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Abstract

Large language models (LLMs) show amaz-
ing proficiency and fluency in the use of lan-
guage. Does this mean that they have also ac-
quired insightful linguistic knowledge about
the language, to an extent that they can serve
as an “expert linguistic annotator”’? In this pa-
per, we examine the successes and limitations
of the GPT-3, ChatGPT, and GPT-4 models in
analysis of sentence meaning structure, focus-
ing on the Abstract Meaning Representation
(AMR; Banarescu et al. 2013) parsing formal-
ism, which provides rich graphical representa-
tions of sentence meaning structure while ab-
stracting away from surface forms. We com-
pare models’ analysis of this semantic struc-
ture across two settings: 1) direct production
of AMR parses based on zero- and few-shot
prompts, and 2) indirect partial reconstruction
of AMR via metalinguistic natural language
queries (e.g., “Identify the primary event of this
sentence, and the predicate corresponding to
that event.”). Across these settings, we find that
models can reliably reproduce the basic format
of AMR, and can often capture core event, argu-
ment, and modifier structure—however, model
outputs are prone to frequent and major er-
rors, and holistic analysis of parse acceptability
shows that even with few-shot demonstrations,
models have virtually 0% success in produc-
ing fully accurate parses. Eliciting natural lan-
guage responses produces similar patterns of
errors. Overall, our findings indicate that these
models out-of-the-box can capture aspects of
semantic structure, but there remain key limi-
tations in their ability to support fully accurate
semantic analyses or parses.

1 Introduction

LLMs in recent years have revolutionized artifi-
cial intelligence, showing advanced proficiency and
fluency in the use of language, and appearing to
possess high levels of expertise and analytical capa-
bility across a wide variety of specialized domains.
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Figure 1: We compare LLMs’ ability to generate struc-
tured semantic information across two settings: zero-
and few-shot generation of AMR parses, and metalin-
guistic natural language queries.

Observation of these capabilities has raised impor-
tant questions about the extent, robustness, and
limitations of the knowledge and analysis abilities
of these models in specialized domains.

In this paper we zero in on the domain of lin-
guistic analysis: these models have shown great
proficiency with language, but here we ask not
just how well the models use language, but how
much they know about language. Specifically, we
explore to what extent models are able to analyze
the meaning of a sentence and reproduce the struc-
ture of that meaning. Most directly this allows us
to conduct a status check on the level of expertise
that LLMs have acquired in linguistic analysis, and
to assess to what extent linguistic structural annota-
tion can be done reliably by LLMs out of the box.
At a higher level, this investigation has potential
implications for the robustness of models’ abstract
representation of meaning in language inputs. We
intend for this to serve as a brief status report with
respect to model capabilities in this domain.
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Figure 2: We use a two-tiered semantic evaluation framework to gain fine-grained insight into the strengths and
limitations of generated parses. In the example, GPT-4 parse generations are compared against the gold parse.

For examining models’ capability in analysing
linguistic meaning structure, we focus on a case
study of the Abstract Meaning Representation for-
malism (AMR) (Banarescu et al., 2013). AMR is
designed to capture the abstract structure of sen-
tence meaning, disentangling this structure from
surface forms of language. It formalizes semantic
structure of a sentence into directed graphs that cap-
ture “who did what to whom” as well as detailed
abstract information on how aspects of the sentence
meaning modify and relate to one another.

In our explorations, we examine models’ ability
to produce the structural meaning information con-
tained in AMR parses across three settings: zero-
shot generation of AMR parses, few-shot genera-
tion of AMR parses, and zero-shot generation of
natural language descriptions. We test GPT-3, Chat-
GPT, and GPT-4. Our results show that all models
are able to reproduce the basic AMR format and
structure, and they can in principle produce correct
outputs at any level of AMR—with greatest reliabil-
ity on core event-argument triplets corresponding
to subject-verb-object structures. However, mod-
els are prone to frequent and major errors in cap-
turing the semantic structure (see Fig. 1, 2), and
when we assess the parses for overall acceptabil-
ity, we see virtually 0% success rate across models.
Comparisons between patterns in parse and natural
language output settings suggest that these limita-
tions are not simply artifacts of the output type, and
may reflect more fundamental limitations in mod-
els’ capacity for semantic analysis. Overall, our
findings indicate that although models can execute
impressively formatted and partially correct seman-
tic parse outputs, the prevalence of errors outside of
basic components is such that these models cannot
be used reliably out-of-the-box for generating this
type of structured abstract meaning information,
and more involved techniques are needed to adapt

these models effectively for such purposes.

2 Related Work

A large body of work has examined various aspects
of syntactic and semantic capabilities in language
models (c.f. Mahowald et al., 2023), indicating that
LLMs show strong knowledge of syntactic struc-
ture, while semantic capabilities are more mixed.
Nonetheless, LLMs have also been used for few-
shot semantic parsing with some success. In par-
ticular, Shin et al. (2021) and Shin and Van Durme
(2022) find that few-shot learning in GPT-3 and
Codex produces semantic parses that outperform
baselines with comparable training sizes. These
semantic parsing datasets, which focus on produc-
ing database queries in particular domains, are less
complex and domain-general than AMR, but the
results suggest that LL.Ms should contain aspects
of the knowledge needed to analyze semantic struc-
ture. As for AMR, pre-trained transformer models
have helped to advance the state of the art in AMR
parsing, with recent AMR parsers building on the
foundation of models like BART (Bevilacqua et al.,
2021; Bai et al., 2022; Lee et al., 2022; Zhou et al.,
2021). This indicates that pre-trained models may
also pick up on representational capabilities rele-
vant for supporting AMR.

Though these prior works are suggestive that
LLMs and pre-trained transformers capture certain
aspects of linguistic structure, it is not clear from
existing results how detailed or reliable LLMs’
ability to analyze meaning structure may be—
formalisms used for prior few-shot semantic pars-
ing are simpler and more domain-specific than
AMR, and the supervised fine-tuning of BART for
AMR parsing obscures the details of what orig-
inal knowledge may have been contained in the
pre-trained model. To achieve a clearer picture of
LLMs’ ability to analyze rich semantic structure,
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Level 1 criteria

Proportion of parse outputs that...
Basic Form meet basic AMR graph format (concept nodes,

edge relationships, hierarchical bracketing)

Top Node  correctly identify the top parse node

Main Rel  select the correct main event as the highest event
relation, disregarding non-eventive relations like
and (Fig. 1) or contrast-01 (Fig. 2)

Overall constitute a valid AMR representation for the

Accept sentence, regardless of match to the gold annota-

tion (allows us to credit models if they parse the
sentence reasonably but differ from gold)

Level 2 criteria

Proportion of parse outputs in which, for each correctly
identified top-level event, ...

Event all arguments are present and identified as argu-

Args ments of that event

Event all event modifiers are present and identified as

Mods modifiers of that event

Arg Mods  all modifiers for arguments of that event are
present and identified as modifiers of the args

Extra Mods there are any modifiers added erroneously to

events or arguments anywhere in the parse

Table 1: Semantic criteria used for analysis

we directly examine pre-trained models’ ability to
produce AMR information, and we do so across
a number of potentially productive zero- and few-
shot settings for maximum insight about model ca-
pabilities. We also prioritize fine-grained, manual
analysis of models’ accuracies at multiple levels
of AMR information, in order to provide more de-
tailed insights into model capabilities.

3 Evaluation

3.1 Evaluation Framework

Standard metrics for evaluating AMR include
Smatch and SemBLEU, which provide holistic
analysis of node matches between generated and
gold AMR parses. While these metrics are well-
suited for large-scale quantitative evaluation, they
are not adequate for detailed understanding of mod-
els’ strengths and limitations in capturing AMR
information. For more detailed insight, we lay out
a novel fine-grained evaluation framework. We de-
fine two levels: Level 1 criteria to capture basic
format, highest-level nodes, and overall semantic
accuracy; and Level 2 criteria for assessing accu-
racy with arguments and modifiers. Table 1 out-
lines the analysis criteria (further details in §C).

3.2 Data

To ensure maximum flexibility and expert-level
accuracy in assessment of the above criteria, we
carry out our evaluation manually. In choosing to
use fine-grained manual evaluation, we necessarily
accept a tradeoff with respect to scale and general-
ization guarantees, as expert manual evaluation is
time-consuming. We are not the first to accept this
tradeoff: due to cost and increasing complexity of
LLM outputs, there is increasing precedent for ana-
lyzing model capabilities even on samples of single
outputs (e.g., Bubeck et al., 2023). Here we seek a
balance between this kind of single-instance analy-
sis and larger-scale coarse-grained evaluation, via
fine-grained manual analysis on a small exploratory
test set sampled across several domains.

To this end, we compile a sample of 30 AMR
gold-parsed sentences, randomly selecting 10 sen-
tences of varying character lengths from the gold
AMR annotated AMR 3.0 (AMRS3; Knight et al.
2021) and Little Prince' (LPP) datasets, and also
sampling and annotating 10 sentences from web-
sites published in 2023 (2023), to test the possibil-
ity of memorization of public AMR annotations
available in pre-training. This is a large enough
sample to gain some insight into trends at our dif-
ferent levels of analysis, and future studies at larger
scale can provide further insight into patterns that
emerge in larger samples. See §A for more details.

4 Zero-shot AMR parsing

Given findings of superior zero-shot performance
in a wide variety of domains (Bubeck et al., 2023),
we begin by testing models’ zero-shot capability for
generating AMR graphs directly. Instructions and
examples for AMR annotation are widely available
online, so it is reasonable to imagine that models
may learn to do this task zero-shot as well.

We input to the model the target sentence and
the simple instruction “Provide an AMR (Abstract
Meaning Representation) parse for this sentence.”
For ChatGPT and GPT-4, we include the system
message ‘““You are an expert linguistic annotator.”
Our goal here is to use clear and fair prompts that
allow us to assess model capabilities and limita-
tions. We do not do elaborate prompt engineering,
but take the stance that if a prompt is sufficiently
clear, then a failure to perform the task is simply a
failure—reliance on particular prompt phrasing or
structure is an indication of model brittleness.

1https: //amr.isi.edu/download.html
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Table 2: Results of Level 1 analysis of zero- and few-
shot parses on the 30 selected sentences

Since the zero-shot parses fail often even at the
basic levels, we limit to Level 1 analysis for this
setting. Results are in the top segment of Table 2.
The outputs indicate clearly that these LLMs have
been exposed to AMR parse annotations in their
pre-training, and have managed to learn surface
characteristics of AMR structure: we see that for
all models a majority of outputs (>70%) show basic
AMR format despite the absence of any demonstra-
tion in the prompt. Comparison between publicly
annotated sentences and newly annotated sentences
from 2023 (§B) also shows no noteworthy differ-
ence, indicating that output quality is not reliant on
presence of test AMR annotations in pre-training.

However, beyond the basic form, all models
show frequent and substantial errors in the pars-
ing. The parses identify the correct top node only
20-40% of the time, reflecting routine failures to in-
corporate clausal and discourse relations that AMR
often captures in the top node—and even with the
more relaxed criterion of identifying the main event
relation, LLMs succeed in only about half of the
parses (40%). When we consider the viability of
the full structure as an appropriate meaning rep-
resentation of the sentence, none of the models
produce any fully acceptable AMR parse. These
results suggest that out-of-the-box, zero-shot LLM
capabilities are limited primarily to mimicking sur-
face format of AMR representations, with under-
standing of the linguistic functions and phenomena
being beyond their zero-shot capabilities.

5 Parsing with few-shot demonstrations

Given that zero-shot parsing shows non-trivial lim-
itations across all models, we next test how parses
improve with few-shot demonstrations of AMR
parsing. We use the same instructions (and, in
ChatGPT and GPT-4, system message), but we now
include the specification "I will first show some ex-
amples." followed by five example sentences with
corresponding AMR parses, selected based on sim-

Event Event Arg Extra

Model "4 10 Mods Mods | Mods (1)
GPT3 04 04 01 | 04
?l\ﬁR ChatGPT 04 05 02 | 05
(S-shot)  Gpro4 05 05 04 0.4
~ GPT3 05 03 02 | 04
I.MeFat. ChatGPT 06 04 02 | 03
IguIstic  Gpr.4 0.6 04 04 0.3

Table 3: Level 2 analysis of few-shot and NL outputs

ilarity to the test sentence.”

For few-shot parses, we apply both Level 1 (Ta-
ble 2) and Level 2 (Table 3) evaluations. We see
that all parses now conform to AMR format, and
the main event is now correct a majority of the time.
Identification of the top node has also improved,
with correct outputs in approximately half of cases.
However, the percentage of overall parse accept-
ability has made virtually no improvement, despite
the explicit few-shot demonstrations.

For Level 2 analysis, we see that models have
limited reliability in identifying a given event’s
arguments and modifiers (40-50%) or argument
modifiers (10-40%). Additionally, just under half
of parses include at least one spuriously-identified
argument or modifier (“Extra Mods”). Qualita-
tive analysis indicates that models make diverse
errors that can occur at any level of AMR struc-
ture, though they show the most reliable accuracy
in representing event-argument triplets correspond-
ing to subject-verb-object structures. See §E for
additional examples and discussion on these points.

6 Metalinguistic NL responses

By far the most thoroughly trained format for
LLMs is that of natural language, so we next ex-
plore models’ ability to use natural language to
identify and describe the abstract meaning struc-
ture relevant for AMR, via prompting for meta-
linguistic information about the target sentence. To
do this, we formulate a natural language prompt
instructing the model to identify and break down
aspects of the sentence meaning structure corre-
sponding to components of AMR, similar to the
process that an AMR annotator would use. Our
prompt for this setting is shown in §D.

In this setting, the prompt asks for a breakdown
of events, arguments, and event/argument modi-
fiers, but does not elicit enough information to en-
able complete parses. For this reason, we focus

2Sentence similarity is computed via Universal Sentence
Encoder embeddings (Cer et al., 2018).
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on our Level 2 criteria for analyzing these outputs.
Results are shown in the bottom of Table 3. We
see that the overall patterns of accuracy are strik-
ingly similar to those in the few-shot case (with
marginal differences that are too small to read into
with these small samples).? This suggests that lim-
itations in the zero- and few-shot parses are not
due simply to difficulty in generating parse for-
mat, but may reflect more fundamental limitations
in models’ current capacity to analyze semantic
structure in language. This conclusion is further
supported by the observation that the instructions
contained in the metalinguistic prompt do not ap-
pear at any level to be fundamentally too difficult
for models to interpret: though models make many
errors, for every component of the prompt they
show in at least some cases the ability to produce
correct outputs for that component. See §E for ex-
ample outputs in the NL setting and discussion of
instruction-following successes and error patterns.

Comparing parse vs NL output Side-by-side
inspection of parse and NL outputs supports the
conclusion that, although errors are not identical,
the two output formats may reflect real patterns in
models’ analytical capabilities. An illustration can
be seen in Figure 1, which shows GPT-4 few-shot
parse and zero-shot NL outputs for the sentence
“He woke to an angry house and darkness in the win-
dows”. This is a simple sentence, but the argument
structure of the verb woke lacks the simple sub-
ject/object structure that models succeed at most
often—and perhaps for this reason in both output
formats the model misinterprets the sentence to
include two separate events (missing the fact that
the angry house and darkness in the windows is a
single argument of the waking event) and creating
nonsensical argument and modifier structures as
a result of the mistaken analysis. Additional side-
by-side examples are included in Figures 5, 6, and
7 in the Appendix, further illustrating similarities
between parse and NL outputs, and supporting the
possibility that the observed errors in these outputs
reflect real underlying analytical limitations rather
than artifacts of instructions or output format.

7 Smatch comparison

To anchor our results relative to an existing metric,
we obtain Smatch scores for our five-shot GPT-4
3Though not included in Table 3, we note that the NL

outputs also show comparable accuracy to the few-shot parses
in the Main Rel category for all models.

AMR3 2023 LPP

AMRBart 0.78 0.79 0.75
GPT-4 (No fixes) 042 026 042
+ Auto fixes 0.48 040 047

+ Manual fixes 0.51 047 0.51

Table 4: AMRBart and GPT-4 few-shot smatch-score

parses and compare against those for the supervised
AMRBART parser (Bai et al., 2022) on the same
test sentences. Since GPT-4’s generated parses
are often flawed to the point of Smatch not being
able to run, we report three methods for obtaining
these scores: no fixes, in which all failing parses
are simply replaced with single-node placeholder
parses; auto fixes, in which some automated format
fixes are applied (see §F for details) and remaining
errors are replaced with placeholders; and manual
fixes, in which we supplement automatic fixes with
manual fixes to correct remaining format errors.
The Smatch results (Table 4) clearly show that GPT-
4 output quality is far below that of the supervised
AMR parser, supporting our general observation
that the quality of these LLM parses is limited.

8 Conclusion

Our analyses show that LLMs have acquired suf-
ficient knowledge of AMR parsing and semantic
structure for reliable generation of basic AMR for-
mat and partially correct representations of sen-
tence meaning. However, we see abundant, diverse
errors in model outputs, virtually no fully accurate
parses, and error patterns suggesting real underly-
ing limitations in models’ capacity to analyze lan-
guage meaning. Our findings indicate that models
are not currently sufficient out-of-the-box to yield
reliable and accurate analyses of abstract meaning
structure, and overall that this is a domain in which
models show only mixed levels of expertise.

We are confident that additional fiddling and
clever manipulations can further improve the out-
puts of these models, at least on certain dimensions.
However, we present these results as a current sta-
tus report and reality check to counterbalance fre-
quent claims focused on widespread success and
intelligence of these models out-of-the-box. We
look forward to continuing work to better under-
stand the fundamental strengths and limitations of
these models in this domain, and to improve the
reliability of semantic analysis capabilities achiev-
able through collaboration with these models.
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Limitations

In this paper we intend to provide an overview
and status check on the out-of-the-box capabili-
ties of current LLMs for the rich semantic analysis
captured by AMR parses. To enable fine-grained
manual evaluation not possible through standard
metrics, we have used a small exploratory test set,
and consequently our results do not enable statisti-
cal comparisons or claims about how patterns may
play out at larger scale. We look forward to future
work applying comparable fine-grained analysis
on larger samples, to verify what additional pat-
terns of success and failure may emerge, and what
broader generalizations can be made about model
capabilities in this domain.

A potentially valuable extension that we do not
include here would be a detailed comparison with
models’ success in other (likely simpler) semantic
or syntactic parsing formalisms. Given the richness
of AMR and our focus on abstract semantic struc-
ture per se, we do not include such an analysis in
the current work.
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A Dataset Details

A.1 More on Abstract Meaning
Representation

AMR formalizes semantic structure of a sentence
into directed graphs that capture the “who did what
to whom” of the sentence (Banarescu et al., 2013).
In AMR, events and entities are represented as con-
cept nodes, and semantic relationships or semantic
roles as edges. AMR abstracts away from syntactic
and morphological surface variations in favor of
conceptual representation of predicate-argument
structure of a sentence in part by adopting English
PropBank (Kingsbury and Palmer, 2003) for event
representation. In this way, AMR allows meaning
generalization across various surface expressions
(e.g., “The girl adjusted the machine” and “The girl
made adjustments to the machine" would have the
same AMR graph). AMR supports other linguistic
analysis such as coreference, named entities, and
modality (among others).

A.2 Data Sources

AMR 3.0. We use the AMR 3.0 dataset (AMR3;
LDC2020T02), which includes 59K AMR graphs.
The graphs are manually annotated from English
natural language sentences from various genres of
text including newswire, discussion forums, fiction
and web text. We particularly focus on two En-
glish subsets: BOLT discussion forum data and
LORELEI data. Our few-shot in-context examples
and test instances are pulled from the AMR 3.0
training and dev sets, respectively.

The Little Prince. We use publicly available
AMR annotations of the novel The Little Prince by
Antoine de Saint-Exupéry (translation of original
French, Le Petit Prince; LPP). The corpus contains
1.5K sentences with their corresponding, manually-
created AMR graphs. Our few-shot in-context ex-
amples and test instances are non-overlapping sam-
ples drawn from this dataset.

2023 Sentences. To experiment with sentences
verifiably not present in pre-training, we randomly
sample sentences from websites published in 2023.
To obtain the AMR gold parses (2023), we run the
Spring Parser (Bevilacqua et al., 2021) on the sen-
tences, and then the output is manually corrected
by one of the authors with expertise in AMR anno-
tation. These 2023 sentences are used in the test
set, and few-shot examples for the 2023 sentences
are drawn from the AMR 3.0 training set.

A.3 Test Data Selection

AMR3 data was sourced from the AMR 3.0 BOLT
and LORELEI instances with publicly available
unified annotation from PropBank (Bonial et al.,
2014).* The Little Prince has also been partially an-
notated with Universal Dependencies (Nivre et al.,
2020) parses (Schneider et al., 2018), and for this
work we sourced from those The Little Prince in-
stances that had both AMR and Universal Depen-
dencies annotation. In both cases, we selected sen-
tences of 40-300 character length to eliminate in-
complete phrases as well as overly long sentences,
producing 413 AMR 3.0 and 67 The Little Prince
instances. We then narrowed the sets to 10 random
instances from each of the two data subsets.? For
2023 Sentences, we manually selected sentences
from online news sources and blogs with article
date stamps of January 2023 or later. We selected
30 sentences, then narrowed the set to 10 instances
of varying character lengths.

B Concerns of Memorization

We took into consideration the possibility that the
parses of AMR3 and LLP could be present in the
pre-training data of the tested LLMs. This served
as the motivation for including the 2023 sentences.

Table 5 shows Level 1 zero-shot parse results
broken down by dataset. These results suggest that
the quality of the AMR generations is not reliant on
direct memorization of the annotated parses from
pre-training—in fact, we find the results for 2023
parses to be nearly identical to the LPP results. A
closer qualitative look at the parses did not surface
any noteworthy differences in parses.

4https ://github.com/propbank/propbank-release
>We ensured inclusion of diverse lengths via manual veri-
fication.
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Basic Main Top

Model Form Rel Node Accept
GPT-3 08 05 03 0
AMR3 ChatGPT 0.7 04 03 0
GPT-4 1 06 05 0
GPT-3 06 03 02 0
LPP  ChatGPT 0.8 0.2 0.1 0
GPT-4 1 03 04 0
GPT-3 06 03 03 0
2023 ChatGPT 09 02 03 0
GPT-4 1 03 04 0

Table 5: Comparison of the Level 1 analyisis on zero-
shot data across the three datasets

C Analysis Criteria Details

Here we provide further elaboration and illustra-
tion with respect to the analysis criteria outlined in
Table 1.

Assessment of Basic Form For the Basic Form
criterion we simply ask whether or not the pro-
duced output looks (generally) consistent with
AMR’s standard structure. More specifically, a
parse should critically retain three basic AMR for-
mat components: concept nodes, edge relation-
ships (whether ARG# or modifier), and hierarchical
bracketing notation. We do not require the parses
to contain variables (e.g. b in (b / boy)) or to use
rounded parentheses (e.g. ()), but we find that every
generation with the three critical components also
includes variables and parentheses. An example of
a parse that receives a zero for the Basic Form is
given in Figure 3. Figure 4 shows a parse that is not
fully up to AMR standards (e.g. default-01~e.0 is
not a standard format for concept representation)
but that we credit for retaining the Basic Form.

Sentence: “Now, with the various "Occupy” movements, it is (or
ought to be) obvious that a great many people are less than
enchanted with capitalism and its expression in the idustrial (sic)
democracies, as well as in the countries into which capitalists from
the industrial democracies go to invest.”

[ [now], [with], [ [the], [various], ["Occupy"], [movements] ],
[it], [be], [ Cor] [ought], [to], [be) ],
[ [obvious], [ [that], [ [al, [great], [many], [people] ],
[ [ [arel, [less], [than], [enchanted] ],
[with], [capitalism], [and],
[ [its], [expression],
[ [in], [thel, [industrial], [democracies] ],
[ [as], [welll, [as],
[ [in], [the]l, [countries],
[ [into], [which], [capitalists], [from],
[the], [industrial], [democracies],

[go], [to], [invest] 11111111

Figure 3: ChatGPT output receiving Basic Form score
of 0

Sentence: “If everyone has to spend all their time trying to
circumvent the rules, understand the rules or fighting against
those not following the rules, that is where trouble really begins.”

(d / default-01~e.0
:argl (b / begin-01~e.35
:argl (t / trouble~e.36)
:time (r / really~e.37)))
(c / cause-0l~e.l
:argl (e / everyone~e.2)
:arg2 (a / and~e.19
:opl (s / spend-Ql~e.5
targl e
targ2 (t2 / time~e.6)
rarg3 (c2 / circumvent-0l~e.9
:argl (r2 / rule-01~e.10)))
:op2 (u / understand-0l~e.14
[...truncated]

Figure 4: ChatGPT output that is not fully up to AMR
standards but passes our Basic Form criteria

Overall acceptability For our overall acceptabil-
ity measure, an AMR expert among the authors
assessed whether each parse could be a valid rep-
resentation of the sentence meaning, based on the
AMR annotation guidelines, regardless of match
to the gold annotation. This was intended to give
fairer credit to model outputs—none of the mod-
els’ generated parses managed to perfectly match
the gold annotation, but it was possible that some
parses may still accurately represent the meaning
of the sentence, with some annotation differences
from the gold parse. So this measure used expert
assessment to judge parse validity in this broader
sense. These assessments also forgave minor struc-
tural/formatting errors, as long as a correct seman-
tics could be interpreted.

Main Rel vs Top Node At times the main event
relation in a parse will also be the top node, but in
AMR non-eventive relations (e.g., discourse mark-
ers, conjunctions, modality) can instead take the
top node position (e.g. warrant in Figure 2 is below
the top node contrast-01 representing and). Main
Rel disregards whether models can recognize these
non-eventive relations, and focuses instead on mod-
els’ ability simply to recognize the main event of
the sentence.

Relaxation on exact match For all of our match-
based criteria, we evaluate based on relaxed
matches rather than exact match. For concept
nodes, we ignore PropBank sense labels and inflec-
tional variations, and allow matching based on syn-
onyms or otherwise differently-realized versions of
the target concept. For example, serve-01 is con-
sidered a match to serve, served, or serve-02—and
although the AMR gold parse for “She served as a
president for ...") uses have-organization-role-91
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for “serve” (the standard AMR method for annotat-
ing organizational role, occupation, or profession)
we also give credit to generated nodes labeled as
any variant of serve.

For edge match, the only critical distinction is
that between arguments (e.g., ARGO, ARG1)® and
modifiers (e.g., :time, :purpose). Models receive
credit for identifying an argument as ARG even if
the number is mismatched, and similarly receive
credit for identifying a modifier as a modifier with-
out regard to the semantic specificity.

We also relax exact match on AMR’s named
entity types (e.g., node concept organization in
(o / organization :name (n / name :op1 "Morgan"
:op2 "Stanley"))). So long as the node concept is a
reasonable match (e.g., company vs. organization),
the models receive credit.

This use of relaxed match increases the need for
expert manual annotation, but allows us to credit
general semantic competence beyond match to spe-
cific AMR conventions.

D Metalinguistic prompt

We use a single instruction prompt for the meta-
linguistic natural language output setting reported
in §6. The prompt used is shown below:

(System: You are an expert linguistic annotator.)
Sentence: <replaced with input sentence>

Identify the primary event of this sentence, and
the predicate corresponding to that event. If there
are multiple equally primary events connected by
a conjunction like “and”, identify the conjunction,
and then identify each of the primary events and
their corresponding predicates.

For each primary event, identify the arguments of
the event predicate, and identify the modifiers of
those arguments.

Then for each primary event, identify any addi-
tional modifiers of that event.

E Example outputs and discussion

In this section we illustrate with additional exam-
ples some of the successes, failures, and overall
patterns in the LLM outputs. Figures 5-7 show
representative example outputs from GPT-4 in both
parse generation (few-shot) and NL response set-
tings (and an additional NL output example is in
Figure 8). We highlight a number of points.

Instruction-following success For the NL out-
put setting in particular, the prompt instructions
are somewhat complex, so it is worth considering

SWe simply treat ARG#-of s as ARGs.

whether the instructions are too difficult for models
to map to correct outputs. However, examination of
successes across model generations indicates that
no part of the NL setting instructions is fundamen-
tally too difficult for the models to interpret and
respond to. In the NL response setting shown in
Figure 5b, the model is able to identify the primary
event and arguments, and sort through and label
modifiers for both the arguments and the event.
Similar competence can be seen in the parse gener-
ation setting (Figure 5a): GPT-4 correctly identifies
the main event selection and major arguments and
modifiers. For conjunctions between events, we
see in Figure 6 that in both NL and parse settings
the model is able to handle the central conjunction
“and”, and break down the two coordinated compo-
nents accordingly—even breaking down the second
coordinate into its own two component sub-events.
On this basis we can have reasonable confidence
that the prompts are sufficiently clear and inter-
pretable for the models.

Errors are abundant and diverse Though mod-
els show the capacity in principle to handle any
component of AMR information, examination of
generated outputs shows that errors are abundant,
diverse, and observable at every level of AMR
structure. In addition to the illustration of out-
put errors in Figure 1 and Figure 2, we see that
even in the largely successful example in Figure 6,
the model has misidentified the primary event in
the first coordinate—the main point should be that
there was no issue, not that the speaker boarded
the train. Further, in the NL response, it has mis-
takenly identified “next to us” as a modifier of the
luggage, rather than an argument of the put event.

In Figure 7 we see that the model is unable to
identify the main event in either the parse gener-
ation or the NL setting. Though the main event
relation is most appropriately identified as “imag-
ine”, in the generated parse the event “amaze” rises
as the top event, and in the NL response output,
“awaken” is identified as the main event. Even if
we ignore the non-eventive information captured
by cause (arising from the discourse marker “thus”)
and possible-01 (signalled by the modal “can”) con-
cepts, the model fails to show sensitivity to the fact
that “imagine my amazement” conveys the central
information through which the content in the rest
of the sentence is introduced.

Finally, Figure 8 shows another more extreme
failure in the NL response setting. Here the model
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has mistakenly zeroed in on “will look wonderful”
as the primary event, rather than “it is a standout
piece”, and as a result it has defined arguments and
modifiers in a variety of nonsensical ways.

Most reliable with core event triplets Though
errors are diverse and fairly idiosyncratic, one trend
that emerges is that models show the most reli-
able performance with core event-argument triplets
for individual verbs, most often corresponding to
subject-verb-object triplets. For example, in Fig-
ure 5, in both formats the model clearly identifies
the event “churn” and its arguments “the K-pop
music sphere” and “newest catchy songs”. In Fig-
ure 6, in both formats the model correctly structures
the event “board” with its arguments “we” and
“train”, and the event “put” with its arguments “we”
and “the luggage”. In Figure 7, in both formats
the model correctly captures the event “awaken”
with its arguments “I” and “an odd little voice”.
This suggests that the model has a solid grasp on
core verb argument structure—or at least that corre-
sponding to subject-verb-object triplets—and can
reliably map this to AMR form. However, beyond
this core event structure, model performance be-
comes substantially less reliable.

Parallel patterns between parse and NL. We ob-
serve in Section 6 that there are similarities in the
basic patterns of success and failure across LLM
parse and NL outputs, and we highlight Figure 1 as
an example. We see these parallels in Figures 5-7
as well: for instance, as we have just discussed,
the consistent success on verb-argument triplets de-
scribed above is seen in both parse and NL outputs
for each example. More broadly, in Figure 5 we
see that in both formats the model is successful
on nearly the full AMR structure: it identifies the
main verb (“churn”) and its arguments (“sphere”
and “song”) and modifiers (‘“vie for”), and it cap-
tures semantic modifiers for the arguments in a
coherent manner (e.g., "K-pop” is recognized as
modifier of “music sphere”). In Figure 6, in both
settings the model is successful in identifying “and”
as a top-level conjunction joining two events, but
makes the error of choosing “boarding a train” as
the main event in the first coordinate of the struc-
ture. Similarly, in Figure 7 both output settings
capture core event structure of “awaken”, but miss
out on the central event “imagine”.

There are certainly divergences in output errors
between different output formats for a given sen-

tence. However, these divergences often stem from
the fact that the tasks in these two settings do differ.
For example, errors like the missing have-degree-
91 in Figure Sa—an AMR device meant to struc-
ture information extent—is not possible in the NL
setting, as this level of structured detail is not re-
quested in the prompt. Similarly, “sit down” in the
parse in Figure 6a is split into two concept nodes,
but this is a level of semantic structuring that cannot
be gauged in the NL responses.

These parallels suggest that patterns of successes
and errors in our observed outputs are not simple
idiosyncrasies of instruction or output format, but
may indicate deeper patterns of strength and limita-
tion in the models’ capacity for semantic analysis.

F Automated format fixes

Our automated format fixes, used for two out of
three of our settings for Smatch calculation on GPT-
4 few-shot parses, consist of the three simple rule-
based fixes detailed below:

1. Keep only first full AMR, and ignore any sub-
sequently generated content (e.g., if model
generates multiple separate AMR structures
for a single sentence).

2. For retained AMR parse, delete any un-
matched right parentheses.

3. Identify duplicates among concept variable
names (e.g., “s” in (s / sphere)), and replace

with non-duplicates.
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""The K-pop music sphere constantly churns out the newest catchy
K-pop songs to vie for listeners’ attention."

(z1 / churn-01
churn-01 :ARGO (z2 / sphere
- :domain (z3 / music
:mod (z4 / K-pop)))
:ARG1 (z5 / song
:mod z4
:ARG1-of (z6 / have-degree-91
:ARG2 (z7 / new-@1 :ARG1l z5)

Gold Parse

attend-02 :ARG3 (28 / most))
:mod (29 / catchy))
have-degree-91 :purpose (z10 / vie-01
person :ARGO z2

:ARG1 (z11 / attend-02
:ARGO (z12 / person
:ARGO-of (z13 / listen-01))))
:frequency (z15 / constant))

GPT-4 Generation
(Few-shot)

(s / sphere
:ARG1-of (m2 / music-01

@ :ARG1 (k / K-pop :wiki "K-pop"

o :name (n4 / name :opl "K-pop™"))

. :mod (c2 / constant))
:ARG@-of (c / churn-01
:ARG1 (s2 / song
' @ attention :mod Kk
:ARG1-of (n / new-01

v
’ :mod (c3 / catchy))
listener :purpose (v / vie-01
:ARGO s2
:ARG1 (a / attention
:poss (1 / listener)
:mod (p / plural))))))

churn-01

Legend: Red - error; - acceptable; Green - correct;— Arguments; -+ » Modifiers

(a) Parsing generations vs. Gold parse

Primary event: churns out
Predicate corresponding to the event: churns out
Conjunction: None

Arguments of the event predicate:
- Agent: The K-pop music sphere
- Object: the newest catchy K-pop songs

Modifiers of the arguments:
- Agent modifier: None
- Object modifier: newest, catchy, K-pop

Additional modifiers of the primary event:
- Manner: constantly
- Purpose: to vie for listeners' attention

(b) NL Response

Figure 5: A mostly good example
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"There was no issue as we boarded the train, and
we sat down and put the luggage next to us."

Gold Parse

(z1 / and
:opl (z2 / issue-02
:polarity -
:time (z3 / board-01
:ARGO (z4 / we)
:ARG1 (25 / train)))
:op2 (z6 / and
copl (27 / sit-down-02
:ARG1 z4)
cop2 (z8 / put-01
:ARGO z4
next-to :ARG1 (z9 / luggage)

A :ARG2 (z10 / next-to
:opl z4))))

GPT-4 Generation
(Few-shot)

sit-down-01

luggage

(a / and
:opl (b / board-01
:ARGO (w / we)
:ARG1 (t / train)
:time (a3 / as)
:ARG2 (i / issue :polarity -))
:op2 (a2 / and
:opl (s / sit-01
:ARGO w
:ARG1 (d / down))
top2 (p / put-01

:ARGO w
A@ :ARG1 (1 / luggage)
:ARG2 (n / next-to

ue topl Cu / us)NI)

6 : luggage

Legend: Red - error; - acceptable; Green - correct; —>Arguments;---- - » Modifiers

(a) Parsing generations vs. Gold parse

Primary Events: There are two equally primary events connected by the conjunction "and".

2. Primary Event 2: "we sat down" and
1. Primary Event 1: "we boarded the train” “put the luggage next to us"

Predicate corresponding to event 2 (a): "sat down"

Predicate corresponding to event 1: "boarded" Arguments of the event predicate (a):
Arguments of the event predicate: - Subject: "we"
- Subject: "we" Modifiers of the arguments (a): None
- Object: "the train"
Modifiers of the arguments: None Predicate corresponding to event 2 (b): "put"
Arguments of the event predicate (b):
Additional Modifiers of the event: - Subject: "we" (the same "we" as "sat down")
"There was no issue as” - Object: "the luggage"
Modifiers of the arguments (b):
(This modifier indicates that the boarding - Modifier of Object: "next to us"

happened without any problem.)
Additional Modifiers of the event (a) and (b): None

(b) NL Response

Figure 6: A semi-good example
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""Thus you can imagine my amazement, at sunrise, when I was awakened by an odd little voice.'

Gold Parse
(c / cause-01
:ARG1 (p / possible-01
:ARG1 (i2 / imagine-01
:ARGO (y / you)
:ARG1 (a / amaze-01
:ARG1 (i / 1)

:time (s / sunrise
@ :time-of (w / wake-01

:ARGO (v / voice

:mod (o / odd)

:mod (1 / little))

..... o :ARGL 1)))))

possible-01

imagine-01

amaze-01

GPT-4 Generation

(Few-shot) (a / amaze-01
:mode imaginal

imaginal :ARGO (1 7/ 1)
:ARG1 (a2 / awake-01
:ARGO i

:ARG1 (v / voice
:mod (03 / odd)

@ :mod (1 / little))
:manner (t / thus)

. :time (s / sunrise)))
awake-01

Legend: Red - error; - acceptable; Green - correct; —Arguments;----- » Modifiers

(a) Parsing generations vs. Gold parse

Primary event: “l was awakened”
Predicate corresponding to the event: “was awakened”

Arguments of the event predicate:
- Subject: “1”
- Object: “by an odd little voice”

Modifiers of the arguments:
- Subject: No modifiers
- Object: "odd" (modifying "little voice”), "little" (modifying "voice")

Additional modifiers of the primary event:
- Time: “at sunrise”
- Reason: "Thus, you can imagine my amazement”

(b) NL Response

Figure 7: A bad example
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""With delicate crochet flower appliques throughout this top, it is a standout piece that will
look wonderful either with the matching crochet skirt or paired with simple denim shorts
to let the top shine."

Primary event: "look wonderful"
Predicate: "look"

Arguments: "it" (referring to the top),
"either with the matching crochet skirt or paired with
simple denim shorts"

Modifiers of arguments: "delicate crochet flower
appliques throughout" (modifying "it"/the top)

Additional modifiers of the event: "standout
piece" (modifying the manner in which the top will look
wonderful), "to let the top shine" (modifying the purpose)

(a) NL Response

(zl1 / piece
:domain (z2 / it)
:ARGO-of (z3 / look-02
:ARG1 (z4 / wonderful-03)
:manner (z5 / or
:opl (z6 / pair-01
:ARG1 z2
:ARG2 (27 / skirt
:mod (z8 / crochet)
:ARG1-of (29 / match-01)))
top2 (210 / pair-01
:ARG1 z2
:ARG2 (z11 / shorts
:mod (z12 / denim)
:ARG1-of (z13 / simple-02))
:purpose (z14 / let-01
:ARGO z6
:ARG1 (z15 / shine-01
:ARG1 (z16 / top
:mod (z17 / this)))))))
:mod (z18 / standout))

(b) Gold Parse

Figure 8: Another bad example from NL responses
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