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Abstract

Conventional Knowledge Graph Construction
(KGC) approaches typically follow the static
information extraction paradigm with a closed
set of pre-defined schema. As a result, such
approaches fall short when applied to dynamic
scenarios or domains, whereas a new type of
knowledge emerges. This necessitates a sys-
tem that can handle evolving schema automat-
ically to extract information for KGC. To ad-
dress this need, we propose a new task called
schema-adaptable KGC, which aims to contin-
ually extract entity, relation, and event based on
a dynamically changing schema graph without
re-training. We first split and convert exist-
ing datasets based on three principles to build
a benchmark, i.e., horizontal schema expan-
sion, vertical schema expansion, and hybrid
schema expansion; then investigate the schema-
adaptable performance of several well-known
approaches such as Text2Event, TANL, UIE
and GPT-3.5. We further propose a simple yet
effective baseline dubbed ADAKGC, which
contains schema-enriched prefix instructor and
schema-conditioned dynamic decoding to bet-
ter handle evolving schema. Comprehensive
experimental results illustrate that ADAKGC
can outperform baselines but still have room
for improvement. We hope the proposed work
can deliver benefits to the community1.

1 Introduction

Knowledge Graph Construction (KGC), typi-
cally through information extraction, has enjoyed
widespread empirical success and can provide back-
end support for various NLP tasks, such as question
answering (Saxena et al., 2020; Shang et al., 2022;
Zhang et al., 2022a), commonsense reasoning (Ya-
sunaga et al., 2021; Zhang et al., 2022d) etc. Tra-
ditional KGC tasks, including named entity recog-
nition (NER) (Liu et al., 2021; Wang et al., 2021),

∗ Corresponding author.
1Code and datasets available at https://github.com/

zjunlp/AdaKGC.
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Figure 1: Knowledge Graph Construction (KGC) with
dynamic updates of schema.

relation extraction (RE) (Chen et al., 2022a; Zheng
et al., 2021; Yao et al., 2022) and event extraction
(EE) (Huang et al., 2018; Liu et al., 2020; Lu et al.,
2021; Lou et al., 2023) are “reactive”, relying on
static pre-defined schema from end-users. How-
ever, as shown in Figure 1, the schema may evolve
along with scenario adaptation, making previous
models challenging to utilize without re-training.

Note that existing information extraction sys-
tems can only handle a fixed number of classes by
pre-defined schema and performing once-and-for-
all training on a fixed framework. It is desirable to
respond to changes (e.g., evolving schema) to exist-
ing KGs, making the system act more “proactively”
like humans who can handle flexible knowledge
updates. Early, several approaches introduce in-
cremental learning (Cao et al., 2020; Wang et al.,
2019; Shen et al., 2020; Cui et al., 2021b) to learn
new classes continually. In this case, the extrac-
tion system learns from the class incremental data
stream but usually suffers significant performance
degradation on the old class when adapting to the
new class. Stated differently, previous studies put
emphasis on struggling against catastrophic for-
getting (Thrun, 1998). However, for the schema-
evolving scenarios, the dynamic generalizability of
extraction models plays a vital role and needs to be
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inspected from an ontology evolution perspective.
Therefore, we propose a novel KGC task dubbed

schema-adaptable KGC, where the models are re-
quired to have the ability to represent and adapt to
complement knowledge extraction. We first con-
struct datasets according to three principles of evo-
lutionary schema directions (Horizontal Schema
Expansion, Vertical Schema Expansion, and Hybrid
Schema Expansion) on three tasks of NER, RE2,
and EE. Through empirical analysis, we notice that
approaches of Text2Event (Lu et al., 2021), TANL
(Paolini et al., 2021), UIE (Lu et al., 2022), and
GPT-3.5(Ouyang et al., 2022) cannot effectively
extract the information given complex evolving
schema. We argue that the major issues lie in the
following: 1) How to learn dynamic and general-
izable schema representations as conditions for ex-
traction; 2) How to precisely extract new instances
constrained with newly updated schema.

To this end, we propose a simple baseline
dubbed ADAKGC, which introduces Schema-
enriched Prefix Instructors (SPI) to represent and
transfer the learnable schema-specific knowledge.
At each iteration stage, we linearly convert from the
current schema graph to learnable prompts, initial-
ized with the ontology name and connected to task-
specific prefixes. To encourage the decoder to un-
derstand the dynamic schema, we utilize a Schema-
conditioned Dynamic Decoding (SDD) strategy
that constructs a decoding path of schema-specific
vocabulary to the output space. When the schema
changes, we dynamically construct a new trie-tree
to adjust the output space. Note that ADAKGC is
model agnostic and can handle a variety of chal-
lenging schema evolution scenarios. We summa-
rize the contribution of this work as:

• We introduce a new task of the schema-
adaptable KGC to meet the schema evolu-
tion requirements, which is a new branch that
has not been well-explored to the best of our
knowledge.

• We propose a new baseline ADAKGC, which
includes schema-enriched prefix instructors
and schema-conditioned dynamic decoding
strategy, and experimentally demonstrate the
adaptability.

• We release the schema-adaptable KGC bench-
mark, which imposes new challenges and

2We regard RE as relational triple extraction in this paper.

presents new research opportunities for the
NLP community.

2 Problem Statement and Overview

2.1 Background of KGC

KGC has been a promising research challenge (Lu
et al., 2022; Zhang et al., 2022b), and existing
benchmarks utilize a well-defined schema for di-
recting knowledge graph construction, focusing
on generating domain-specific knowledge graphs
or aggregating heterogeneous structured databases.
For example, FEW-NERD (Ding et al., 2021) con-
sists of coarse-grained and fine-grained entity type
definitions to locate and classify named entities
from unstructured natural language. NYT (Riedel
et al., 2010a) extracts relational triple instances
specifically from textual data sources according to
a specific taxonomy structure. ACE2005 (Ntroduc-
tion) identifies triggers and event types based on
context, and each has its own event arguments, de-
scribed in a slot-filling way. In addition, TAC-KBP
(Ellis et al., 2014) is designed to leverage existing
generic domain structured data sources and extend
entity links employing descriptive text as additional
information. OAEI (Euzenat et al., 2011) creates
an integrated ontology based on an alignment be-
tween two or more existing ontologies or knowl-
edge graphs. In this paper, we focus on the work of
extracting knowledge instances from unstructured
text, which is regarded as the schema-constraint
prediction (structure prediction) task.

2.2 Definition of Schema-adaptable KGC

In the real world, the KGC system extracts struc-
tured knowledge from unstructured text and nor-
malizes it to the instance graph according to a fre-
quently adjusted schema. Given a set of schema
graphs S = {s1, s2, ..., sn}, the task of schema-
adaptable KGC is to generate a set of schema-
constraint instances G = {g1, g2, ..., gn} for each
iteration. Suppose there is a model Mθ =
LM(D1

train|S1) trained on the initial training set,
after which labeled data for updated schema are
not available. A schema-adaptable data stream{
D(1),D(2), . . . ,D(N)

}
is provided to evaluate

the adaptability of model for the dynamic up-
dates of schema. Each D(k) contains dev/test data(
Dk

dev,Dk
test

)
and schema graph sk. Note that the

model will not be re-trained but hope to pick up
on the ability of information extraction with evolv-
ing schema. The challenge is that the model is
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Figure 2: Illustration of schema-adaptable KGC with iterative schema evolution. Schema graph nodes (colored  )
are evolved by adding a new class node (colored  ) in horizontal schema expansion while is inherited by a new
subclass node (colored  ) in vertical schema expansion.

expected to perform well in each iteration of the
test set Dk

test, which contains the golden instances
changed for the updated schema.

2.3 Dataset Construction Process
As shown in Figure 2, we design three principles
regarding different types of schema evolution and
apply Algorithm 1 to build the dataset for evalua-
tion: (1) Horizontal Schema Expansion requires
the schema to add new class nodes of the same
level, which can be considered a form of class-
incremental learning without new classe instances
as training data. Based on the generalization ef-
fect on the neighboring new classes, we can assess
the transfer capabilities of the schema feature. (2)
Vertical Schema Expansion requires the schema
to add subclasses of father classes. Based on the
generalization effect on subclasses, we can assess
the inheritance and derivation capabilities of the
schema feature. (3) Hybrid Schema Expansion
requires the schema to randomly expands nodes
horizontally or vertically at each iteration, which
summarizes schema graphs and represents their po-
tential co-evolutionary pattern. More details are in
Appendix A.1, besides the above structural exten-
sions, we further explore analogous node replace-
ment from the perspective of semantics.

2.4 Schema-adaptable KGC Benchmark
There are two challenges for schema-adaptable
KGC. Firstly, since the schema is updated in each it-
eration, the schema evolution information needs to
be dynamically injected into the model. Secondly,
since the output target of KGC is often demand-
specific, the extraction results should be adaptively

Algorithm 1 Dataset Construction Process.
Input: iteration N , raw schema Sraw, and raw
dataset {Draw

train,Draw
dev ,Draw

test }
Output: Schema SN ,{DN

train,DN
dev,DN

test}
1: Randomly initialize ninit nodes in Sraw as S1

2: Pick out the instance associated with schema
S as D(1) = {D1

train,D1
dev,D1

test}
3: for iteration i = 2, . . . , n do
4: Horizontal Schema Expansion: Compute

ϕneighbor(W⃗c, W⃗s) for candidate schema S
5: Vertical Schma Expansion: Select niter

sub node whose father node belongs to S
and update

6: Hybrid Schema Expansion: Combine ex-
tension Steps 4 and 5

7: Ouput iteration i dataset schema Si = S,
instance D(i) = {Di

dev,Di
test}

8: end for

adjusted according to the schema. We detail sev-
eral vanilla baselines as follows and introduce the
proposed ADAKGC in §3.

Vanilla Baselines: Schema-adaptable KGC can
be thought of as a structured prediction language
task that transfers information between class nodes
through the generalizability of the structure. TANL
(Paolini et al., 2021) introduces an augmented nat-
ural language translation task from which infor-
mation related to the schema can be implicitly ex-
tracted. TEXT2EVENT (Lu et al., 2021) is a uni-
fied sequence-to-structure architecture for event
extraction with a constrained decoding algorithm
for event schema knowledge injection during in-
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Figure 3: The overview of ADAptive Knowledge Graph Construction ADAKGC.

ference. UIE (Lu et al., 2022) is a unified text-to-
structure generation framework that enables unified
modeling of different IE tasks and adaptively gener-
ates target sequences by a schema-based prompting
mechanism. GPT-3 (Brown et al., 2020), a large-
scale language model (LLM), can serve as a base-
line for schema-adaptable KGC. Although current
works focusing on structured extraction can achieve
excellent performance with static types of knowl-
edge, they are typically unaware of schema evolu-
tion. To clarify this issue, we introduce a simple
yet effective baseline dubbed schema-ADAptive
Knowledge Graph Construction ADAKGC.

3 The Proposed Baseline: ADAKGC

3.1 Overview

As shown in Figure 3, ADAKGC utilizes a pre-
trained encoder-decoder language model (LM) T5
(Raffel et al., 2020a) as the basic architecture for
the schema-adaptable KGC task. Specifically, let
encoder input Xen = [S;X] be the concatenation
of schema S and input X . In the decoding process,
the LM calculates the conditioned probability of
generating a new token yt given the previous token
y<t:

p(Yde | Xen) =

|Y |∏

t=1

p (yt | y<t, S,X) (1)

We initialize the model using the pre-trained
parameter θ. Here, pθ is a trainable language model
distribution. In the k-th iteration, we perform a
gradient update on the following log-likelihood
objective:

max
θ

log pθ(y | x; sk)

= max
θ

∑

t∈Yindex

log pθ(ht | h<t)
(2)

where ht is the activation vector at decoding time
step t. ht =

[
h
(1)
t ; · · · ;h(m)

t

]
is a concatenation

of all activation layers, and h
(j)
t is the activation

vector of the j-th layer at time step t.

3.2 Schema-enriched Prefix Instructor

Inspired by prefix-tuning (Li and Liang, 2021),
we use task-specific prefix instructors to indicate
task information, which are pairs of transformer-
activated differentiable sequences {sien, side},
each containing p consecutive D-dim vectors for
encoder and decoder. Since using a discrete natural
language task instruction in the context (e.g., "The
schema used for the task is:") may guide the LM to
produce a sub-optimal generated sequence, we op-
timize the instructions as a continuous soft prompt,
propagating upward to all transformer activation
layers and rightward to subsequent tokens.

Due to schema changes with iterations, we
present schema-specific prefix instructors to in-
struct the encoding process. Specifically, we for-
malize the schema graph as linearized text. Assume
given the constrained schema of RE task sk =
{(h1, r1, t1), ...(hn, rn, tn)} and tpci = (hi, ri, ti)
denotes the i-th triple prefix constraint. By concate-
nating these schema prefix constraints initialized by
word embedding, spc can be dynamically adjusted
as the schema evolves, and added padding tokens
to be a fixed length when instructing the LM:
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spc = Concat (tpc1, . . . , tpcn, PAD) (3)

Thus, the schema-enriched prefix instructor
provides a two-part prefix combination Z =
{sien, spcc; side}, where ";" separates the respec-
tive prefix instructors for encoder and decoder. We
recursively activate the decoder transformer activa-
tion vector ht, which is the connection of all layers,
at time step t in the LM.

ht =

{
sit, if t ≤ p

LM(yt, h<t | S,X) , otherwise
(4)

The training parameters of our model con-
tain the LM parameters θ, the encoder-decoder
task-specific prefix instructor{sien, side}, and the
schema-specific constraint instructor spc. For
stable optimization, we follow Li and Liang
(2021) to reparameterize the matrix Mϕ[t, :] =
MLPϕ(M

′
ϕ[t, :]) with a smaller matrix M ′

ϕ consist-
ing of a large feedforward neural network MLPϕ,
which can alleviate the optimization instability
caused by directly updating the prefix parameters
and is applied to {sien, side; spc}. We train the
parameters of the model in the following steps:
(1) First, freeze other parameters, fine-tune the
prefix instructor {sien, side} to learn task-specific
prompts; (2) Secondly, freeze {sien, side}, opti-
mize the schema-specific instructor spc for the
given schema graph; (3) Finally, we unfreeze the
LM parameter θ and collaboratively optimize all
parameters to capture the association between the
prefix instructor and model parameters.

3.3 Schema-conditioned Dynamic Decoding
Previous works leverage a greedy decoding algo-
rithm to generate linearized instance predictions to-
ken by token for the hidden sequence ht, which se-
lects the token with the highest prediction probabil-
ity p (yt | y<t, S,X) at each vanilla decoding step
t. Unfortunately, when the schema changes, this de-
coding algorithm does not guarantee the generated
instances are consistent with the latest schema. In
other words, it may result in out-of-date or invalid
types being generated due to the lack of labeled
data fine-tuning the model to adapt the probability
distribution to the current schema constraints. In
addition, the greedy decoding algorithm neglects
useful schema knowledge that can effectively guide
the decoding process.

In the schema-conditioned decoding process, we
apply a trie-based decoding mechanism that dy-
namically constructs a trie-tree by leveraging the
latest schema. An intuitive interpretation is that the
schema contains rich semantic information (e.g.,
instance types) and structural information (e.g., re-
lational edges between instance types) so that the
decoding process can be constrained to ensure that
the generated token is valid. Specifically, we con-
strain the model to generate the type tokens consis-
tently with the existing schema at the type location.
We pursue the LM output to be a sequence of RE
following pattern and optimized using the standard
seq2seq objective function:

[bos] . . . T (n)
h , E(n)

h ,R(n), T (n)
t , E(n)

t . . . [eos]

where E(n)
h , T (n)

h , E(n)
t , E(n)

h refer to the n-th
generated head entity, tail entity, and their respec-
tive types while R(n) refer to relation.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on KGC tasks,
including NER, RE and EE. The used datasets
includes FEW-NERD (Ding et al., 2021), NYT
(Riedel et al., 2010b) and ACE2005 (Walker et al.,
2006). In our work, we need to construct schema as
well as golden validation/test sets dynamically. For
each dataset, we build three types of evaluation set-
tings based on §2.3. Therefore for original datasets,
we use a certain proportion of the schema as ini-
tialization to conduct schema expansion regarding
three schema evolution categories in Appendix A.1.
Evaluation. We use span-based Micro-F1 as the
primary metric. Rel-S means that the relation is cor-
rect if the relation type is correct and the string and
entity types of the related entity mentions are cor-
rect. For each iteration experiment, we report the
average performance over 3 random seeds. UIE is
implemented without pre-training by directly using
T5-v1.1-base as the backbone for a fair comparison.
More details are in Appendix A.2.

4.2 Main Results

We report empirical results regarding horizontal
schema expansion, vertical schema expansion and
hybrid schema expansion settings to compare our
proposed methods with the baselines. The perfor-
mance over all iterations during the whole schema-
adaptable KGC process is presented in Table 1-3.
From the results, we can observe that:
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Model Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 AVE
Entity

(NERD)
Ent-F1

TANL 71.52 65.21 60.38 56.37 53.21 49.66 46.55 57.56
UIE 72.72 66.78 62.24 58.29 55.08 51.42 48.04 59.22
AdaKGC 72.91 66.95 62.37 58.51 55.38 51.81 48.54 59.50

Relation
(NYT)

Rel-S F1

TANL 89.92 81.81 78.34 72.71 68.42 65.19 62.94 74.19
UIE 90.17 82.09 78.74 73.12 69.03 65.53 63.30 74.57
AdaKGC 90.34 82.33 79.03 73.34 69.19 65.87 63.58 74.81

Event Trigger
(ACE2005)
Evt Tri F1

TEXT2EVENT 69.23 68.05 65.45 61.37 60.15 59.34 54.42 62.57
UIE 70.75 69.13 66.20 62.19 60.90 59.83 54.74 63.39
AdaKGC 72.43 70.90 68.14 63.49 61.97 61.33 55.73 64.86

Event Argument
(ACE2005)
Evt Arg F1

TEXT2EVENT 46.15 44.40 42.58 39.73 39.17 38.77 35.31 40.87
UIE 49.14 47.90 45.75 42.32 41.83 41.27 37.60 43.69
AdaKGC 49.18 48.14 47.08 43.85 43.17 43.10 38.79 44.76

Table 1: Horizontal schema expansion results in schema-adaptable knowledge graph construction.

Model Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 AVE
Entity

(NERD)
Ent-F1

TANL 73.49 64.83 57.05 51.84 47.16 42.06 35.96 53.20
UIE 74.45 66.09 58.24 53.01 48.24 45.77 48.41 56.32
AdaKGC 74.45 66.05 58.26 53.06 48.39 45.92 48.57 56.39

Relation
(NYT)

Rel-S F1

TANL 90.13 83.11 76.63 73.03 67.03 63.40 47.13 71.49
UIE 90.38 81.76 74.27 71.61 65.30 62.95 59.81 72.30
AdaKGC 90.18 81.65 74.13 71.48 65.10 62.75 59.77 72.15

Event Trigger
(ACE2005)
Evt Tri F1

TEXT2EVENT 67.10 55.81 50.38 52.99 45.82 41.39 41.65 50.73
UIE 70.94 60.00 57.01 62.52 60.39 54.90 53.62 59.91
AdaKGC 70.57 59.75 56.50 62.31 60.57 55.49 54.32 59.93

Event Argument
(ACE2005)
Evt Arg F1

TEXT2EVENT 49.32 37.83 33.43 35.49 30.67 27.49 27.79 34.57
UIE 50.70 41.45 39.66 44.14 43.65 38.86 37.77 42.32
AdaKGC 51.87 42.74 40.68 45.16 43.97 40.10 39.05 43.37

Table 2: Vertical schema expansion results in schema-adaptable knowledge graph construction.

Schema adaptive generalization challenge. On
all three expansion categories, the model per-
formances tend to decrease as the iterations in-
crease. TANL achieves lower performance which
employs an augmented language and implicitly
trains the model to learn schema information.
TEXT2EVENT utilizes schema as constraint
information on the decoding side and outper-
forms other models in some iterations. Although
ADAKGC and UIE obtain optimal or suboptimal
performance, the performance of iteration 1 and
iteration 7 has a significant drop. We believe that
the implicit schema evolution rules can help future
work to develop adaptive generalization capabili-
ties for schema-adaptable KGC.

Schema-enhanced modules boost the perfor-
mances. Compared to other models, ADAKGC
is improved with schema-enhanced modules on
both the encoder and decoder, which allows it to
achieve the best performance in most settings. On
the ACE2005 hybrid schema expansion dataset,

Iter1 Iter3 Iter5 Iter7
0

20

40

60

80

100

F1
 sc

or
es

Horizontal-GPT3.5
Vertical-GPT3.5
Hybrid-GPT3.5

Horizontal-AdaKGC
Vertical-AdaKGC
Hybrid-AdaKGC

Figure 4: GPT-3.5 results on schema expansion dataset.

ADAKGC improves 0.71% on trigger extraction
and 3.65% on event argument extraction, indicat-
ing that ADAKGC can capture schema-specific
information under evolutionary schema.
LLMs can understand schema adaption pat-
terns better. To explore the performance of LLMs
(Qiao et al., 2023) on the proposed tasks, we per-
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Model Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 AVE
Entity

(NERD)
Ent-F1

TANL 68.37 58.50 54.51 52.46 48.67 44.13 41.51 52.59
UIE 69.26 59.80 55.71 53.66 49.55 46.97 48.11 54.72
AdaKGC 69.48 59.97 55.94 53.89 49.92 47.44 48.43 55.01

Relation
(NYT)

Rel-S F1

TANL 88.67 81.59 76.48 72.22 72.35 61.76 57.87 72.99
UIE 90.17 83.14 77.81 71.45 72.97 65.57 63.12 74.89
AdaKGC 90.07 83.06 77.68 71.38 72.94 65.73 63.32 74.88

Event Trigger
(ACE2005)
Evt Tri F1

TEXT2EVENT 69.26 56.99 53.32 46.03 40.44 56.86 48.84 53.11
UIE 74.69 66.34 63.12 63.21 59.86 53.18 53.26 61.95
AdaKGC 74.84 66.99 63.28 63.07 60.94 54.72 54.80 62.66

Event Argument
(ACE2005)
Evt Arg F1

TEXT2EVENT 50.32 38.14 35.79 31.94 28.79 37.75 33.54 36.61
UIE 51.94 45.22 42.97 43.12 40.66 36.66 36.17 42.39
AdaKGC 55.08 48.58 46.19 46.27 45.22 40.52 40.41 46.04

Table 3: Hybrid schema expansion results in schema-adaptable knowledge graph construction.
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Figure 5: Ablation study on NERD horizontal schema
expansion dataset, with the average result of 7 iterations.

form comparative experiments with GPT-3.5 on
NYT. Since we cannot utilize all training instances,
we report in-context learning performance given
20-shot demonstrations as shown in Appendix A.5.
From Figure 4, we notice that GPT-3.5 is capable
of producing instances that conform to the dynam-
ically changing schema but still yield low perfor-
mance due to the low-shot issue. Likewise, we
sample several cases and use ChatGPT3 to evalu-
ate schema-adaptable KGC (See Figure 7 and 8 in
Appendix A.6), which surprisingly demonstrates
stable generalization ability with evolving schema.
These findings indicate a promising future work
of schema-adaptable KGC to develop alignment
prompts with LLMs.

4.3 Ablation Study on ADAKGC
To prove the effects of the schema-enriched prefix
instructor and schema-conditioned dynamic decod-

3https://openai.com/blog/chatgpt/
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Figure 6: Case study on NERD vertical schema expan-
sion dataset, Iteration 1 vs. Iteration 7.

ing, we conduct the ablation study, and the results
are shown in Figure 5. From two evolutionary cate-
gories, we observe that: (1) Both schema-enriched
prefix instructor and schema-conditioned dynamic
decoding can help the schema-adaptable learning
process; (2) Efficiently encoding schema evolu-
tion information is more important, which achieves
improvements of 0.77% on horizontal schema ex-
pansion and 0.36% on vertical schema expansion.

4.4 Case Study
As shown in Figure 6, we randomly select 8 types
and observe that: (1) The types that appear in the
initial schema mostly degrade performance, indi-
cating that the model causes slight confusion as
the schema expands. (2) Due to the structural in-
heritance relationship in the vertical expansion of
the schema, our model can effectively transfer the
labels of the father node to the child nodes when
new child nodes are added.

To further analyze the drawbacks of our model
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Error Analysis Input Example Gold Type(s) Predicted Type(s) Proportion
Weak
Transfer

Kelly, who declined to talk to reporters here, travel to Tokyo Sunday
for talks with Japanese officials. Meet[travel] Transport[travel] 38%

Inheritance
Deficiency

He started his entertainment career at ABC, where he is credited
with creating the ’movie of the week’ concept.

Start-
Position[started] Personnel[started] 24%

Relevance
Neglect

Kelly, the US assistant secretary for East Asia and Pacific Affairs,
arrived in Seoul from Beijing Friday to brief Yoon, the foreign
minister.

Transport[arrived]
Meet[brief] Transport[arrived] 21%

Class
Imbalance

Within weeks he was arrested and charged with sodomising an
official driver several years previously and with abusing his powers
to cover up the offence.

Arrest-
Jail[arrested]
Charge-
Indict[charged]

Transport[arrested] 13%

Potential
Annotation

Anne-Marie will get the couple’s 19-room home in New York state,
which was on the market last year for 21.5 million dollars, as well as
their fine art collection.

None Event Transfer-
ownership[get] 4%

Table 4: Error analysis on all ACE2005 schema expansion datasets.

and promote future works of schema-adaptable
KGC, we count incorrect instances and classify
them into five categories below, as shown in Table
4: (1) Weak Transfer. Despite schema expansion,
the model is prevented from updating labels by old
model parameters. (2) Inheritance Deficiency. The
label is not inherited in time when subdividing the
father node. (3) Relevance Neglect. The lack of on-
tology relevance leads to the absence of correlated
event extraction. (4) Class Imbalance. Models
suffering from unbalanced class learning problems
tend to depend on similarly in-context sentences
to judge high-frequency labels. (5) Potential An-
notation. Some example outputs suggest potential
errors or omitted annotation.

5 Related Work

5.1 Knowledge Graph Construction
Automatic construction of knowledge graphs from
textual or structured data has attracted extensive
research in recent years, including tasks such as
NER (Paolini et al., 2021; Cui et al., 2021a), RE
(Lin et al., 2020; Joshi et al., 2020; Ye et al., 2021),
EE (Ramponi et al., 2020; Liu et al., 2020; Lu
et al., 2021), etc. In contrast to closed-domain
knowledge extraction, open knowledge extraction
(Kolluru et al., 2020; Zhan and Zhao, 2020; Kot-
nis et al., 2022; Wang et al., 2022b) is oriented
toward the absence of schema constraints and can
quickly generate extensive and meaningful knowl-
edge. However, the ignoring of schema introduces
uncertainty and ambiguity in output control, and we
believe that a clear setting can be chosen to track
the realignment of instances. Besides, KGC in
low-resource scenarios (Huang et al., 2018; Zhang
et al., 2020; Schick and Schütze, 2021; Chen et al.,
2022b; Ye et al., 2022; Zhang et al., 2022c) requires
the model to predict new instances with only lim-

ited training instances available. As opposed to this
instance-driven KGC approach, we argue that the
schema-driven approach can leverage evolutionary
instructions provided with richer ontological asso-
ciations, resulting in new challenges and research
opportunities.

5.2 Lifelong Learning

Lifelong learning is aimed at training new classes
online without catastrophic forgetting. Gener-
ally, lifelong learning mainly falls into four cat-
egories: regularization-based (Kirkpatrick et al.,
2017; Zenke et al., 2017; Aljundi et al., 2018),
replay-based (Lopez-Paz and Ranzato, 2017; Shin
et al., 2017), architecture-based (Mallya and Lazeb-
nik, 2018; Yoon et al., 2018) and knowledge distil-
lation (Chuang et al., 2020; Cao et al., 2020). To
study class-incremental learning, Monaikul et al.
(2021) builds a unified NER classifier for all the
classes encountered over time, while Wang et al.
(2022a) develops a framework to reconstruct syn-
thetic training data of the old classes. Recently,
(Wang et al., 2019) proposes a lifelong RE method
that employs an explicit alignment model to over-
come forgetting, while (Shen et al., 2020) presents
a self-adaptive dynamic regularization method. To
address class incremental learning in event detec-
tion (Cao et al., 2020), Yu et al. (2021) takes ad-
vantage of rich correlations among ontology types,
and Liu et al. (2022) adopts continuous prompts to
learn event-specific representation for prediction.
Compared with previous work that focused only
on class increments, we discuss three principles of
schema expansion from the potential demand for
schema adaptation.
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6 Conclusion

This paper introduces a new task of schema-
adaptable KGC with benchmark datasets and a
new baseline ADAKGC. We illustrate the task dif-
ficulties with previous baselines on three principles
of schema expansion patterns (horizontal, vertical,
hybrid) and demonstrate the effectiveness of the
proposed ADAKGC.
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Limitations

The proposed work still contains several limita-
tions, as follows:

Datasets: Note that several datasets, such as
ACE2005, cannot be released due to LICENCE
issues; we release the code to build the datasets
and provide all the pre-processed publicly avail-
able datasets (e.g., Few-NERD, NYT) We use sev-
eral existing datasets to construct schema-adaptable
benchmarks; however, previous datasets may have
limited schema structures (the schema pattern in
some datasets is very simple). We plan to build
more datasets via crowdsourcing for comprehen-
sive evaluation. In addition, we will continue to
promote the construction of multimodal schema
adaptive graphs, which leverage the dynamic evo-
lution of schema to integrate visual and textual
knowledge into a self-learning graph extraction
system.

Baselines and Proposed ADAKGC: Note that
the proposed one, although better than previous
approaches, including Text2Event (Lu et al., 2021),
TANL (Paolini et al., 2021), UIE (Lu et al., 2022),
still suffers from poor generalization ability. How-
ever, we notice a very stable performance with
LLM (though deficient performance), indicating a
new promising solution for schema-adatable KGC.

Ethical Considerations

Intended use. The dataset and model in this pa-
per are indented to be used for exploratory analysis
of schema-adaptable KGC.

Biases. We collect data from existing datasets
(e.g., Few-NERD: CC BY-SA 4.0 license.), which
may contain some data with offensive language or
discriminatory.
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A Appendix

This section describes the details of experiments,
including dataset construction and evaluation on
downstream tasks.

A.1 Dataset Construction
A.1.1 Construction Process
In each task, we execute three schema evolution
strategies. The raw dataset statistics are shown in
Table 5, where it can be seen that they have a
two-level schema structure, leaving the research
of a more hierarchical schema structure for future
work. As shown in Algorithm 2-4, we describe in
detail the specific construction process of horizon-
tal schema extension, vertical schema extension
and hybrid schema extension.

In particular, we also release additional datasets
from a semantic substitution perspective. As shown
in Algorithm 5, analogous schema expansion re-
quires schema replacement for semantically similar
new nodes. Based on the performance of the old
class transfer to the new semantic class, we can
evaluate the semantic invariance capability.

#Maj #Sub #Train #Val #Test

NERD 8 66 131,767 18,824 37,648
NYT 4 24 56,196 5,000 5,000

ACE-2005 8 33 19,216 901 676

Table 5: Raw datasets statistics. #Maj indicates the
number of major classes, #Sub is the number of sub-
classes, and #Val #Test is the number of sentences.

Horizontal Schema Expansion. Neighboring
nodes of the specified type that have high-level
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similarity values in the same framework are also
adjacent when projected into the semantic space
(Huang et al., 2018). Existing research efforts
have developed many rich libraries of ontologies
(e.g.FrameNet (Baker and Sato, 2003), VerbNet
(Kipper et al., 2008), Propbank (Palmer et al.,
2005), and OntoNotes (Pradhan et al., 2007)),
where each ontology type is associated with a set
of pre-defined neighboring ontologies. (1) Search-
ing the ontology library to retrieve candidate nodes
Wf associated with target nodes Ws at the same
hierarchy. (2) The similarity metric is obtained by
calculating the cosine vector similarity of all candi-
date nodes Wf to the target node Ws (Eq. 5). (3)
Selecting the appropriate threshold of node pairs
to confirm the sorted addition of horizontal nodes.
(4) Updating the schema with horizontal nodes and
adding the golden validation set and test set in the
dataset.

ϕSim(W⃗f , W⃗s) =

∑|Ws|
i=1 wi · wf

∥W⃗f∥2 · ∥W⃗s∥2
(5)

Vertical Schema Expansion. Structural similarity
needs to be exploited when adding schema hier-
archy nodes as new classes. (1) For search con-
venience, we link the hypernym ontology under
a root node so that the schema forms a tree struc-
ture. (2) Starting at the root node, we utilize a
child selection strategy by recursively applying
through the tree until reaching the deepest node.
A node could be expandable when it represents
a non-terminal state or has hyponyms in seman-
tics (e.g., location->country). (3) According to the
available hyponyms, one (or more) child nodes are
added to expand the current schema tree. (4) Up-
dating the schema with vertical nodes and adding
the golden validation set and test set in the dataset.
Hybrid Schema Expansion. It is necessary to hy-
brid horizontal and vertical expansion to form a
comprehensive structural topology, which is more
consistent with real scenarios. (1) Setting the
threshold α for random selection. (2) Executing
horizontal expansion iteration below the threshold
α, or vertical node expansion above the thresh-
old α. Note that when the father node of added
nodes does not exist, we also add the father node
to maintain the schema hierarchy. (3) Updating the
schema with the corresponding nodes and adding
the golden validation set and test set in the dataset.
Analogous Schema Expansion. To detect the se-
mantic node sensitivity of the schema, we randomly

replace similar semantic expressions for the nodes.
(1) Random selection of candidate nodes to obtain
word expressions WC . (2) Candidate nodes are
created by pairing WC with all words in the corpus
word list WL. The consistency between individual
words is calculated by the normalized point-by-
point mutual information (NPMI) of wi and wj

(Eq. 6), where adding smooth ϵ and γ controls for
log p (wi, wj) weights for higher NPMI values (Eq.
7). (3) Adopting candidate nodes that exceed the
threshold to replace the schema and updating the
golden validation set and test set in the dataset.

v⃗(W ) =





∑

wi∈WC

NMPI (wi, wj)
γ





j=1,...,|WL|
(6)

NMPI (wi, wj)
γ =


 log

p(wi,wj)+ϵ
p(wi)·p(wj)

− log p (wi, wj) + ϵ




γ

(7)

A.1.2 Schema-adaptable Datasets Statistic

We set the number N of total iterations, and initial-
ize the original number of schema nodes. We show
the statistics of schema-adaptable datasets for each
task in Table 6.

A.2 Evaluation

We use span-based Micro-F1 as the major metric to
evaluate the model and adopt the same evaluation
metrics as previous work:

* Named Entity Recognition: an entity men-
tion is correct if its strings and type match a
reference entity.

* Relation Strict: a relation is correct if its re-
lation type is correct and the string and entity
types of the related entity mentions are cor-
rect.

* Event Trigger: an event trigger is correct if
its strings and event type match a reference
trigger.

* Event Argument: an event argument is cor-
rect if its strings, role type, and event type
match a reference argument mentioned.
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Taxonomy Horizontal Vertical Hybrid Analogous
#Init #Add #N #Init #Add #N #Init #Add #N #Init #Add #N

NERD 30 6 7 30 6 7 30 6 7 66 - 7
NYT 10 2 8 10 2 8 10 2 8 24 - 7

ACE-2005 15 3 7 15 3 7 15 3 7 33 - 7

Table 6: Schema-adaptable datasets statistics. #Init indicates the number of initial subclasses, #Add is the number
of subclasses added per iteration, and #N is the total number of iterations.

A.3 Hyper-parameters

We adopt T5-v1.1-base (Raffel et al., 2020b),
which has 12 layers of the encoder, 12 layers of the
decoder, 768 hidden units, and 12 attention heads
as the backbone. Specifically, we utilize Pytorch
(Paszke et al., 2017) to conduct experiments with
batch size 16 on one NVIDIA 3090 GPU. We detail
the hyper-parameters for each dataset as follows:

NERD. The hyper-parameter search space is:

• epoch: 15

• batch size: 16

• accumulate: 1

• learning rate: [1e-4, 3e-4, 5e-4]

• warmup rate: 0.06

NYT. The hyper-parameter search space is:

• epoch: 20

• batch size: 16

• accumulate: 1

• learning rate: [1e-4, 3e-4, 5e-4]

• warmup rate: 0.06

ACE2005. The hyper-parameter search space is:

• epoch: 30

• batch size: 16

• accumulate: 1

• learning rate: [1e-4, 3e-4, 5e-4]

• warmup rate: 0.06

A.4 Analogous Schema Expansion
Experiment

As shown in Figure 7, our ADAKGC also has
powerful semantic transplantation capabilities,
which achieves competitive performance with base-
lines. With the schema-enriched prefix instructor,
ADAKGC achieves an improvement of 7.70% on
average over TEXT2EVENT on the event trigger
extraction task and 4.87% on the event argument
extraction task. This verifies the proposed schema-
enriched prefix instructor and decoding modules
can learn general schema-adaptable ability even the
schema evolution knowledge is rarely in the pre-
training stage. Note that TANL achieves the best
performance on the NYT dataset, indicating that
language models have the ability to learn schema
semantic transfer implicitly as an augmented natu-
ral language prediction task. Therefore we believe
that in addition to the schema structure perception
modules, semantic robustness modules for analo-
gous node expansion scenarios are also essential.

A.5 GPT-3.5 Experiment Details

GPT-3.5 is a large autoregressive language model
with 175 billion parameters. To explore the perfor-
mance of GPT-3.5 on the schema-adaptive KGC
task, we follow the input format of few-shot learn-
ing using OpenAI API4. As shown in Table 12, we
utilize a fixed manual template to generate a con-
textual window suitable for the model, including
natural language task descriptions (text in blue),
linearized schemas (text in purple), 20 examples in
the model’s context, and task prompts (text in red).

A.6 ChatGPT Results

ChatGPT5 trains an initial model using supervised
fine-tuning and further utilizes reinforcement learn-
ing systems to rank by quality for human feedback
rewards. We handle Schema-adaptable KGC tasks

4https://platform.openai.com/docs/models/
gpt-3-5

5https://chat.openai.com/chat
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Algorithm 2 The construction process of horizon-
tal schema expansion.

1: Set sampling seed θ, total iteration
N , raw schema Sraw, and raw dataset
{Draw

train, D
raw
dev , D

raw
test }

2: Initialize blank schema S, blank dataset
{Dtrain, Ddev, Dtest} and initial node number
ninit, node number niter per iteration

3: Randomly select ninit nodes in Sraw, S = S ∪
init node, S1 = S,Sraw = Sraw − S

4: Pick out the instance associated
with S, {D1

train, D
1
dev, D

1
test} =

{Dtrain, Ddev, Dtest}
5: for iteration N do
6: Calculate ϕSim(W⃗f , W⃗s) =

∑|Ws|
i=1 wi·wf

∥W⃗f∥2·∥W⃗s∥2
for node between Sraw and S

7: Pick out top niter schema node, S = S ∪
Sraw[: niter], Sraw = Sraw − Sraw[: niter]

8: Iteration i dataset Si = S,{Di
dev, D

i
test} =

{Ddev, Dtest}
9: end for

by asking questions to the chatbot in a conversa-
tional mode. First, we present the task description
and the 20 demonstrations as shown in Figure 7.
Then we give a paragraph text to test whether the
chatbot can extract the corresponding triples based
on the same schema as the demonstration exam-
ples comply with. From Figure 8 we can find that
some of the facts are well extracted, indicating that
ChatGPT can understand the task and perform ex-
traction consistent with the schema. Finally, we
add three new nodes “profession” “place founded”
"founders" to the previous schema under a hori-
zontal schema expansion iteration. Output results
in Figure 8 show that ChatGPT not only adapts
the output to the updated schema but also deduces
reasonable facts by a chain-of-thought approach.

Algorithm 3 The construction process of vertical
schema expansion.

1: Set sampling seed θ, total iteration
N , raw schema Sraw, and raw dataset
{Draw

train, D
raw
dev , D

raw
test }

2: Initialize blank schema S, blank dataset
{Dtrain, Ddev, Dtest} and initial node number
ninit, node number niter per iteration

3: for major node in Sraw do
4: S = S∪ major node
5: end for
6: Randomly select ninit nodes in Sraw, S = S ∪

init node, S1 = S,Sraw = Sraw − S
7: Pick out the instance associated

with S, {D1
train, D

1
dev, D

1
test} =

{Dtrain, Ddev, Dtest}
8: for iteration N do
9: Randomly select niter sub node, whose par-

ent belongs to S
10: S = S ∪ Sraw[: niter], Sraw = Sraw −

Sraw[: niter]
11: Iteration i dataset Si = S,{Di

dev, D
i
test} =

{Ddev, Dtest}
12: end for
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Algorithm 4 The construction process of hybrid
schema expansion.

1: Set sampling seed θ, hybrid ratio α,total iter-
ation N , raw schema Sraw, and raw dataset
{Draw

train, D
raw
dev , D

raw
test }

2: Initialize blank schema S, blank dataset
{Dtrain, Ddev, Dtest} and initial node number
ninit, node number niter per iteration

3: Randomly select ninit nodes in Sraw, S = S ∪
init node, S1 = S,Sraw = Sraw − S

4: Pick out the instance associated
with S, {D1

train, D
1
dev, D

1
test} =

{Dtrain, Ddev, Dtest}
5: for iteration N do
6: if random(0,1)< α then
7: Calculate ϕSim(W⃗f , W⃗s)=

∑|Ws|
i=1 wi·wf

∥W⃗f∥2·∥W⃗s∥2
for node between Sraw and S

8: Pick out top niter schema node, S = S
∪ Sraw[: niter], Sraw = Sraw − Sraw[:
niter]

9: else
10: Randomly select niter sub node, whose

parent belongs to S
11: S = S ∪ Sraw[: niter], Sraw = Sraw −

Sraw[: niter]
12: end if
13: Iteration i dataset Si = S,{Di

dev, D
i
test} =

{Ddev, Dtest}
14: end for

Algorithm 5 The construction process of analo-
gous schema expansion.

1: Set sampling seed θ, total iteration
N , raw schema Sraw, and raw dataset
{Draw

train, D
raw
dev , D

raw
test }

2: Initialize blank schema S, blank dataset
{Dtrain, Ddev, Dtest} and node number niter

per iteration
3: Initialize S = Sraw, S1 = S,

{Dtrain, Ddev, Dtest}={Draw
train, D

raw
dev , D

raw
test }

4: Pick out the instance associated
with S, {D1

train, D
1
dev, D

1
test} =

{Dtrain, Ddev, Dtest}
5: for iteration N do
6: Randomly select niter schema

node in S, calculate v⃗(W ) ={∑
wr∈W NMPI (wr, wj)

γ}
j=1,...,|WL|

for each node, create candidate nodes by
pairing Wr with all words WL in the corpus
word list

7: Replace S[: niter] with candidate nodes
with analogous semantics

8: Iteration i dataset Si = S,{Di
dev, D

i
test} =

{Ddev, Dtest}
9: end for

6424



Model Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 AVE
Entity

(NERD)
Ent-F1

TANL 68.34 62.70 57.22 52.94 47.73 42.24 36.09 52.47
UIE 67.58 63.39 60.37 58.00 58.17 54.26 49.53 58.76
AdaKGC 68.22 63.87 61.01 58.18 58.76 54.58 49.81 59.20

Relation
(NYT)

Rel-S F1

TANL 89.80 86.82 83.51 77.99 73.61 73.32 66.37 78.77
UIE 89.66 86.56 83.27 77.80 73.30 73.27 66.33 78.60
AdaKGC 89.17 86.12 82.76 77.33 72.85 72.91 65.84 78.14

Event Trigger
(ACE2005)
Evt Tri F1

TEXT2EVENT 64.40 60.39 53.96 52.64 40.83 32.45 29.58 47.75
UIE 69.69 64.53 62.10 58.47 49.76 42.51 39.31 55.20
AdaKGC 69.63 64.77 61.86 58.31 50.08 43.07 40.40 55.45

Event Argument
(ACE2005)
Evt Arg F1

TEXT2EVENT 45.88 40.96 34.21 33.40 24.49 19.62 16.77 30.76
UIE 49.96 42.67 40.50 36.56 28.70 24.06 20.47 34.70
AdaKGC 51.74 44.56 42.48 32.61 30.52 25.41 22.10 35.63

Table 7: Analogous schema replacement results in schema-adaptable knowledge graph construction.

Input: The Belgrade district court said that Markovic will be tried along with 10
other Milosevic-era officials who face similar charges of ‘inappropriate use of state
property’ that carry a sentence of up to five years in jail.

Labels

Iteration 1 schema: "attack", "start position", "transfer ownership", "be born",
"sentence", "die", "arrest jail", "transport", "elect", "phone write", "end organization",
"sue", "acquit", "marry", "extradite"

Sentence[sentence]

Iteration 2 schema: "attack", "start position", "transfer ownership", "be born",
"sentence", "die", "arrest jail", "transport", "elect", "injure", "phone write", "fine",
"convict", "end organization", "sue", "acquit", "marry", "extradite"

Sentence[sentence]

Iteration 3 schema: "attack", "start position", "transfer money", "transfer ownership",
"be born", "sentence", "die", "demonstrate", "arrest jail", "transport", "elect", "injure",
"phone write", "fine", "convict", "end organization", "sue", "acquit", "execute",
"marry", "extradite"

Sentence[sentence]

Iteration 4 schema: "end position", "attack", "start position", "transfer money",
"transfer ownership", "be born", "sentence", "die", "demonstrate", "arrest jail",
"transport", "elect", "start organization", "injure", "phone write", "fine", "convict",
"end organization", "sue", "acquit", "execute", "marry", "extradite", "pardon"

Sentence[sentence]

Iteration 5 schema: "end position", "attack", "start position", "transfer money",
"transfer ownership", "be born", "sentence", "die", "demonstrate", "arrest jail", "trans-
port", "elect", "start organization", "injure", "phone write", "declare bankruptcy",
"trial hearing", "fine", "convict", "end organization", "sue", "acquit", "appeal", "exe-
cute", "marry", "extradite", "pardon"

Sentence[sentence]
Trial hearing[tried]

Iteration 6 schema: "end position", "attack", "start position", "charge indict", "trans-
fer money", "transfer ownership", "release parole", "be born", "sentence", "die",
"demonstrate", "arrest jail", "transport", "elect", "start organization", "injure", "phone
write", "merge organization", "declare bankruptcy", "trial hearing", "fine", "convict",
"end organization", "sue", "acquit", "appeal", "execute", "marry", "extradite", "par-
don"

Sentence[sentence]
Trial hearing[tried]
Charge-
Indict[charges]

Iteration 7 schema: "end position", "attack", "start position", "nominate", "charge
indict", "transfer money", "transfer ownership", "release parole", "be born", "sen-
tence", "die", "demonstrate", "arrest jail", "transport", "elect", "start organization",
"meet", "injure", "phone write", "merge organization", "declare bankruptcy", "trial
hearing", "fine", "convict", "end organization", "sue", "divorce", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Sentence[sentence]
Trial hearing[tried]
Charge-
Indict[charges]

Table 8: Adaptive evolution of horizontal schema expansion on ACE2005 dataset.
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Input: Kelly, the US assistant secretary for East Asia and Pacific Affairs, arrived in
Seoul from Beijing Friday to brief Yoon, the foreign minister.

Labels

Iteration 1 schema: "personnel", "attack", "justice", "transfer money", "transfer
ownership", "release parole", "be born", "sentence", "die", "demonstrate", "transport",
"business", "contact", "life", "fine", "sue", "execute", "marry", "extradite", "pardon"

Transport[arrived]
Contact[brief]

Iteration 2 schema: "personnel", "attack", "justice", "transfer money", "trans-
fer ownership", "release parole", "be born", "sentence", "die", "demonstrate",
"transport","business", "meet", "life", "contact", "fine", "sue", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Transport[arrived]
Meet[brief]

Iteration 3 schema: "personnel", "attack", "justice", "transfer money", "transfer
ownership", "release parole", "be born", "sentence", "die", "demonstrate", "transport",
"start organization", "meet", "life", "contact","merge organization", "business", "trial
hearing", "fine", "sue", "acquit", "appeal", "execute", "marry", "extradite", "pardon"

Transport[arrived]
Meet[brief]

Iteration 4 schema: "personnel", "attack", "justice", "transfer money", "transfer
ownership", "release parole", "be born", "sentence", "die", "demonstrate", "transport",
"start organization", "meet", "life", "phone write", "merge organization", "declare
bankruptcy", "trial hearing", "fine", "end organization", "sue", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Transport[arrived]
Meet[brief]

Iteration 5 schema: "personnel", "attack", "charge indict", "transfer money", "trans-
fer ownership", "release parole", "be born", "sentence", "die", "demonstrate", "arrest
jail", "transport", "start organization", "meet", "life", "phone write", "merge organi-
zation", "declare bankruptcy", "trial hearing", "fine", "convict", "end organization",
"sue", "acquit", "appeal", "execute", "marry", "extradite", "pardon"

Transport[arrived]
Meet[brief]

Iteration 6 schema: "end position", "attack", "personnel", "charge indict", "transfer
money", "transfer ownership", "release parole", "be born", "sentence", "die", "demon-
strate", "arrest jail", "transport", "start organization", "meet", "injure", "phone write",
"merge organization", "declare bankruptcy", "trial hearing", "fine", "convict", "end
organization", "sue", "divorce", "acquit", "appeal", "execute", "marry", "extradite",
"pardon"

Transport[arrived]
Meet[brief]

Iteration 7 schema: "end position", "attack", "start position", "nominate", "charge
indict", "transfer money", "transfer ownership", "release parole", "be born", "sen-
tence", "die", "demonstrate", "arrest jail", "transport", "elect", "start organization",
"meet", "injure", "phone write", "merge organization", "declare bankruptcy", "trial
hearing", "fine", "convict", "end organization", "sue", "divorce", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Transport[arrived]
Meet[brief]

Table 9: Adaptive evolution of vertical schema expansion on ACE2005 dataset. Underlined classes refer to major
classes, which will be covered by refined sub classes.
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Input: The charismatic leader of Turkey’s governing party was named prime minister
Tuesday, a step that probably boosts chances that the United States will get permission
to deploy troops in the country along Iraq’s northern border.

Labels

Iteration 1 schema: "attack", "justice", "transfer money", "transfer ownership",
"release parole", "be born", "sentence", "die", "demonstrate", "transport", "life",
"fine", "sue", "execute", "marry", "extradite", "pardon"

Transport[deploy]

Iteration 2 schema: "attack", "justice", "transfer money", "transfer ownership",
"release parole", "be born", "sentence", "die", "demonstrate", "transport", "meet",
"life", "contact", "fine", "sue", "acquit", "appeal", "execute", "marry", "extradite",
"pardon"

Transport[deploy]

Iteration 3 schema: "attack", "justice", "transfer money", "transfer ownership",
"release parole", "be born", "sentence", "die", "demonstrate", "transport", "start
organization", "meet", "life", "contact", "merge organization", "business", "trial
hearing", "fine", "sue", "acquit", "appeal", "execute", "marry", "extradite", "pardon"

Transport[deploy]

Iteration 4 schema: "attack", "justice", "transfer money", "transfer ownership",
"release parole", "be born", "sentence", "die", "demonstrate", "transport", "start orga-
nization", "meet", "life", "phone write", "merge organization", "declare bankruptcy",
"trial hearing", "fine", "end organization", "sue", "acquit", "appeal", "execute",
"marry", "extradite", "pardon"

Transport[deploy]

Iteration 5 schema: "attack", "charge indict", "transfer money", "transfer ownership",
"release parole", "be born", "sentence", "die", "demonstrate", "arrest jail", "transport",
"start organization", "meet", "life", "phone write", "merge organization", "declare
bankruptcy", "trial hearing", "fine", "convict", "end organization", "sue", "acquit",
"appeal", "execute", "marry", "extradite", "pardon"

Transport[deploy]

Iteration 6 schema: "end position", "attack", "personnel", "charge indict", "transfer
money", "transfer ownership", "release parole", "be born", "sentence", "die", "demon-
strate", "arrest jail", "transport", "start organization", "meet", "injure", "phone write",
"merge organization", "declare bankruptcy", "trial hearing", "fine", "convict", "end
organization", "sue", "divorce", "acquit", "appeal", "execute", "marry", "extradite",
"pardon"

Transport[deploy]
Personnel[named]

Iteration 7 schema: "end position", "attack", "start position", "nominate", "charge
indict", "transfer money", "transfer ownership", "release parole", "be born", "sen-
tence", "die", "demonstrate", "arrest jail", "transport", "elect", "start organization",
"meet", "injure", "phone write", "merge organization", "declare bankruptcy", "trial
hearing", "fine", "convict", "end organization", "sue", "divorce", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Transport[deploy]
Elect[named]

Table 10: Adaptive evolution of hybrid schema expansion on ACE2005 dataset. Underlined classes refer to father
classes, which occurs when directly adding sub classes that corresponding major class not exists.
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Input: Webb also said details of the breakdowns of the Welches’ previous marriages
were likely to come up , and cited reports of alleged extramarital affairs by both.

Labels

Iteration 1 schema: "end position", "attack", "start position", "nominate", "charge
indict", "transfer money", "transfer ownership", "release parole", "be born", "sen-
tence", "die", "demonstrate", "arrest jail", "transport", "elect", "start organization",
"meet", "injure", "phone write", "merge organization", "declare bankruptcy", "trial
hearing", "fine", "convict", "end organization", "sue", "divorce", "acquit", "appeal",
"execute", "marry", "extradite", "pardon"

Divorce[breakdowns]
Marry[marriages]

Iteration 2 schema: "end position", "attack", "begin", "nominate", "charge indict",
"transfer money", "transfer ownership", "release parole", "be born", "sentence",
"die", "demonstrate", "arrest jail", "carry", "elect", "start organization", "meet",
"injure", "phone write", "merge organization", "declare bankruptcy", "trial hearing",
"fine", "convict", "end organization", "sue", "separate", "acquit", "appeal", "execute",
"marry", "extradite", "pardon"

Separate[breakdowns]
Marry[marriages]

Iteration 3 schema: "end", "attack", "begin", "nominate", "prosecute", "remittance",
"transfer ownership", "release parole", "be born", "sentence", "die", "demonstrate",
"arrest jail", "carry", "elect", "start organization", "meet", "injure", "phone write",
"merge organization", "declare bankruptcy", "trial hearing", "fine", "convict", "end
organization", "sue", "separate", "acquit", "appeal", "execute", "marry", "extradite",
"pardon"

Separate[breakdowns]
Marry[marriages]

Iteration 4 schema: "end", "attack", "begin", "nominate", "prosecute", "remittance",
"transfer ownership", "release parole", "be born", "sentence", "pass away", "demon-
strate", "arrest jail", "carry", "elect", "start organization", "meet", "injure", "phone
write", "merge organization", "declare bankruptcy", "attend the trial", "fine", "con-
vict", "end organization", "sue", "separate", "acquit", "appeal", "perform", "marry",
"extradite", "pardon"

Separate[breakdowns]
Marry[marriages]

Iteration 5 schema: "end", "attack", "begin", "nominate", "prosecute", "remit-
tance", "transfer ownership", "release parole", "be born", "condemn", "pass away",
"demonstrate", "arrest jail", "carry", "elect", "start organization", "encounter", "in-
jure", "phone write", "merge organization", "go out of business", "attend the trial",
"fine", "convict", "end organization", "sue", "separate", "acquit", "appeal", "perform",
"marry", "extradite", "pardon"

Separate[breakdowns]
Marry[marriages]

Iteration 6 schema: "end", "attack", "begin", "nominate", "prosecute", "remittance",
"giveaway", "release parole", "be born", "condemn", "pass away", "parade", "arrest
jail", "carry", "vote", "start organization", "encounter", "injure", "phone write",
"merge organization", "go out of business", "attend the trial", "fine", "convict", "end
organization", "sue", "separate", "acquit", "appeal", "perform", "marry", "extradite",
"pardon"

Separate[breakdowns]
Marry[marriages]

Iteration 7 schema: "end", "attack", "begin", "nominate", "prosecute", "remittance",
"giveaway", "release parole", "be born", "condemn", "pass away", "parade", "arrest
jail", "carry", "vote", "start organization", "encounter", "hurt", "communication",
"merge organization", "go out of business", "attend the trial", "fine", "convict", "end
organization", "sue", "separate", "acquit", "appeal", "perform", "wed", "extradite",
"pardon"

Separate[breakdowns]
Wed[marriages]

Table 11: Adaptive evolution of analogous schema expansion on ACE2005 dataset.
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GPT-3.5 Input Example:

There are some relation extraction samples, relation must be taken from schema, head entity and
tail entity must be taken from context. Relation, head entity and tail entity may have multiple.
schema: ["people", "country", "religion", "major shareholder of", "industry", "contains", "brith
place", "location", "nationality", "advisors", "neighborhood of", "place lived", "capital", "geo-
graphic distribution", "teams", "major shareholders", "place of death", "children", "company",
"profession", "place founded", "founders"]
Context: In Queens, North Shore Towers, near the Nassau border, supplanted a golf course, and
housing replaced a gravel quarry in Douglaston.
The relation involved in the above sentence are: 1. The head entity is Douglaston, relation is
neighborhood of, tail entity is Queens; 2. The head entity is Queens, relation is contains, tail
entity is Douglaston.
Context: Martin, the district attorney for Lehigh County in Pennsylvania, said that after his
office’s review of the records, he was satisfied with Mr. Cullen’s denials.
The relation involved in the above sentence are: 1. The head entity is Pennsylvania, relation is
contains, tail entity is Lehigh County.
Context: Mr.Brown has demeaned Mr.Bush as "a cheerleader," declared that Homeland Security
Secretary Michael Chertoff did not know "the first thing about running a disaster," and called
critics like Representative Gene Taylor, Democrat of Mississippi, "a little twerp" and Senator
Norm Coleman, Republican of Minnesota, an unprintable vulgarity (both in Playboy).
The relation involved in the above sentence are: 1. The head entity is Gene Taylor, relation is
place lived, tail entity is Mississippi.
...
Do you understand how to do relation extraction based on schema? Now it’s your turn to do
relation extraction.
schema: ["people", "country", "religion", "major shareholder of", "industry", "contains", "birth
place", "location", "nationality", "advisors", "neighborhood of", "place lived", "capital", "geo-
graphic distribution", "teams", "major shareholders", "place of death", "children", "company",
"profession", "place founded", "founders"]
Context: But that spasm of irritation by a master intimidator was minor compared with what
Bobby Fischer, the erratic former world chess champion, dished out in March at a news
conference in Reykjavik, Iceland.
The relation involved in the above sentence are:

GPT-3.5 Output Example: The relation involved in the above sentence are: 1. The head entity
is Bobby Fischer, relation is place lived, tail entity is Iceland; 2. The head entity is Iceland,
relation is contains, tail entity is Reykjavik; 3. The head entity is Iceland, relation is capital, tail
entity is Reykjavik.

Golden Output Example: The relation involved in the above sentence are: 1. The head entity
is Bobby Fischer, relation is nationality, tail entity is Iceland; 2. The head entity is Iceland,
relation is capital, tail entity is Reykjavik; 3. The head entity is Iceland, relation is contains, tail
entity is Reykjavik; 4. The head entity is Bobby Fischer, relation is place of death, tail entity is
Reykjavik.

Table 12: Examples of GPT-3.5 experiment on NYT dataset. A total of 20 demonstrations are given to the model.
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Figure 7: ChatGPT input example on NYT dataset. A total of 20 demonstrations are given to the model.
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Figure 8: ChatGPT output results under a horizontal schema expansion iteration.
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