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Abstract

Semi-supervised entity alignment (EA) is a
practical and challenging task because of the
lack of adequate labeled mappings as training
data. Most works address this problem by gen-
erating pseudo mappings for unlabeled enti-
ties. However, they either suffer from the er-
roneous (noisy) pseudo mappings or largely
ignore the uncertainty of pseudo mappings. In
this paper, we propose a novel semi-supervised
EA method, termed as MixTEA, which guides
the model learning with an end-to-end mix-
ture teaching of manually labeled mappings
and probabilistic pseudo mappings. We firstly
train a student model using few labeled map-
pings as standard. More importantly, in pseudo
mapping learning, we propose a bi-directional
voting (BDV) strategy that fuses the alignment
decisions in different directions to estimate the
uncertainty via the joint matching confidence
score. Meanwhile, we also design a matching
diversity-based rectification (MDR) module to
adjust the pseudo mapping learning, thus reduc-
ing the negative influence of noisy mappings.
Extensive results on benchmark datasets as well
as further analyses demonstrate the superiority
and the effectiveness of our proposed method.

1 Introduction

Entity alignment (EA) is a task at the heart of inte-
grating heterogeneous knowledge graphs (KGs)
and facilitating knowledge-driven applications,
such as question answering, recommender systems,
and semantic search (Gao et al., 2018). Embedding-
based EA methods (Chen et al., 2017; Wang et al.,
2018; Sun et al., 2020a; Yu et al., 2021; Xin et al.,
2022a) dominate current EA research and achieve
promising alignment performance. Their general
pipeline is to first encode the entities from different
KGs as embeddings (latent representations) in a
uni-space, and then find the most likely counterpart
for each entity by performing all pairwise com-
parison. However, the pre-aligned mappings (i.e.,

training data) are oftentimes insufficient, which is
challenging for supervised embedding-based EA
methods to learn informative entity embeddings.
This happens because it is time-consuming and
labour-intensive for technicians to manually anno-
tate entity mappings in the large-scale KGs.

To remedy the lack of enough training data,
some existing efforts explore alignment signals
from the cheap and valuable unlabeled data in a
semi-supervised manner. The most common semi-
supervised EA solution is using the self-training
strategy, i.e., iteratively generating pseudo map-
pings and combining them with labeled mappings
to augment the training data. For example, Zhu
et al. (2017) propose IPTransE which involves an
iterative process of predicting on unlabeled data
and then treats the predictions above an elaborate
threshold (confident predictions) as pseudo map-
pings for retraining. To further improve the ac-
curacy of pseudo mappings, Sun et al. (2018) de-
sign a heuristic editing method to remove wrong
alignment by considering one-to-one alignment
constraint, while Mao et al. (2020) and Cai et al.
(2022) utilize a bi-directional iterative strategy to
determine pseudo mapping if and only if the two en-
tities are mutually nearest neighbors of each other.
Despite the encouraging results, existing semi-
supervised EA methods still face the following
problems: (1) Uncertainty of pseudo mappings.
Prior works have largely overlooked the uncer-
tainty of pseudo mappings during semi-supervised
training. Revisiting the self-training process, the
generation of pseudo mappings is either black or
white, i.e., an entity pair is either determined as
a pseudo mapping or not. While in fact, different
pseudo mappings have different uncertainties and
contribute differently to model learning (Zheng
and Yang, 2021). (2) Noisy pseudo mapping
learning. The performance of semi-supervised EA
methods depends heavily on the quality of pseudo
mappings, while these pseudo mappings inevitably
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contain much noise (i.e., False Positive mappings).
Even worse, adding them into the training data
would misguide the subsequent training process,
thus causing error accumulation and further hurting
the alignment performance.

To tackle the aforementioned limitations, in this
paper, we propose a simple yet effective semi-
supervised EA solution, termed as MixTEA. To be
specific, our method is based on a Teacher-Student
architecture (Tarvainen and Valpola, 2017), which
aims to generate pseudo mappings from a gradu-
ally evolving teacher model and guides the learn-
ing of a student model with a mixture teaching
of labeled mappings and pseudo mappings. We
explore the uncertainty of pseudo mappings via
probabilistic pseudo mapping learning rather than
directly adding “reliable” pseudo mappings into
the training data, which lends us to flexibly learn
from pseudo mappings with different uncertainties.
To achieve that, we propose a bi-directional voting
(BDV) strategy that utilizes the consistency and
confidence of alignment decisions in different di-
rections to estimate the uncertainty via the joint
matching confidence score (converted to matching
probability after a softmax). Meanwhile, a match-
ing diversity-based rectification (MDR) module is
designed to adjust the pseudo mapping learning,
thus reducing the influence of noisy mappings. Our
contributions are summarized as follows:

(I) We propose a novel semi-supervised EA
framework, termed as MixTEA1, which guides the
model’s alignment learning with an end-to-end mix-
ture teaching of manually labeled mappings and
probabilistic pseudo mappings.

(II) We introduce a bi-directional voting (BDV)
strategy which utilizes the alignment decisions in
different directions to estimate the uncertainty of
pseudo mappings and design a matching diversity-
based rectification (MDR) module to adjust the
pseudo mapping learning, thus reducing the nega-
tive impacts of noise mappings.

(III) We conduct extensive experiments and thor-
ough analyses on benchmark datasets OpenEA
(Sun et al., 2020b). The results demonstrate the su-
periority and effectiveness of our proposed method.

2 Related Works

2.1 Embedding-based Entity Alignment
While the recent years have witnessed the rapid de-
velopment of deep learning techniques, embedding-

1https://github.com/Xiefeng69/MixTEA

based EA approaches obtain promising results.
Among them, some early studies (Chen et al., 2017;
Sun et al., 2017) are based on the knowledge em-
bedding methods, in which entities are embedded
by exploring the fine-grained relational semantics.
For example, MTransE (Chen et al., 2017) applies
TransE (Bordes et al., 2013) as the KG encoder
to embed different KGs into independent vector
spaces and then conducts transitions via designed
alignment modules. However, they need to care-
fully balance the weight between the encoder and
alignment module in one unified optimization prob-
lem. Due to the powerful structure learning capa-
bility, Graph Neural Networks (GNNs) like GCN
(Kipf and Welling, 2017) and GAT (Veličković
et al., 2018) have been employed as the encoder
with Siamese architecture (i.e., shared-parameter)
for many embedding-based models. GCN-Align
(Wang et al., 2018) applies Graph Convolution Net-
work (GCN) for the first time to capture neighbor-
hood information and embed entities into a unified
vector space, but it suffers from the structural het-
erogeneity of different KGs. To mitigate this issue
and improve the structure learning, AliNet (Sun
et al., 2020a) adopts multi-hop aggregation with a
gating mechanism to expand neighborhood ranges
for better structure modeling, and KE-GCN (Yu
et al., 2021) combines GCN and knowledge em-
bedding methods to jointly capture the rich struc-
tural features and relation semantics of entities.
More recently, IMEA (Xin et al., 2022a) designs
a Transformer-like architecture to encode multiple
structural contexts in a KG while capturing align-
ment interactions across different KGs.

In addition, some works further improve the EA
performance by introducing the side information
about entities, such as entity names (Zhang et al.,
2019), attributes (Liu et al., 2020), and literal de-
scriptions (Yang et al., 2019). Afterward, a series
of methods were proposed to integrate knowledge
from different modalities (e.g., relational, visual,
and numerical) to obtain joint entity representation
for EA (Chen et al., 2020; Liu et al., 2021; Lin
et al., 2022). However, these discriminative fea-
tures are usually hard to collect, noise polluted, and
privacy sensitive (Pei et al., 2022).

2.2 Semi-supervised Entity Alignment

Since the manually labeled mappings used for train-
ing are usually insufficient, many semi-supervised
EA methods have been proposed to take advan-
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tage of labeled mappings and the large amount
of unlabeled data for alignment, which can pro-
vide a more practical solution in real scenarios.
The mainstream solutions focus on iteratively gen-
erating pseudo mappings to compensate for the
lack of training data. IPTransE (Zhu et al., 2017)
applies threshold filtering-based self-training to
yield pseudo mappings but it fails to obtain sat-
isfactory performance since it brings much noise
data, which would misguide the subsequent train-
ing. Besides, it is also hard to determine an ap-
propriate threshold to select “confident” pseudo
mappings. KDCoE (Chen et al., 2018) performs
co-training of KG embedding model and literal de-
scription embedding model to gradually propose
new pseudo mappings and thus enhance the super-
vision of alignment learning for each other. To
further improve the quality of pseudo mappings,
BootEA (Sun et al., 2018) designs an editable strat-
egy based on the one-to-one matching rule to deal
with matching conflicts and MRAEA (Mao et al.,
2020) proposes a bi-directional iterative strategy
which imposes a mutually nearest neighbor con-
straint. Inspired by the success of self-training,
RANM (Cai et al., 2022) proposes a relation-based
adaptive neighborhood matching method for entity
alignment and combines a bi-directional iterative
co-training strategy, making become a natural semi-
supervised model. Moreover, CycTEA (Xin et al.,
2022b) devises an effective ensemble framework to
enable multiple alignment models (called aligners)
to exchange their reliable entity mappings for more
robust semi-supervised training, but it requires high
complementarity among different aligners.

Additionally, other effective semi-supervised EA
methods, such as SEA (Pei et al., 2019), RAC
(Zeng et al., 2021), GAEA (Xie et al., 2023), focus
on introducing specific loss terms (e.g., reconstruc-
tion loss, contrastive loss) via auxiliary tasks.

3 Problem Statement

A knowledge graph (KG) is formalized as G =
(E ,R, T ), where E andR refer to the set of entities
and the set of relations, respectively. T = E ×
R × E = {(h, r, t)|h, t ∈ E ∧ r ∈ R} is the set
of triples, where h, r, and t denote head entity
(subject), relation, tail entity (object), respectively.
Given a source KG Gs = (Es,Rs, Ts), a target KG
Gt = (Et,Rt, Tt), and a small set of pre-aligned
mappings (called training data) S = {(es, et)|es ∈
Es∧et ∈ Et∧es ≡ et}, where≡means equivalence

relationship, entity alignment (EA) task pairs each
source entity ei ∈ Es via nearest neighbor (NN)
search to identify its corresponding target entity
ej ∈ Et:

ej = arg min
ẽj∈Et

d(ei, ẽj) (1)

where d(·) denotes distance metrics (e.g., Manhat-
tan or Euclidean distance). Moreover, to mitigate
the inadequacy of training data, semi-supervised
EA methods make effort to explore more potential
alignment signals over the vast unlabeled entities,
i.e., Ês and Êt, which denote the unlabeled entity
set of source KG and target KG, respectively.

4 Proposed Method

In this section, we present our proposed semi-
supervised EA method, called MixTEA, in Figure
1. MixTEA follows the teacher-student training
scheme. The teacher model is performed to gen-
erate probabilistic pseudo mappings on unlabeled
entities and student model is trained with an end-
to-end mixture teaching of manually labeled map-
pings and probabilistic pseudo mappings. Com-
pared to previous methods that require filtering
pseudo mappings via thresholds or constraints, the
end-to-end training gradually improves the quality
of pseudo mappings, and the more and more accu-
rate pseudo mappings in turn benefit EA training.

4.1 KG Encoder
We first introduce the KG encoder (denoted as
f(; θ)) which utilizes neighborhood structures and
relation semantics to embed entities from differ-
ent KGs into a unified vector space. We ran-
domly initialize the trainable entity embeddings
Hent ∈ R(|Es|+|Et|)×de and relation embeddings
Hrel ∈ R|Rs∪Rt|×dr , where de and dr are the di-
mension of entities and relations, respectively.

Structure modeling. Structural features are cru-
cial since equivalent entities tend to have similar
neighborhood contexts. Besides, leveraging multi-
range neighborhood structures is capable of pro-
viding more alignment evidence and mitigating the
structural heterogeneity issue. In this work, we
apply Graph Attention Network (GAT) (Veličković
et al., 2018) to allow an entity to selectively ag-
gregate its surrounding information via attentive
mechanism and we then recursively capture multi-
range structural features by stacking L layers:

h(l)
ei = σ

(∑
ej∈Nei

αijWgh(l−1)
ej

)
(2)
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Figure 1: The overall of our proposed MixTEA, which consists of two KG encoders, called student model and
teacher model. We obtain entity embeddings via the KG encoder. Both labeled mappings and probabilistic pseudo
mappings are used to train the student model. The final student model is used for alignment inference.

αij =
exp(σ(a⊤[Wghei ⊕Wghej ]))∑

ez∈Nei
exp(σ(a⊤[Wghei ⊕Wghez ]))

(3)
where ⊤ represents transposition, ⊕ means con-
catenation, Wg and a are the layer-specific trans-
formation parameter and attention transformation
vector, respectively. Nei means the neighbor set of
ei (including ei itself by adding a self-connection),
and αij indicates the learned importance of entity
ej to entity ei. H(l) denotes the entity embedding
matrix at l-th layer with H(0) = Hent. σ(·) is the
nonlinear function and we use ELU here.

Relation modeling. Relation-level information
which carries rich semantics is vital to align enti-
ties in KGs because two equivalent entities may
share overlapping relations. Considering that rela-
tion directions, i.e., outward (ei → ej) and inward
(ei ← ej), have delicate impacts on characteriz-
ing the given target entity ei, we use two mean
aggregators to gather outward and inward relation
semantics separately to provide supplementary fea-
tures for heterogeneous KGs:

hr+
ei =

1

|N r+
ei |

∑

r∈N r+
ei

hrel
r (4)

hr−
ei =

1

|N r−
ei |

∑

r∈N r−
ei

hrel
r (5)

where N r+
ei and N r−

ei are the sets of outward and
inward relations of entity ei, respectively.

Weighted concatenation. After capturing the
contextual information of entities in terms of neigh-
borhood structures and relation semantics, we con-

catenate intermediate features for entity ei to obtain
the final entity representation:

hei = ⊕
k∈K

[
exp(wk)∑

exp(w)
· hk

ei

]
(6)

where K = {(1), ..., (L), r+, r−} and w ∈ R|K|

is the trainable attention vector to adaptively con-
trol the flow of each feature. We feed w to a soft-
max before multiplication to ensure that the nor-
malized weights sum to 1.

4.2 Alignment Learning with Mixture
Teaching

In the following, we will introduce mixture teach-
ing, which is reached by the supervised alignment
learning and probabilistic pseudo mapping learning
in an end-to-end training manner.

Teacher-student architecture. Following Mean
Teacher (Tarvainen and Valpola, 2017), we build
our method which consists of two KG encoders
with identical structure, called student model
f(; θstu) and teacher model f(; θtea), respectively.
The student model constantly updates its parame-
ters supervised by the manually labeled mappings
as standard and the teacher model is updated via
the exponential moving average (EMA) (Tarvainen
and Valpola, 2017) weights of the student model.
Moreover, the student model also learns from the
pseudo mappings generated by the teacher model
to further improve its performance, in which the
uncertainty of pseudo mappings is formalized as
calculated matching probabilities. Specifically, we
update the teacher model as follows:

θtea ← mθtea + (1−m)θstu,m ∈ [0, 1) (7)
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where θ denotes model weights, and m is a pre-
set momentum hyperparameter that controls the
teacher model to update and evolve smoothly.

Supervised alignment learning. In order to
make equivalent entities close to each other and
unmatched entities pull away from each other in a
unified space, we apply a margin-based alignment
loss (Wang et al., 2018; Mao et al., 2020; Yu et al.,
2021) supervised by pre-aligned mappings:

La =
∑

(es,et)∈S

∑

(ēs,ēt)∈S̄
[||hes − het ||2

+ ρ− ||hēs − hēt ||2]+
(8)

where ρ is a hyperparameter of margin, [x]+ =
max{0, x} is to ensure non-negative output, S̄ de-
notes the set of negative entity mappings, and || · ||2
means L2 distance (Euclidean distance). Negative
mappings are sampled according to the cosine sim-
ilarity of two entities (Sun et al., 2018).

Probabilistic pseudo mapping learning. As
mentioned above, the teacher model is responsible
for generating probabilistic pseudo mappings for
the student model to provide more alignment sig-
nals and thus enhance the alignment performance.
Benefiting from the EMA update, the predictions of
the teacher model can be seen as an ensemble ver-
sion of the successive student models’ predictions.
Therefore it is more robust and stable for pseudo
mapping generation. Moreover, bi-directional iter-
ative strategy (Mao et al., 2020) reveals the asym-
metric nature of alignment directions (i.e., source-
to-target and target-to-source), which can produce
pseudo mappings based on the mutually nearest
neighbor constraint. Inspired by this, we propose a
bi-directional voting (BDV) strategy which fuses
alignment decisions in each direction to yield more
comprehensive pseudo mappings and model their
uncertainty via the joint matching confidence score.
Concretely, after encoding, we can first obtain the
similarity matrix by performing pairwise similarity
calculation between the unlabeled source and target
entities as follows:

Mtea
s→t = sim(Ês, Êt, θtea) ∈ R|Ês|×|Êt| (9)

where sim(·) denotes cosine similarity function.
Mtea

s→t and Mtea
t→s represent similarity matrices in

different directions between source and target en-
tities, and Mtea

t→s is the transposition of Mtea
s→t (i.e.,

Mtea
t→s = (Mtea

s→t)
⊤). Next, for each matrix, we

pick up the entity pair which has the maximum

pairwise 
similarity 

unlabeled
entities

pseudo
mappings

transposition

bi-directional
voting

matching
diversity-based

rectification

matching conflicts

softmax
...

Figure 2: The illustration of the process of generating
the probabilistic pseudo mapping matrix from two align-
ment directions. We assume that entity pairs on the
diagonal are correct mappings and that the default align-
ment direction for inference is from source to target.

predicted similarity in each row as the pseudo map-
ping and then we combine the results of the pseudo
mappings in different directions weighted by their
last Hit@1 scores on validation data to obtain the
final pseudo mapping matrix:

Ptea = β · g(Mtea
s→t) + (1− β) · g(Mtea

t→s)
⊤ (10)

β =
valid(Mtea

s→t)

valid(Mtea
s→t) + valid(Mtea

t→s)
(11)

g(M) = [mi,j ] =

{
1, if j = argmaxj Mi,j

0, otherwise
(12)

where g(·) is the function that converts the similar-
ity matrix to a one-hot matrix (i.e., the only position
with a value 1 at each row of the matrix indicates
the pseudo mapping). In this manner, we arrive at
the final pseudo mapping matrix Ptea generated by
the teacher model, in which each pseudo-mapping
is associated with a joint matching confidence score
(the higher the joint matching confidence, the less
the uncertainty). Different from the bi-directional
iterative strategy, we use the voting consistency
and matching confidence of alignment decisions
in different directions to facilitate uncertainty esti-
mation. Specifically, given an entity pair (êi, êj),
its confidence Ptea

i,j is 1 when and only when both
directions unanimously vote this entity pair as a
pseudo mapping, otherwise its confidence is in the
interval (0,1) when only one direction votes for it
and 0 when no direction votes for it (i.e., this entity
pair will not be regarded as a pseudo mapping).

In addition, the ideal predictions of EA need
to satisfy the one-to-one matching constraint
(Suchanek et al., 2011; Sun et al., 2018), i.e., a
source entity can be matched with at most one
target entity, and vice versa. However, the joint
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decision voting process inevitably yields match-
ing conflicts due to the existence of erroneous
(noisy) mappings. Inspired by Gal et al. (2016),
we further propose a matching diversity-based rec-
tification (MDR) module to adjust the pseudo map-
ping learning, thus mitigating the influence of
noisy mappings dynamically. We denote Mstu (i.e.,
Mstu

i,j = sim(êi, êj ; θstu)) as the similarity matrix
calculated based on the student model and define
a Cross-Entropy (CE) loss between Mstu and Ptea

rectified by matching diversity:

P̃tea
i,j =

Ptea
i,j∑

Ptea
i: +

∑
Ptea
:j − Ptea

i,j

(13)

Lu =
∑|Ês|

i=1
Cross-Entropy(Mstu

i: , P̃tea
i: ) (14)

where P̃tea
denotes the rectified pseudo mapping

matrix. To be specific, the designed rectification
term (Eq. (13)) measures how much a potential
pseudo mapping deviates (in terms of joint match-
ing confidence score) from other competing pseudo
mappings in Ptea

i: and Ptea
:j . The larger the devia-

tion, the greater the penalty for this pseudo map-
ping, and vice versa. Notably, both Mstu and P̃tea

are fed into a softmax to be converted to probability
distributions before CE to implement probabilis-
tic pseudo mapping learning. Besides, an illustra-
tive example of generating the probabilistic pseudo
mapping matrix is provided in Figure 2.

Optimization. Finally, we minimize the follow-
ing combined loss function (final objective) to op-
timize the student model in an end-to-end training
manner:

min
θstu

La + λLu (15)

where λ is a ramp-up weighting coefficient used
to weight between the supervised alignment learn-
ing (i.e., La) and pseudo mappings learning (i.e.,
Lu). In the beginning, the optimization is domi-
nated by La and during the ramp-up period, Lu
will gradually participate in the training to provide
more alignment signals. The overall optimization
process is outlined in Algorithm 1 (Appendix A),
where the student model and the teacher model are
updated alternately, and the final student model is
utilized for EA inference (Eq. (1)) on test data.

5 Experimental Setup

5.1 Data and Evaluation Metrics
We evaluate our method on the 15K benchmark
dataset (V1) in OpenEA (Sun et al., 2020b) since

the entities thereof follow the degree distribution
in real-world KGs. The brief information of ex-
perimental data is shown in Table 3 (Appendix B).
It contains two cross-lingual settings, i.e., EN-FR-
15K (English-to-French) and EN-DE-15K (English-
to-German), and two monolingual settings, i.e.,
D-W-15K (DBPedia-to-Wikidata) and D-Y-15K
(DBPedia-to-YAGO). Following the data splits in
OpenEA, we use the same split setting where 20%,
10%, and 70% pre-aligned mappings are utilized
for training, validation, and testing, respectively.

Entity alignment is a typical ranking problem,
where we obtain a target entity ranking list for each
source entity by sorting the similarity scores in de-
scending order. We use Hits@k (k=1, 5) and Mean
Reciprocal Rank (MRR) as the evaluation metrics
(Sun et al., 2020b; Xin et al., 2022a). Hits@k is to
measure the alignment accuracy, while MRR mea-
sures the average performance of ranking over all
test samples. The higher the Hits@k and MRR, the
better the alignment performance.

5.2 Baseline Methods
We choose the methods from the related work as
baselines and divide them into two classes below:

• Structure-based methods. These methods focus
on capturing useful structural context to enrich
entity representation, such as (1) MTransE (Chen
et al., 2017), (2) GCN-Align (Wang et al., 2018),
(3) AliNet (Sun et al., 2020a), (4) KE-GCN (Yu
et al., 2021) and (5) IMEA (Xin et al., 2022a).

• Semi-supervised methods. These methods aim
to explore alignment signals from unlabeled enti-
ties, such as (1) IPTransE (Zhu et al., 2017), (2)
SEA (Pei et al., 2019), (3) KDCoE (Chen et al.,
2018), (4) BootEA (Sun et al., 2018), (5) MRAEA
(Mao et al., 2020), (6) RANM (Cai et al., 2022)
and (7) GAEA (Xie et al., 2023).

As our method and the above baselines only
contain a single model and mainly rely on struc-
tural information, for a fair comparison, we do not
compare with ensemble-based frameworks (e.g.,
CycTEA (Xin et al., 2022b)) and models infusing
side information from multi-modality (e.g., EVA
(Liu et al., 2021), RoadEA (Sun et al., 2022)). For
the baseline RANM, we remove the name channel
to guarantee a fair comparison.

5.3 Implementation Details
All the experiments are performed in PyTorch on
an NVIDIA GeForce RTX 3090 GPU. Following

891



Models
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR
MTrasnE† .247 .467 .351 .307 .518 .407 .259 .461 .354 .463 .675 .559
GCN-Align† .338 .589 .451 .481 .679 .571 .364 .580 .461 .465 .626 .536
AliNet‡ .364 .597 .467 .604 .759 .673 .440 .628 .522 .559 .690 .617
KE-GCN‡ .408 .670 .524 .658 .822 .730 .519 .727 .608 .560 .750 .644
IMEA‡ .458 .720 .574 .639 .827 .724 .527 .753 .626 .639 .804 .712
IPTransE† .169 .320 .243 .350 .515 .430 .232 .380 .303 .313 .456 .378
SEA† .280 .530 .397 .530 .718 .617 .360 .572 .458 .500 .706 .591
KDCoE† .581 .680 .628 .529 .629 .580 .247 .412 .325 .661 .764 .710
BootEA† .507 .718 .603 .675 .820 .740 .572 .744 .649 .739 .849 .788
MRAEA∗ .537 .779 .642 .681 .844 .754 .574 .772 .661 .725 .838 .769
RANM .567∗ .780∗ .663∗ .686◦ .835◦ .751◦ - - - - - -
GAEA◦ .486 .746 .602 .684 .854 .760 .562 .768 .654 .608 .791 .688
MixTEA .582 .807 .680 .724 .877 .797 .647 .832 .731 .748 .871 .802
std. ±.004 ±.006 ±.004 ±.003 ±.005 ±.003 ±.006 ±.004 ±.005 ±.004 ±.002 ±.003

Table 1: Entity alignment performance of different methods in the cross-lingual and monolingual settings of
OpenEA. The results with † are retrieved from Sun et al. (2020b), and ‡ from Xin et al. (2022a). Results labeled by
∗ are reproduced using the released source codes and labeled by ◦ are reported in the corresponding references. The
boldface indicates the best result of each column and underlined the second-best. std. means standard deviation.

Models
EN-FR-15K EN-DE-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR
w/o rel. .471 .732 .586 .679 .839 .749
w/o Lu .485 .716 .589 .671 .836 .744
w/o BDV .556 .781 .656 .707 .863 .777
w/o MDR .560 .791 .663 .711 .863 .779
w/o B&M .542 .771 .644 .694 .857 .766
MixTEA .582 .807 .680 .724 .877 .797

Models
D-W-15K D-Y-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR
w/o rel. .552 .756 .641 .700 .841 .761
w/o Lu .520 .708 .605 .541 .684 .605
w/o BDV .629 .812 .709 .725 .856 .783
w/o MDR .635 .822 .718 .731 .862 .788
w/o B&M .609 .802 .693 .712 .849 .774
MixTEA .647 .832 .731 .748 .871 .802

Table 2: Ablation test results.

OpenEA (Sun et al., 2020b), we report the average
results of five-fold cross-validation. The embed-
ding dimensions of entities de and relations dr are
set to 256 and 128, respectively, the number of GAT
layer L is 2, the margin ρ is 2.0, and the momen-
tum m is 0.9. In the EA inference phase, we use
Cosine distance as the distance metric and apply
Faiss2 to perform NN search efficiently. The de-
fault alignment direction is from left to right, e.g.,
in D-W-15K, we regard DBpedia as the source KG
and seek to find the counterparts of source entities
in the target KG Wikidata. The details of hyperpa-
rameter settings are shown in Appendix C.

2https://github.com/facebookresearch/faiss

6 Experimental Results

6.1 Performance Comparison

Table 1 reports the experimental results of all the
methods on the OpenEA 15K datasets. Even utiliz-
ing only the structure information, KE-GCN and
IMEA achieve inspiring performance by explor-
ing the rich structural contexts. However, they are
hard to further improve the performance because
suffer from the lack of enough training data. We
also observe that some semi-supervised EA meth-
ods (e.g., IPTransE and SEA) fail to outperform
these structure-based EA methods, reflecting the
fact that both encoder design and semi-supervised
strategy are important components of facilitating
high-accuracy EA. IPTransE obtains unsatisfac-
tory alignment results since it produces many noise
pseudo mappings during the self-training process
but does not design an appropriate mechanism
to eliminate the influence of noise. Besides, the
performance of KDCoE is unstable. According
to Sun et al. (2020b), this is because many enti-
ties lack textual descriptions, thus preventing the
model from finding complementary mappings for
co-training from the textual description embedding
model. BootEA and MRAEA are competitive base-
lines in semi-supervised EA domain. Nevertheless,
BootEA needs a carefully fine-tuned confidence
threshold to filter pseudo mappings, which often
leads to unstability, while MRAEA and RANM still
follows the data augmentation paradigm, which
ignores the uncertainty of pseudo mappings and
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is prone to cause error accumulation. Although
GAEA learns representations of vast unseen en-
tities via contrastive learning, its performance is
unstable. The bottom part of Table 1 shows our
method consistently achieves the best performance
in all tasks with a small standard deviation (std.).
More precisely, our model surpasses state-of-the-
art baselines averagely by 3.1%, 3.3%, and 3.5%
in terms of Hit@1, Hit@5, and MRR, respectively.

6.2 Ablation Study

To verify the effectiveness of our method, we per-
form the ablation study with the following variant
settings: (1) w/o rel. removes the relation mod-
eling. (2) w/o Lu removes probabilistic pseudo
mapping learning. (3) w/o BDV only considers EA
decisions in the default alignment direction to gen-
erate pseudo mappings instead of applying the bi-
directional voting strategy (i.e., Ptea = g(Mtea

s→t)).
(4) w/o MDR removes matching diversity-based
rectification module in pseudo mappings learning.
(5) w/o B&M denotes that the complete model
deletes both BDV and MDR module.

The ablation results are shown in Table 2. We
can observe that the complete model achieves the
best experimental results, which indicates that each
component in our model design contributes to the
performance improvement. Removing relation
modeling from entity representation causes per-
formance drops, which identifies the relation se-
mantics can help in enriching the expressiveness
of entity representations. W/o Lu caused the most
significant performance degradation, especially in
monolingual settings, showing the crucial role of
the pseudo mapping learning in general. The re-
sults of w/o BDV and w/o MDR suggest that the bi-
directional voting strategy and matching diversity-
based rectification module can do benefit to improv-
ing the quality of pseudo mapping learning. W/o
B&M also demonstrates that the combination of
BDV and MDR can further improve the alignment
performance. Although w/o BDV only takes EA
decisions in one direction into account, it still in-
evitably brings matching conflicts since NN search
neglects the inter-dependency between different
EA decisions. Compared to w/o B&M, the MDR
in w/o BDV has a certain positive effect, which
indicates that our proposed MDR can be applied to
other pseudo mapping generation algorithms and
help the models to train better.

(a) EN-DE-15K (b) D-W-15K

Figure 3: Test Hit@1 curve throughout training epochs.

6.3 Auxiliary Experiments

Training visualization. To inspect our method
comprehensively, we also plot the test Hit@1 curve
throughout the training epochs in Figure 3. KG
Encoder (th=0.9) represents the KG Encoder de-
scribed in Sec. 4.1 applying the self-training with
threshold=0.9 to generate pseudo mappings every
20 epochs. We control the same experimental set-
tings to remove the performance perturbations in-
duced by different parameters. From Figure 3, we
observe that our method converges quickly and
achieves the best and most stable alignment perfor-
mance. The performance of the KG Encoder gradu-
ally decreases in the later stages since it gets stuck
in overfitting to the limited training data. Although
self-training brings some performance gains after
data augmentation in the early stages, the perfor-
mance drops dramatically in the later stages. This
is because it involves many noise pseudo mappings
and causes error accumulation as the self-training
continues. In the later stages, self-training has dif-
ficulty in further generating new mappings while
existing erroneous mappings constantly misguide
the model training, thus hurting the performance.

Hyperparameter analysis. We design hyper-
parameter experiments to investigate the perfor-
mance varies with some hyperparameters. Due to
the space limitation, these experimental results and
analyses are listed in Appendix D.

7 Conclusion

In this paper, we propose a novel semi-supervised
EA framework, termed as MixTEA, which guides
the model learning with an end-to-end mixture
teaching of manually labeled mappings and proba-
bilistic pseudo mappings. Meanwhile, we propose
a bi-directional voting (BDV) strategy and a match-
ing diversity-based rectification (MDR) module to
assist the probabilistic pseudo mapping learning.
Experimental results on benchmark datasets show
the effectiveness of our proposed method.
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Limitations

Although we have demonstrated the effectiveness
of MixTEA, there are still some limitations that
should be addressed in the future: (1) Currently,
we only utilize structural contexts which are abun-
dant and always available in KGs to embed enti-
ties. However, when side information (e.g., visual
contexts, literal contexts) is available, MixTEA
needs to be extended into a more comprehensive
EA framework and ensure that it does not become
over-complex in the teacher-student architecture.
Therefore, how to involve this side information
is our future work. (2) Vanilla self-training itera-
tively generates pseudo mappings and adds them
to the training data, where the technicians can per-
form spot checks during model training to monitor
the quality of pseudo mappings. While MixTEA
computes probabilistic pseudo mapping matrix and
performs end-to-end training, thus making it hard
to provide explicit entity mappings for the techni-
cians to check their correctness. Therefore, it is
imperative to design a strategy to combine the self-
training and probabilistic pseudo mapping learning
to enhance the interpretability and operability.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Pro-
ceedings of the 2018 conference on empirical meth-
ods in natural language processing, pages 349–357.

Feng Xie, Xiang Zeng, Bin Zhou, and Yusong Tan.
2023. Improving knowledge graph entity alignment
with graph augmentation. In Advances in Knowl-
edge Discovery and Data Mining: 27th Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, PAKDD 2023, Osaka, Japan, May 25–28, 2023,
Proceedings, Part II, pages 3–14.

Kexuan Xin, Zequn Sun, Wen Hua, Wei Hu, and Xi-
aofang Zhou. 2022a. Informed multi-context entity
alignment. In Proceedings of the 15th ACM Interna-
tional Conference on Web Search and Data Mining,
pages 1197–1205.

Kexuan Xin, Zequn Sun, Wen Hua, Bing Liu, Wei Hu,
Jianfeng Qu, and Xiaofang Zhou. 2022b. Ensemble
semi-supervised entity alignment via cycle-teaching.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 4281–4289.

Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy
Lin, and Xu Sun. 2019. Aligning cross-lingual enti-
ties with multi-aspect information. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4431–4441.

Donghan Yu, Yiming Yang, Ruohong Zhang, and
Yuexin Wu. 2021. Knowledge embedding based
graph convolutional network. In Proceedings of the
Web Conference 2021, pages 1619–1628.

Weixin Zeng, Xiang Zhao, Jiuyang Tang, and Changjun
Fan. 2021. Reinforced active entity alignment. In
Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 2477–2486.

Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen,
Lingbing Guo, and Yuzhong Qu. 2019. Multi-view
knowledge graph embedding for entity alignment. In
Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence.

Zhedong Zheng and Yi Yang. 2021. Rectifying pseudo
label learning via uncertainty estimation for domain
adaptive semantic segmentation. International Jour-
nal of Computer Vision, 129(4):1106–1120.

Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2017. Iterative entity alignment via joint knowl-
edge embeddings. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 4258–4264.

895



A Pseudocode of Training Procedure

Algorithm 1 Training Procedure
Input: Knowledge graphs Gs and Gt; pre-aligned entity map-

pings S; unlabeled entity set Ês and Êt; momentum m;
margin ρ.

Output: the student encoder parameters θstu.
1: Initialize entity embeddings and relation embeddings;
2: Initialize teacher model θtea and student model θstu;
3: for each epoch do
4: Encode entities using f(; θstu) and f(; θtea);
5: Calculate La by supervised learning in Eq. (8);
6: Generate pseudo mapping matrix via BDV strategy;
7: Rectify pseudo mapping matrix via MDR module;
8: Calculate Lu by pseudo mapping learning in Eq. (14);

9: θstu ← BackProp(La + λLc); �Adam Update
10: θtea ← mθtea + (1−m)θstu;
11: end for
12: return the student encoder parameters θstu

B Dataset Statistics

Datasets #Ent. #Rel. #Tri.

EN-FR-15K
English 15000 267 47334
French 15000 210 40864

EN-DE-15K
English 15000 215 47676
German 15000 131 50419

D-W-15K
DBPedia 15000 248 38265
Wikidata 15000 169 42746

D-Y-15K
DBPedia 15000 165 30292
YAGO 15000 28 26638

Table 3: Dataset statistics: #Ent., #Rel., and #Tri. means
the number of entities, relations, and triples in corre-
sponding KG, respectively.

C Hyperparameter Details

We tune the hyperparameters for our proposed Mix-
TEA. The setting values and search ranges of hy-
perparameters are described in Table 4.

Hyperparameters Value/Search range
The number of GAT layer [1, 2, 3, 4]
Momentum parameter m [0.9, 0.99, 0.999]
Margin ρ [1, 2, 3]
Negative sample size [10, 20, 30]
Embedding dimension [128, 256]
Embedding initialization Xavier
Learning rate 0.005

Table 4: Hyperparameter values and search ranges.

D Hyperparameter Analysis

The impact of different GAT layers. We vary
the number of GAT layer L from 1 to 4 and the

(a) the number of GAT layers (b) momentum parameter

Figure 4: Sensitivity analysis of our proposed method.

quantitative results are illustrated in Figure 4 (a).
L=1 results in poor alignment performance due to
the limited structural modeling power. The best
performance is achieved when L=2, except for the
D-Y-15K task. Increasing L will not bring further
performance improvement, we infer that there is
overfitting or oversmoothing during neighborhood
aggregation. In D-Y-15K, the optimal performance
is obtained when L=4. The possible reason is that
in D-Y-15K, the two KGs have relatively sparse
structure information (as shown in Table 3 in Ap-
pendix B), therefore they need to capture more
alignment evidence from distant neighbors.

The impact of momentum parameter. We in-
vestigate the momentum parameter m in [0, 0.9,
0.99] and the results in EN-DE-15K and D-W-15K
tasks are presented in Figure 4 (b). We found that
our method maintains good performance under dif-
ferent momentum settings, demonstrating that our
method is insensitive to m. In addition, a proper
m such as 0.9 brings certain performance improve-
ments, which indicates that the EMA update man-
ner can facilitate the teacher model to yielding sta-
ble and robust pseudo mappings.
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