
talking to someone in a taxi” entails “A man is talk-
ing to someone in a car”. While models finetuned
on SNLI (Bowman et al., 2015) perform well on
such examples, they fail to generalize on examples
where negation reverses entailment. For instance,
“A man is not talking to someone in a car’” now
entails “A man is not talking to someone in a taxi’.
MoNLI is divided into PMoNLI and NMoNLI to
distinguish between positive and negated examples.

Evaluation Method We adopt the evaluation pro-
cedure of Geiger et al. (2020), reporting test set ac-
curacies for models finetuned on SNLI, and models
also finetuned on MoNLI. We follow the NLI fine-
tuning procedure of 24hBERT (Izsak et al., 2021)
on which our model is based. However, we found
that performance is sensitive to random seeds, so
we report results averaged across 5 seeds.

Results and Discussion In Table 5, we replicate
the results of Geiger et al. (2020), finding that mod-
els finetuned on SNLI only generalize to PMoNLI
but fail completely on NMoNLI. Unexpectedly, we
find BALAUR improves both SNLI and PMoNLI
performance in this setting, suggesting some exam-
ples in SNLI also benefit from the representations
learned with BALAUR pretraining.

MODEL SNLI PMONLI NMONLI
SNLI FINETUNING ONLY
BERT (OURS) 85.44 65.51 0.50
BERT+BALAUR 86.49 76.92 0.10
SNLI + MONLI FINETUNING
BERT (OURS) 85.43 - 48.90
BERT+BALAUR 86.38 - 56.50

Table 5: SNLI and MoNLI accuracies.

However, we conversely find that BALAUR de-
grades performance on the withheld test set of
NMoNLI. While BALAUR may help LMs better
capture hypernymy, the fact that it does not ac-
count for negation may help explain this result.
Furthermore, visualizing performance across seeds
in §A.2.3, we observe markedly larger variance on
NMoNLI compared to SNLI and PMoNLI, making
this result more difficult to interpret reliably.

5.4 Finetuning Efficiency

Task Description Our final evaluation reframes
§5.2 and §5.3 not in terms of zero-shot or final
performance, but in terms of performance through-
out the finetuning of a pretrained model — as pro-
posed by Talmor et al. (2020) in oLMpics. This ap-
proach was originally proposed because finetuning
pretrained LMs makes it hard to disentangle what
is captured in the pretrained representations from
what is learned during finetuning. A key assump-
tion underlying our use of this evaluation is that
models which better capture hypernymy in their
pretrained representations will be finetuned more
efficiently (i.e. with better finetuned performance
relative to finetuning steps, throughout finetuning).

Evaluation Method We finetune our models us-
ing the hyperparameters and finetuning procedures
from Talmor et al. (2020) for prompt completion,
and from Geiger et al. (2020) for MoNLI. This in-
cludes freezing model parameters for the prompt
completion task (leaving only the language mod-
eling head unfrozen); while unfreezing the entire
model for the NLI task. We perform 5-fold cross-
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validation with a 20% split, and average validation
set results. Importantly, the splits are systematic
to ensure that no hypernyms or hyponyms occur in
both train and validation sets.

Results and Discussion (Prompt Completion)
In Figure 3, we see that BALAUR’s improvement
on hypernym prediction extends throughout
finetuning, indicating better transfer learning
abilities. We show similar results for the hyponym

subset of HYPCC in §A.2.2.

i 0.15-

=]

3

[=}

>

Z

g 01

S ——— BERT+BALAUR

BERT (OURS)

0 2(‘)k 46k 66k

Number of training examples

Figure 3: Average open-vocab MRR throughout fine-
tuning on the hypernym prediction subset of HYPCC.

However, it is puzzling that performance re-
mains relatively low despite extensive finetuning. A
closer look at the outputs of the final model reveals
that many of the erroneous entries in the model’s
top-10 open vocabulary predictions were in fact
other classes in the HYPCC dataset (i.e. tokens
from the closed vocabulary). In Figure 4, we quan-
tify the class intrusion rate as the proportion of
top-10 predictions which are both erroneous and
a class in HYPCC, finding that it increases signifi-
cantly throughout finetuning.
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Figure 4: Average class intrusion rate throughout fine-
tuning on the hypernym prediction subset of HYPCC.

One possible explanation is that models learn
to predict indirect hypernyms or hyponyms not
accounted for in HYPCC, similar to examples in
Table 4. However, a manual inspection of model
predictions showed that this was not often the case.

0.15- ® BERT+BALAUR
@ BERT (OURS)
=] °
&0
g .
g $ 3
= 0.05 . '8 28
e 3 o® ,.“'. pets 0P
_ e a_ Se28 ~Call]
04 { RS -

Class Frequency in HypCC

Figure 5: Average intrusion rate and frequency of
classes in the final models finetuned on the hypernym
prediction subset of HYPCC.

Instead, in Figure 5, we find that the intrusion
rate of a class grows with its frequency in the
finetuning dataset. Given that intrusion rates in-
crease with finetuning and that frequent classes
have higher intrusion rates, this suggests that LMs
struggle to discriminate single token differences in
prompts, and instead conflate learning signal across
prompts with more frequent classes dominating.

Results and Discussion (MoNLI) In Figure 6, we
observe similar results for MoNLI, indicating that
BALAUR improves finetuning efficiency. In con-
trast to the results in §5.3, we also observe in Ta-
ble 6 that BALAUR improves final performance on
systematic validation splits for both PMoNL and
NMoNLI. These improvements are consistent even
when stratifying by BALAUR coverage of the hy-
pernym and hyponym in a given MoNLI example,
i.e. whether or not BALAUR models hypernymy or
hyponymy relations for these tokens.
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Figure 6: Average accuracy throughout finetuning.

Overall Accuracy by BALAUR Coverage

Accuracy Hyper+Hypo Hyper Only Neither
PMONLI
BERT (OURS) 82.14 80.69 85.07 58.33
BERT+BALAUR 86.78 86.19 88.27 72.22
NMONLI
BERT (OURS) 80.31 78.00 81.81 -
BERT+BALAUR 93.01 91.44 94.02 -

Table 6: Final performance on MoNLI subsets, averaged
over five systematic validation splits and stratified by
coverage (subsets with no coverage are omitted).
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6 Conclusion

In this work, we set out to align the linguistic be-
havior of LMs with our knowledge of LSRs and im-
prove their performance on hypernymy-informed
tasks. We presented BALAUR, an approach that
aims to guide the linguistic behavior of LMs in
such a way by modeling LSRs directly in their
hidden states throughout pretraining.

Underlying this proposed approach was the hy-
pothesis that LM latent representations can provide
an interface to their linguistic behavior, and that
controlling one can help guide the other. To verify
our hypothesis, we characterized the effect of BAL-
AUR on a series of evaluations, targeting several
distinct ways in which LMs might capture hyper-
nymy in their linguistic behavior.

Our findings show that BALAUR can robustly
improve performance on diverse hypernymy-
informed tasks, validating the effectiveness of our
method while supporting our original hypothesis.
Notably, we demonstrated that BALAUR also im-
proves performance on the original language mod-
eling objective, indicating our method’s improve-
ments are not limited to hypernymy-informed tasks
and can extend to more general linguistic behav-
ior. However, we found that aligning the linguistic
behavior of LMs with BALAUR still poses several
challenges. We further discuss these limitations in
§7 and outline implications for future work.

More broadly, BALAUR is a general-purpose ar-
chitecture for modeling relations in the latent rep-
resentations of neural network models. While our
work has focused on modeling LSRs in LM hid-
den states throughout pretraining, BALAUR can in
principle be applied to different modalities, archi-
tectures, relations and optimization settings. How
well our results and hypothesis generalize to such
different settings remains an open question.

7 Limitations

7.1 Pretraining from scratch

Our work attempts to improve LMs by pretrain-
ing from scratch, adopting a relatively efficient
pretraining approach geared towards academic bud-
gets (Izsak et al., 2021). While our approach can
in principle generalize to other LMs such as GPT
(Radford et al., 2018), we could not pretrain these
models due to limited computational resources.
Adapting our method to effectively finetune ex-
isting pretrained models could significantly reduce

the compute and data required. While this approach
seems more practical and accessible, in practice we
found that effectively finetuning pretrained LMs
to improve their linguistic behavior across a range
of tasks without loss of generality is more difficult
from an optimization perspective than pretraining
a different model from scratch.

While previous work has succeeded in finetun-
ing pretrained LMs without catastrophic forgetting
(e.g. for downstream tasks (Chen et al., 2020),
domain adaptation (Gururangan et al., 2020), and
de-biasing (Gira et al., 2022)), these do not address
the issue of incorporating external knowledge in
pretrained LMs to guide their linguistic behavior
across a variety of tasks. To the best of our knowl-
edge, achieving this remains an open question.

7.2 Noise, bias and coverage in WordNet

When using knowledge bases such as WordNet, it is
important to account for their inherent limitations.
In particular, we identify three prevalent issues in
WordNet that can negatively affect what LMs learn
in our experiments.

First is the problem of noise. Due to issues
with lemmatization, word sense granularity and
idiomaticity, we found many questionable relations
being extracted when creating training data for
BALAUR and examples for HYPCC. For example,
we find that the token cat is lemmatized to
the concept (cat—-o’-nine-tails.n.01),
implying cat has the hypernym (whip.n.01).
Conversely, word sense granularity can
lead to questionable relations like chair
(professorship.n.01) being a hyponym
of situation (position.n.06)“. Lastly,
idioms like “taking a crack at something” can
lead to (unlikely when taken out of context)
relations like “crack™ having the hypernym
“endeavor”. These limitations are exacerbated in
our experiments, as we do not disambiguate word
senses, considering all possible meanings of a
given token instead.

Second is the issue of bias. We found WordNet
to encode several harmful biases and stereotypes,
either directly via harmful relations, or indirectly by
including certain relations for some groups but not
others. For example, “man” has hyponyms “bach-
elor”, “officer” and “gallant”; in contrast to “mis-
tress”, “nurse” and “tease” for “woman”. Despite
removing these associations in our work, we want
to note that these kind of biases can be difficult to
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comprehensively account for when expressed as
selective inclusion or omission of associations for
different groups.

Lastly, is the related issue of coverage. Many
concepts and relations are simply not expressed in
WordNet; limiting the knowledge of LSRs that can
be incorporated in LMs with this resource. This
lack of coverage is exacerbated in our experiments,
as we are limited to single token words (i.e. words
in the model’s vocabulary). Despite trying to alle-
viate this by also modeling extra-vocabulary con-
cepts, effectively controlling the representations of
multi-token expressions in LMs remains an open
problem. We note that, due to its reliance on expert
lexicographers, WordNet has had limited updates
and developments to increase its coverage; this is
in contrast to the open sourced English WordNet
2019 (McCrae et al., 2019). We suggest future
work consider this resource to mitigate coverage
issues.
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A Appendix

A.1 Additional method details

A.1.1 Filtering LSRs from WordNet

Filtering Tokens When mapping tokens to
WordNet synsets using NLTK, we observed
several potential sources of noise that could
be addressed by filtering tokens. First, we
observed that many tokens with 3 or fewer
characters were often over-zealously lemmatized
by NLTK as acronyms or abbreviations for
unlikely synsets. For example cat may map to
computerized_tomography.n.01, while
in maps to indium.n.01, indiana.n.01,
and inch.n.01. Originally, we attempted to
filter any token with 3 or fewer characters, however
our coverage of important concepts dropped
significantly, so we limit ourselves to filtering
tokens with 2 or fewer characters. We also filter
out tokens which are wordpieces in the model
vocabulary (e.g. tokens prefixed by "##" in the
vocabulary of BERT, indicating these are not
preceded by whitespace and occur in the middle
of words) to ensure we only model LSRs for
tokens that correspond to entire words. We also
use a WordNet stoplist (Pedersen and Banerjee,
2009) to filter common function words that tend
to be misrepresented by WordNet. Lastly, we
limit ourselves to alphabetical tokens, as we found
numerical and alphanumerical tokens to introduce
a lot of noise.

Filtering Synsets Having filtered tokens, we then
map each of these to all possible synsets using the
NLTK interface to WordNet. However, we found
the quality, coverage and ambiguity of annotations
to vary significantly across synset types. To
reduce noise, we filtered synset categories based
on manual inspection. We first limit ourselves
to noun synsets, and filter what we found to be
particularly noisy categories: quantity, motive,
shape, relation, and process. Furthermore, we
found that despite filtering tokens from our
stoplist, NLTK was still lemmatizing other
tokens to synsets in the stoplist, so we further
filter any synset whose identifiers are in the stoplist.

Filtering Token-Concept Pairs After mapping hy-
pernymy, hyponymy, synonymy and antonymy rela-
tions between tokens and synsets, we filter synsets
based on their coverage of our model’s vocabu-

lary. Specifically, our goal is to avoid modeling
LSRs for synsets that only relate to one item in
our vocabulary, as these cannot provide any useful
inductive bias to our model’s representations of its
vocabulary. We first keep any synsets which map
to 2 or more tokens (i.e. capture synonymy). If a
remaining synset has antonymous synsets, we keep
it if both it and its antonym(s) have corresponding
tokens in the model vocabulary. Lastly, if a remain-
ing synset belongs in a hypernymy or hyponymy
relation, we keep it even if it does not map to a to-
ken, as long as it relates to two or more hypernym
or hyponym synsets that do. This enables us to
indirectly model concepts not in the model vocabu-
lary via co-hyponymy and co-hypernymy relations.
Any remaining synset is removed, along with its
related token-concept pairs. This filtering ensures
that we model concepts relating to multiple tokens
in our vocabulary and prevents the degenerate case
where a concept is indistinguishable from a token.

A.1.2 HYPCC dataset creation

To create HYPCC, we first extract related token-
concept pairs using the same procedure outlined
in §4.1 and A.1.1. One notable difference is
that we only consider direct hypernyms, instead
of multi-hop hypernyms up to depth 3. Further-
more, we filter tokens such that they occur in
the two most frequent English LM vocabularies:
bert-base-uncased and gpt 2, as hosted by
the transformers library (Wolf et al., 2020).

We then convert token-concept pairs to sets of
token-token pairs, based on the concepts’ surface
forms which are present in our vocabularies. To
convert these pairs to cloze-style prompts, we adopt
the following template: “A(n) X is a type of Y.
We use the inflect library ! to filter plural forms or
determine the adequate article (“a” or “an”). While
we do not account for uncountable nouns, we find
that most prompts maintain their legibility.

Lastly, we found that several concepts and to-
kens were disproportionately represented in this
dataset as a result of having multiple wordsenses
or maintaining a high position in the WordNet hi-
erarchy. These often lead to nonsensical prompts,
which we attempted to filter out using a manually
curated stoplist for tokens and concepts.

1https ://github.com/Jjaraco/inflect
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A.2 Additional results
A.2.1 Extended zero-shot results on HYPCC

CLOSED VOCAB OPEN VOCAB

MODEL Acc@1/5 MRR Acc@1/5 MRR
HYPERNYM PREDICTION
BERTRBAse 2.75/12.88 0.081 0.30/10.25 0.054
BERTL ArGE 3.53/14.13 0.092 1.78/11.77 0.071
ROBERTABAse 4.46/1554 0.103 1.90/12.14 0.074
ROBERTA[ ArcE 7.01/20.12 0.137 5.29/17.00 0.114
BERT (ours) 5.18/18.61 0.121 0.88/14.72 0.080
BERT+BALAUR (ours) 5.31/19.65 0.128 1.60/15.44 0.089
HYPONYM PREDICTION
BERTgBAsE 1.99/11.89 0.073 1.39/10.42 0.061
BERTL ArcE 3.60/14.95 0.097 2.76/12.87 0.083
ROBERTABAse 2.94/12.06 0.080 2.24/9.92 0.066
ROBERTA[ srcE 3.89/1290 0.091 3.37/11.55 0.081
BERT (ours) 2.69/12.22 0.081 2.03/10.65 0.069
BERT+BALAUR (ours) 3.49/1791 0.110 1.85/14.56 0.084

Table 7: Zero-shot results on HYPCC across MLM:s.
We note that ROBERTa was trained on an order of magni-
tude more data than the models used in our experiments
(16GB versus 161GB), which has a significant impact
on downstream performance (Liu et al., 2019) and helps
explain the discrepancy in performance. In contrast and
in line with Nityasya et al. (2023), our main results aim
to disentangle the effects of scaling data or compute.

A.2.2 Extended finetuning results on HYPCC
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Figure 7: Average open-vocab MRR throughout fine-
tuning on the hyponym prediction subset of HYPCC.
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Figure 8: Average class intrusion rate throughout fine-
tuning on the hyponym prediction subset of HYPCC.
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A.2.3 MoNLI performance across random
seeds

SNLI Test Accuracy SNLI Test Accuracy (zoomed in)
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Figure 10: MoNLI performance across 5 seeds when
finetuned only on SNLI.
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Figure 11: MoNLI performance across 5 seeds when
finetuned on SNLI and MoNLI.
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