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Abstract

Knowledge Distillation (KD) compresses com-
putationally expensive pre-trained language
models (PLMs) by transferring their knowl-
edge to smaller models, allowing their use
in resource-constrained or real-time settings.
However, most smaller models fail to surpass
the performance of the original larger model,
resulting in sacrificing performance to improve
inference speed. To address this issue, we pro-
pose Co-Training and Co-Distillation (CTCD),
a novel framework that improves performance
and inference speed together by co-training two
models while mutually distilling knowledge.
The CTCD framework successfully achieves this
based on two significant findings: 1) Distill-
ing knowledge from the smaller model to the
larger model during co-training improves the
performance of the larger model. 2) The en-
hanced performance of the larger model further
boosts the performance of the smaller model.
The CTCD framework shows promise as it can
be combined with existing techniques like ar-
chitecture design or data augmentation, replac-
ing one-way KD methods, to achieve further
performance improvement. Extensive ablation
studies demonstrate the effectiveness of CTCD,
and the small model distilled by CTCD outper-
forms the original larger model by a significant
margin of 1.66 on the GLUE benchmark.

1 Introduction

In recent years, the high computational cost of pre-
trained language models (PLMs) (Radford et al.,
2019; Yang et al., 2019; Dai et al., 2019; Shoeybi
et al., 2019; Li et al., 2020; Brown et al., 2020)
become a constraint in serving resource-limited
or real-time applications. Knowledge Distillation
(KD) (Hinton et al., 2015; Romero et al., 2015) is
a popular model compression technique to tackle
this issue, with a smaller model (student) learning
(distilling) from a larger model (teacher).

∗ Work done while interning at Meta AI.

The ideal scenario would involve compressing
the teacher to match the size of the small student
without any performance drop. However, despite
intense research in the area of KD (Turc et al.,
2019; Tsai et al., 2019; Tang et al., 2019; Jiao et al.,
2020; Sanh et al., 2019a; Sun et al., 2019; Wang
et al., 2020b,a), none of the existing methods have
successfully avoided performance degradation dur-
ing the distillation process. Some approaches have
attempted to mitigate the performance gap by in-
corporating external factors. For instance, Jiao
et al. (2020) incorporates data augmentation, while
Wang et al. (2020b,a) focuses on designing student
architecture. However, these approaches have lim-
itations as they only provide supplementary tech-
niques rather than addressing the fundamental issue
of performance loss in KD. This raises an interest-
ing question: Can we compress a model without
scarifying the performance through KD?

In this work, we propose a novel framework
called Co-Training and Co-Distillation (CTCD) for
improving the performance of a language model
while compressing it through KD. CTCD involves
jointly training the teacher and the student models,
allowing them to transfer knowledge to each other
bidirectionally, from the teacher to the student and
vice versa. Our work uncovers two key findings
within the CTCD framework: Firstly, we demon-
strate that transferring knowledge from the smaller
model to the larger model during co-training sig-
nificantly improves the performance of the larger
model. In other words, by employing knowledge
distillation (KD), we enhance the performance of
the teacher model compared to standalone training.
This is significantly different from conventional
one-way KD, where the teacher model cannot ben-
efit from the distillation process since it is no longer
trained or distilled. Secondly, the improved perfor-
mance of the larger model leads to further enhance-
ments in the performance of the smaller model
through KD from the teacher model to the student
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Figure 1: Task-agnostic KD method The proposed framework are task-agnostic KD methods that perform KD during the
pre-training stage. This allows the distilled model to be deployed and fine-tuned on various downstream tasks.

model. These novel findings enable the smaller
model to surpass the independently trained larger
model while maintaining its inference efficiency
within the CTCD framework. Moreover, the CTCD
framework can be combined orthogonally with ex-
isting techniques for external factors such as stu-
dent architecture design Wang et al. (2020b,a) or
data augmentation (Jiao et al., 2020). We achieve
this by replacing traditional one-way KD methods
with the proposed CTCD framework, which holds
promise for significant performance improvements
in language modeling tasks.

In addition to our CTCD framework, we introduce
a Community KD that utilizes CTCD framework
with the pre-trained teacher model by combining
CTCD with conventional KD. Community KD dis-
tills knowledge from two students to each other, as
well as from the pre-trained teacher to each student,
during the co-training of the students. We show
that distilling from the other student as well as the
pre-trained teacher is better than only one-way dis-
tillation from the pre-trained teacher, as is done in
conventional KD. Note that the inference cost on
a task is the same as in conventional KD, as we
take one of the students distilled by Community
KD when deploying it to the task.

We validate the effectiveness and efficiency of
our CTCD on the GLUE benchmark (Wang et al.,
2019), which contains different language under-
standing tasks. As shown in Figure 1, We focus
on task-agnostic KD scenarios, where KD occurs
during the pre-training stage. Then, we fine-tune
the distilled PLMs on each downstream task and
evaluate their performance. This is more challeng-
ing compared to task-specific KD, as it requires
substantial computational resources to train PLMs
on a large text corpus, and the distilled knowledge
should be transferable across diverse downstream
tasks. Our extensive ablation study revealed that
the larger model benefits from the distillation of the
smaller model, and the performance improvement

of the larger model further enhances the perfor-
mance of the smaller model. In our experiments,
the student model compressed by CTCD framework
obtained 1.66 higher gain than the original large
model trained using a stand-alone method, demon-
strating that our approach can improve model qual-
ity and inference efficiency concurrently.

In summary, our contributions are as follows:

• We propose a novel knowledge distilla-
tion framework called Co-Training and Co-
Distillation (CTCD) framework to improve the
performance of models while compressing
them through KD.

• Through our experiments, we demonstrate
that distilling knowledge from the smaller
model to the larger model during co-training
improves the performance of the larger model.

• Additionally, we highlight that the enhanced
performance of the larger model further boosts
the performance of the smaller model, result-
ing in improved performance for both models.

• We provide valuable insights into adjusting
loss weights and the length of the training
phase for the effective application of the CTCD
framework through extensive ablation study.

2 Related Work

One-way Knowledge Distillation Knowledge
distillation (KD) (Hinton et al., 2015) is a model
compression technique in which a smaller student
model distills knowledge from a larger, pre-trained
teacher model. Recently, many researchers have
explored KD to address a high computational com-
plexity of a language model resulting from its in-
creasing size. This includes task-agnostic KD meth-
ods for the pre-training stage (Sanh et al., 2019a;
Wang et al., 2020b,a), task-specific KD method for
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Figure 2: Co-Training and Co-Distillation (CTCD) During training, the teacher and student models can learn more effectively
by comparing their prediction outputs not only against the ground truth but also against each other’s predictions. We refer to
the former as a "hard" loss and the latter as a "soft" loss. For example, the student soft loss captures the distance between the
student’s prediction and the teacher’s prediction, and vice versa. This co-training and co-distillation approach improve the
performance of the teacher model, which in turn benefits the performance of the student model.

the fine-tuning stage (Sun et al., 2019), and both
of pre-training and fine-tuning stages (Jiao et al.,
2020). Additionally, Wang et al. (2020b,a) have
redesigned the architectures of student language
models. However, the one-way KD can lead to a
loss of knowledge, resulting in smaller models that
generally have difficulty matching the performance
of larger models, leading to performance degrada-
tion. In contrast, our CTCD can improve the quality
of both teacher and student models, making it pos-
sible for the student to achieve the same quality as
the original teacher model.

Reversed Knowledge Distillation Recently, re-
searchers (Yuan et al., 2020; Qin et al., 2022;
Lee et al., 2023) have demonstrated that reversed
Knowledge Distillation (reversed KD), which trans-
fers knowledge from a smaller or poorer model to
a larger model, can improve the performance of the
student model. In particular, Qin et al. (2022); Lee
et al. (2023) investigated the application of reversed
KD in the PLMs, showing that a larger model can
benefit from a poorer and pre-trained model for
a specific downstream task. Inspired by the suc-
cess of reversed KD, we design a co-distillation
framework that includes reversed KD to improve
the performance of the teacher model by distilling
knowledge from the smaller student model. Unlike
existing reversed KD methods, which are limited
to improving the performance of the larger model,
our proposed co-distillation framework can achieve
both performance improvement and model com-
pression, by showing a better-quality teacher leads
to a better-quality student.

3 Co-training and Co-distillation

We first introduce the concepts of co-training and
co-distillation briefly:

Co-training trains two (different-sized) models
(e.g., a teacher and student) concurrently with the
goal of achieving similar model quality.

Co-distillation transfers knowledge in both di-
rections between two models (e.g., a teacher and
student), during co-training.

Figure 2 illustrates how co-trained models learn
together by comparing their prediction outputs
against predictions from each other and to the hard
labels (or “ground truth”). We refer to the former
as a “soft” loss and the latter as a “hard” loss. For
instance, the soft loss of the student model mea-
sures the accuracy of the student’s prediction by
considering the teacher’s prediction as a soft label,
and vice versa.

Task Formulation Suppose that we are given a
classification task with K classes. For each training
instance x and its ground truth label y, we denote
that the ground truth distribution over the labels is
q(k|x) (q(k) for simplicity) where for each label
k ∈ {1...K}, q(y) = 1 and q(k) = 0 for all k ̸= y.
For each x, the teacher model tϕ parameterized by
ϕ and the student model sθ parameterized by θ
predict the probability of each label k as pτϕ(k|x)
and pτθ(k|x), respectively as follows:

pτϕ(k|x) = f(zt) =
exp(ztk/τ)∑
K
i=1 exp(z

t
i/τ)

pτθ(k|x) = f(zs) =
exp(zsk/τ)∑
K
i=1 exp(z

s
i /τ)

where f is the softmax function, zt = {zti}Ki=1 =
tϕ(x) is the output logit of the teacher model, zs =
{zsi }Ki=1 = sθ(x) is the output logit of the student
model, and τ is the temperature to soften pϕ(k)
and pθ(k).
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Figure 3: Community KD Different from conventional KD, where each student learns from the prediction of the pre-trained
teacher only, the proposed approach learns each student from both prediction of the pre-trained teacher and prediction of another
student during co-training. Note that since we take one of the pre-trained students to adapt it to downstream tasks, the inference
cost is the same as the student training with the conventional KD.

The proposed objective LCTCD(θ,ϕ) consists
of a normal KD objective LKD:t→s to distill knowl-
edge from the teacher model to the student model
and a reversed KD objective LReKD:s→t to distill
knowledge from the student model to the teacher
model, during their co-training.

Teacher → Student The normal KD objective
LKD:t→s(θ,ϕ) aims to train the student model by
minimizing a weighted sum of the cross-entropy
loss H(q, pθ) between the ground truth q and
student prediction pθ and Kullback-Leibler diver-
gence (KL divergence) D(pτϕ, p

τ
θ) between the pre-

dictions of the student and the teacher as follows:

LKD(θ,ϕ) = αh ·H(q, pθ) + αs ·D(pτϕ, p
τ
θ)

(1)
where

H(q, pθ) = −
K∑

k=1

q(k) log(pθ(k)),

D(pτϕ, p
τ
θ) =

K∑

k=1

pτϕ(k) · log
pτϕ(k)

pτθ(k)
,

αh and αs are weighting hyper-parameter val-
ues for the cross-entropy loss and KL divergence,
respectively. We regard the cross-entropy loss
H(q, pθ) as the hard loss for the student model,
KL divergence D(pτϕ, p

τ
θ) as the soft loss for the

student model, and following BERT (Devlin et al.,
2019), H(q, pθ) denotes the Masked Language
Modeling loss (MLM loss). In the KD objective,
we consider the teacher parameters ϕ as constant
since we only train the student parameters θ while
the teacher model tϕ is fixed:

LKD:t→s(θ,StopG(ϕ)) (2)

where StopG(x) denotes that we do not compute
the gradient of x. In the conventional KD method,
Equation (2) is the final objective to learn the stu-
dent model only with the pre-trained teacher model.

Student → Teacher Different from such a one-
way KD method, we introduce the reversed KD
objective LReKD:s→t(StopG(θ),ϕ) to train the
teacher model tϕ as follows:

LReKD:s→t(StopG(θ),ϕ) =

βh ·H(q, pϕ) + βs ·D(pτθ, p
τ
ϕ)

(3)

where βh and βs are weighting hyper-parameter
values of the hard loss H(q, pϕ) and soft loss
D(pτθ, p

τ
ϕ) for the teacher model, respectively. By

minimizing KL divergence D(pτθ, p
τ
ϕ) between

the predictions of the student model (pτθ) and the
teacher model (pτϕ), the teacher model learns from
the student model. In the reversed KD objective, we
only train the teacher model by applying StopG(x)
to the gradient of the student parameters θ.

Co-training With the Equations (2) and (3), we
get the final objective LCTCD(θ,ϕ) as follows:

θ∗,ϕ∗ = argmin
θ,ϕ

LCTCD(θ,ϕ) =

LKD(θ,StopG(ϕ)) + LReKD(StopG(θ),ϕ)
(4)

Adapting to Downstream Task After model co-
training/-distillation, the trained smaller (student)
model sθ∗ with trained parameter θ∗ can be de-
ployed for multiple downstream tasks to improve
inference efficiency. To fine-tune the model for
a specific downstream task, we adapt the trained
parameter θ∗ using the dataset for that task.
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4 Community KD

Furthermore, we introduce an advanced CTCD appli-
cation named Community KD that can utilize CTCD
framework with the pre-trained teacher model, as
shown in Figure 3. It consists of a pre-trained
teacher tϕ∗ with pre-trained parameters ϕ∗ and
two students sθ1 and sθ2 parameterized by θ1 and
θ2, respectively. During the co-training of two stu-
dents, each student learns from the hard labels, soft
labels generated from the pre-trained teacher pre-
dictions, and soft labels generated from other stu-
dent predictions. In other words, we conduct one-
way knowledge distillation from the pre-trained
teacher to each student by minimizing KL diver-
gence between the teacher prediction and predic-
tions of each student D(pτθ1 , p

τ
ϕ∗) and D(pτθ2 , p

τ
ϕ∗)

and co-distillation between students in both direc-
tions by minimizing LCTCD(θ1,θ2). The final
objective LCM (θ1,θ2,StopG(ϕ∗)) is as follows:

θ∗
1,θ

∗
2 = argmin

θ1,θ2

LCM (θ1,θ2,StopG(ϕ∗)) =

LCTCD(θ1,θ2) +D(pτθ1 , p
τ
ϕ∗) +D(pτθ2 , p

τ
ϕ∗)

(5)
We select one of the two students distilled by

Community KD (θ∗ = θ∗
1 or θ∗ = θ∗

2) and fine-
tune the selected single student sθ∗ for downstream
tasks, resulting that the inference cost does not in-
crease compared with the conventional KD method.

5 Experiment

We present a comprehensive analysis of the pro-
posed CTCD method through empirical experiments.
In Section 5.1, we validate our CTCD method by
comparing the performance of small models dis-
tilled by CTCD to the original large model on the
GLUE benchmark (Wang et al., 2019). In Sec-
tion 5.2, we analyze the impact of co-distillation
by adjusting loss weights for the soft losses of a
student and a teacher. In Section 5.3, we study the
impact of training length on CTCD method, allow-
ing us to determine the optimal training length for
CTCD method. In Section 5.4, we demonstrate the
efficacy of Community KD by comparing the per-
formance of a model distilled by the Community
KD to a model distilled by the one-way KD.

Implementation details We use a learning rate
of 5e-4, linear warm-up of 5%, AdamW opti-
mizer (Loshchilov and Hutter, 2019), and batch
size of 128 with A100 GPUs for pre-training. We
train the teacher and student models from scratch

Figure 4: Average performance on dev sets of GLUE
benchmark after training 10 epochs Learning from the stu-
dent improves the performance of the teacher by an average
of 1.88. Such improvement in teacher performance leads to
improvement in student quality from 77.46 to 77.94.

for 20 epochs in Section 5.1. To analyze the ef-
fectiveness of CTCD method, we train the teacher
and student models for 10 epochs and 20 epochs
in Section 5.2 and Section 5.3, respectively. In
Section 5.4, we train the models for 3 epochs after
parameter remapping, which is the same as in con-
ventional one-way KD method (Sanh et al., 2019a).

Training Time For the one-way distillation, we
need 1 GPU day to train the teacher for 10 epochs
and 1.3 GPU days to distill knowledge from the
pre-trained teacher to the student for another 10
epochs, which consumes a total of 2.3 days. For
CTCD, it takes 3 GPU days to train both teacher
and student models from scratch for 10 epochs.
We use the automatic mixed precision (AMP) of
PyTorch (Paszke et al., 2019) to accelerate training
for all our models.

Dataset To validate our CTCD method, we use a
reduced dataset (30M) created by uniformly sam-
pling 1 out of every 4 sentences from the original
pre-training dataset (BookCorpus (Zhu et al., 2015)
+ Wikipedia (Foundation)) used in the conventional
one-way KD method (Sanh et al., 2019a). We eval-
uate our distilled models on the dev sets of the
GLUE benchmark (Wang et al., 2019), which con-
sists of nine sentence-level classification tasks. In
Section 5.4, we use the original pre-training dataset
to train Community KD method.

Model Architecture We use a 6-layer BERT (De-
vlin et al., 2019) model as the teacher and a 4-layer
BERT model as the student to analyze the effec-
tiveness and efficiency of our CTCD method. In Sec-
tion 5.4, we use a pre-trained BERT-base model
as the teacher and a 6-layer BERT model as the
student.
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Performance GAP w/ Teacher

Original Teacher 78.06 -

Student

One-way Distil. (10 epoch) 77.46 -0.60
CTCD (10 epoch) 77.94 -0.12
One-way Distil. (20 epoch) 78.39 +0.33
CTCD (20 epoch) 79.12 +1.66

Table 1: Average performance on dev sets of GLUE benchmark The student distilled by CTCD significantly outperforms
the original teacher trained using the stand-alone method, achieving a higher gain of 1.66.

(a) Teacher Performance (b) Student Performance

Figure 5: Adjusting Loss Weight We investigate the impact of the distillation for the teacher model and student model by
adjusting loss weights (αh, αs, βh, βs) for hard loss and soft loss. (a) We (co-)train the teacher model distilling knowledge from
the student by fixing αh : αs = 1 : 1 and varying βh : βs on the large text corpus. (b) We (co-)train the student model distilling
knowledge from the teacher by fixing βh : βs = 1 : 1 and varying αh : αs on the large text corpus. Then we report the average
performance of each pre-trained model after fine-tuning it on downstream tasks (dev sets) of GLUE benchmark.

Figure 6: Length of Training We pre-trained student models
under two different training lengths 10/20 epochs while dis-
tilling knowledge from teacher models via ours or the conven-
tional KD method. Then we adapt pre-trained student models
on CoLA task. With enough longer training (20 epoch), the
student model distilled by ours significantly outperforms the
student model distilled by the conventional KD method, with
a higher gain of 5.22.

5.1 Could Knowledge Distillation Help
Improve Performance?

In Table 1 and Figure 4, we show the average per-
formance of models trained using different methods
on a large text corpus and fine-tuned against the
GLUE benchmark. Stand-alone trains a model

without using any knowledge distillation. Co-
training & One-way distillation trains teacher
and student models together from scratch, with
knowledge only flowing from the teacher to the
student. Co-training & Co-distillation (Ours) is
CTCD method, which trains both teacher and student
models together from scratch and distills knowl-
edge between each other in both directions. For
distillation methods, we set the weights of the
hard losses for the teacher and student to 1. The
weights of the soft losses are chosen from the set
{0.5, 1, 2, 4}, and the results are reported with the
best-performing weights.

1) Overall Results As shown in Table 1, the stu-
dent distilled by CTCD method significantly out-
performs the original teacher trained using the
stand-alone method on the average performance of
the GLUE benchmark, achieving a higher gain of
1.66. Furthermore, the student model distilled by
our CTCD method outperforms the student distilled
by the one-way distillation method on the aver-
age performance of the GLUE benchmark. After
training for 10 and 20 epochs, the student distilled
by our CTCD method consistently has higher gains
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than the student distilled by one-way distillation, as
77.46 vs. 77.94 and 78.39 vs. 79.12, respectively.

2) Does learning from a small and weak student
provide a performance benefit to the teacher?
As shown in Figure 4, the distillation of knowledge
from the student model to the teacher model has
been shown to significantly improve the quality of
the teacher model, with an average increase of 1.88
compared to teacher training methods that do not
incorporate such distillation process (such as Stand-
alone and Co-training & one-way distillation).

3) Is the teacher’s performance improvement
reflected in the student’s performance improve-
ment? Furthermore, we find that a better teacher
leads to further performance improvement of the
student from 77.46 to 77.94. The results demon-
strate that the distillation process successfully im-
proves the performance of both the teacher and
student. The student trained with our CTCD method
achieves better performance than students trained
with the Stand-alone or Co-training & one-way dis-
tillation methods, with an average improvement of
0.88 and 0.47, respectively.

5.2 In-depth Study 1: Adjusting Loss Weights
In this Section, we investigate the impact of distilla-
tion on the performance of both the student and the
teacher by adjusting loss weights (αh, αs, βh, βs)
for hard loss and soft loss. For example, setting
αh : αs = 1 : 4 emphasizes learning from the
teacher’s knowledge (i.e., the soft loss for the stu-
dent) 4× more than the ground truth label distri-
bution (i.e., the hard loss for the student), during
co-training. This allows us to better understand the
effect of distillation on each model and optimize
their performance.

Teacher side In Figure 5(a), we co-train the
teacher model using distillation to transfer knowl-
edge from the student model. We fix the weighting
values for the losses of the student to αh : αs = 1 :
1 and vary the weighting values for the losses of
the teacher, βh : βs, while training on a large text
corpus. We then evaluate the average performance
of the pre-trained teacher models on downstream
tasks from the dev sets of GLUE benchmark.

Our results show that co-training the teacher with
distillation outperforms training the teacher alone,
regardless of the weighting values for the soft loss,
by obtaining higher gains of 0.36, 0.77, 1.80, and
1.02 for βh : βs = 1 : 1, 1 : 2, 1 : 4, and 4 : 4,
respectively. Additionally, we find that giving more

weight to the soft loss of the teacher during training
(αh : αs : βh : βs = 1 : 1 : 1 : 1 → 1 : 1 : 1 :
2 → 1 : 1 : 1 : 4) leads to improved performance,
with an average score of 78.42 → 78.83 → 79.86.
Furthermore, we observe that emphasizing only the
soft loss of the teacher (1 : 1 : 1 : 4) yields better
performance than emphasizing both the hard and
soft losses of the teacher (1 : 1 : 4 : 4), with an
average score of 79.86 vs. 79.09.

Student side We find that the student model’s
performance is not sensitive to the weighting values
for the hard and soft losses of the student, (αh : αs).
Regardless of the chosen values, co-training the
student with distillation consistently improves its
performance compared to training the student alone.
For instance, when we emphasize the soft loss of
the student by increasing the weighting value for
(αs) as 1 : 1 : 1 : 1 → 1 : 2 : 1 : 1 → 1 : 4 : 1 : 1,
we observe similar levels of performance for the
student model.

5.3 In-depth Study 2: Length of Training

We studied the impact of co-training length on the
effectiveness of the CTCD method (see Figure 6).
We find that longer training leads to improved per-
formance, as demonstrated by our experiments us-
ing two different training lengths: 10 epochs and
20 epochs. After pre-training the student models
with these different lengths, we adapted them to
the CoLA downstream tasks and evaluated their
performance using Matthew Correlation.

Results By increasing the (co-)training length
from 10 epochs to 20 epochs, CTCD (Ours) signif-
icantly improves the performance of the student
model from 35.02 to 46.23, with a gain of 11.21.
This outperforms the conventional KD method,
which only achieves a gain of 0.07 from 40.94 to
41.01, despite a longer training time. The conven-
tional KD method relies on a pre-trained teacher
model to train the student model, which allows
for fast convergence but limits the learning of the
student model. In contrast, the CTCD method al-
lows for additional performance gains for both the
teacher and student models by enabling them to
learn and grow together during co-training. This
can provide further benefits to the student model’s
performance with longer co-training.

5.4 Efficacy of Community KD

We compare the proposed Community KD with
the conventional one-way KD method (Sanh et al.,

7464



Downstream Task MNLI QQP QNLI SST-2 CoLA STSB MRPC RTE Average
Metric AMP Acc. Acc. Acc. Acc. Matthew. Pearson. Spear. F1 Acc. Acc. Acc.

Dataset Size 392.7k 363.8k 104.7k 67.3k 8.5k 5.7k 3.7k 2.5k

Teacher BERT (109M) 84.17 90.89 90.68 91.86 57.54 88.84 88.56 89.31 85.04 65.34 83.23

Student
(67M)

One-way KD (Sanh et al., 2019b) FP32 81.93 90.05 87.72 90.94 52.03 86.28 86.07 87.94 82.59 57.76 80.33
Ours: Student 1 FP16 81.88 90.17 88.24 91.51 54.82 86.70 86.49 89.76 85.29 59.21 81.40
Ours: Student 2 FP16 81.34 89.75 88.37 90.71 56.08 86.42 86.44 89.80 85.29 59.20 81.34

Table 2: Efficacy of Community KD The pre-trained BERT and 6-layer BERT is the teacher model and student architecture,
respectively, for both ours and the conventional one-way KD method. We fine-tune the distilled students on dev sets of GLUE
benchmark. We observe that learning from the soft knowledge of different student model improves performance over the
conventional one-way KD method on most downstream tasks.

2019a). To ensure a fair comparison, we use the
pre-trained BERT-base as the teacher model for
both methods and the 6-layer BERT as the stu-
dent, which is the same architecture used in the
conventional one-way KD method. As described
in Section 4, we train two student models concur-
rently and they learn from the pre-trained BERT,
the ground truth labels, and each other’s knowledge.
Note that since we fine-tune one of the two students
distilled by Community KD for downstream tasks,
the inference cost is the same as the conventional
one-way KD method. In Table 2, we report the
results of BERT and the conventional one-way KD
method using checkpoints provided by Hugging
Face (HuggingFace) and both students (Ours: Stu-
dent 1 and Ours: Student 2) on the dev sets of the
GLUE benchmark. We apply Automatic Mixed
Precision (AMP) (Paszke et al., 2019) to Commu-
nity KD, which typically speeds up training but
may hurt performance.

Results The results presented in Table 2 shows
that Community KD, leads to improved perfor-
mance on downstream tasks such as QQP, QNLI,
SST-2, CoLA, STSB, MRPC, and RTE, even when
applying quantization techniques. Specifically, the
average performance gain of the student model dis-
tilled using our Community KD method is 1.04
(1.2%) higher than that of the student model dis-
tilled by the conventional one-way KD method.
This suggests that incorporating knowledge distil-
lation from both a student model and a pre-trained
teacher model is more effective than only using
knowledge distillation from the pre-trained teacher
model.

6 Limitations & Future Work

Limitations The proposed method co-train mod-
els from scratch and may require a longer pre-
training time than the conventional KD method.
However, as we described in Section 5.3, when
the student model is trained long enough with its

teacher, it can outperform the models trained with
the conventional KD on the downstream task. The
proposed co-training method may increase the over-
all training cost compared with one-way distilla-
tion, and it may become a performance bottleneck
depending on training resource constraints. How-
ever, note that CTCD can improve model quality
while having the same inference cost as the one-
way distillation on downstream tasks.

Future Work 1) Architecture Sharing. Models
can share some of their architectures by reusing
the output of such architectures and updating them
together during back-propagation. This may help
reduce the additional computing and memory over-
head incurred by model co-training, while improv-
ing the model quality, especially for the student
model. 2) Integration of Student Architecture
Design and Data Augmentation. Future research
can focus on effectively combining the CTCD frame-
work with student architecture design and data aug-
mentation techniques. This integration provides a
promising alternative to traditional one-way knowl-
edge distillation methods, leading to significant
improvements in language modeling tasks.

7 Conclusion

The size and complexity of pre-trained language
models (PLMs) can hinder their practicality for
online downstream tasks. To address this, we in-
troduced a novel framework called co-training and
co-distillation (CTCD). By training models of dif-
ferent sizes together and extracting inter-model
knowledge in both directions, the proposed CTCD
framework improves both model efficiency and per-
formance. The proposed framework overcomes the
trade-off between efficiency and performance in
traditional one-way knowledge distillation meth-
ods. Notably, our compressed models achieved
an impressive gain of 1.66 on the GLUE bench-
mark, outperforming large models trained using
standalone methods.
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