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Abstract

Interlinear Morphological Glosses are annota-
tions produced in the context of language doc-
umentation. Their goal is to identify morphs
occurring in an L1 sentence and to explicit their
function and meaning, with the further support
of an associated translation in L2. We study
here the task of automatic glossing, aiming to
provide linguists with adequate tools to facil-
itate this process. Our formalisation of gloss-
ing uses a latent variable Conditional Random
Field (CRF), which labels the L1 morphs while
simultaneously aligning them to L2 words. In
experiments with several under-resourced lan-
guages, we show that this approach is both
effective and data-efficient and mitigates the
problem of annotating unknown morphs. We
also discuss various design choices regarding
the alignment process and the selection of fea-
tures. We finally demonstrate that it can benefit
from multilingual (pre-)training, achieving re-
sults which outperform very strong baselines.

1 Introduction

Interlinear Morphological Gloss (IMG) (Lehmann,
2004; Bickel et al., 2008) is an annotation layer
aimed to explicit the meaning and function of each
morpheme in some documentation (‘object’) lan-
guage L1, using a (meta)-language L2. In compu-
tational language documentation scenarios, L1 is
typically a low-resource language under study, and
L2 is a well-resourced language such as English.

Figure 1 displays an example IMG: the source
sentence ¢ in L1 is overtly segmented into a se-
quence of morphemes (x), each of which is in
one-to-one correspondence the corresponding gloss
sequence y. Each unit in the gloss tier is either
a grammatical description (OBL for the oblique
marker in Figure 1) or a semantic tag (son in Fig-
ure 1), expressed by a lexeme in L2. An idiomatic
free translation z in L2 is usually also provided. y
and z help linguists unfamiliar with L1 to under-
stand the morphological analysis in .
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t ffono i
x nesi—s tffono uz
y he.OBL-GEN1 three son
z He had three sons.

Nesis zown
ZOW—n

be.NPRS—PST.UNW

Figure 1: A sample entry in Tsez: L1 sentence (£), and
its morpheme-segmented version (x), its gloss (y), and
a L2 translation (z). Grammatical glosses are in small
capital, lexical glosses in straight orthography.

In this paper, we study the task of automatically
computing the gloss tier, assuming that the mor-
phological analysis & and the free L2 translation z
are available. As each morpheme has exactly one
associated gloss,' an obvious formalisation of the
task that we mostly adopt views glossing as a se-
quence labelling task performed at the morpheme
level. Yet, while grammatical glosses effectively
constitute a finite set of labels, the diversity of lexi-
cal glosses is unbounded, meaning that our tagging
model must accommodate an open vocabulary of la-
bels. This issue proves to be the main challenge of
this task, especially in small training data regimes.

To handle such cases, we assume that lexical
glosses can be directly inferred from the transla-
tion tier, an assumption we share with (McMillan-
Major, 2020; Zhao et al., 2020). In our model, we
thus consider that the set of possible morpheme
labels in any given sentence is the union of (i) all
grammatical glosses, (ii) lemmas occurring in the
target translation, and (iii) frequently-associated la-
bels from the training data. This makes our model
a hybrid between sequence tagging (because of
(i) and (iii)) and unsupervised sequence alignment
(because of (ii)), as illustrated in Figure 2. Our
implementation relies on a variant of Conditional
Random Fields (CRFs) (Lafferty et al., 2001; Sut-

'The reality is slightly more complex, as illustrated by

‘compound’ glosses such as ‘he.0BL’ in Figure 1, associating

two descriptions to the same morpheme. In this work, such
compound labels are processed just as any other purely lexical
gloss during feature extraction, training and inference. This
allows us to only distinguish two types of labels.
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ton and McCallum, 2007), which handles latent
variables and offers the ability to locally restrict the
set of possible labels. The choice of a CRF-based
approach is motivated by its notable data-efficiency,
while methods based on neural networks have diffi-
culties handling very low resource settings—this is
again confirmed by results in §5.1.

In this work, we generalise previous attempts
to tackle this task with sequence tagging systems
based on CRFs such as (Moeller and Hulden, 2018;
McMillan-Major, 2020; Barriga Martinez et al.,
2021) and makes the following contributions: (a)
we introduce (§2) a principled and effective end-
to-end solution to the open vocabulary problem;
(b) we design, implement and evaluate several vari-
ants of this solution (§3), which obtain results that
match that of the best-performing systems in the
2023 Shared Task on automatic glossing (§5.1); (c)
in experiments with several low-resource languages
(§4), we evaluate the benefits of an additional mul-
tilingual pre-training step, leveraging features that
are useful cross-linguistically (§5.5). Owing to
the transparency of CRF features, we also provide
an analysis of the most useful features (§5.6) and
discuss prospects for improving these techniques.

Yo {LAT GENl - 1III PST.UNW}
x nesi S tYono uzi ZOW n
\\ h\
N 1 ~
\\ ! N ~
A 1 A

H
z he had three ! sons

-
Vi(x) (or y) he.oBL son be.NPRS

Figure 2: Tagging morphs for the L1 sentence in Fig. 1.
YV represents the set of all grammatical glosses in the
training data, z the words occurring in the translation,
Y1 () the set of lexical labels from the training dictio-
nary, and y the reference lexical labels seen in training.
During training, automatic alignments between x and z
are used. Dashed lines symbolise the ambiguous origin
of the label, possibly in both z and Yy, ().

2 A hybrid tagging / alignment model
2.1 The tagging component

The core of our approach is a CRF model, the main
properties of which are defined below. Assuming
for now that the set of possible glosses is a closed
set )V, our approach defines the conditional prob-
ability of a sequence y of 7T labels in ) given a
sequence x of 7' morphemes as:

K
pg(y\w) - Zgztw) exXp {Z eka’(mvy)} , (1)

k=1

where {G}, k = 1... K} are the feature functions
with associated weights 8 = [0 ...0k]T € RX,
and Zg(x) is the partition function summing over
all label sequences. For tractability, in linear-
chain CRFs, the feature function G, only test local
properties, meaning that each GG, decomposes as
Gr(x,y) = >, 96(yt, Ye—1, t, ) with g () alocal
feature. Training is performed by maximising the
regularised conditional log-likelihood on a set of
fully labelled instances, where the regulariser is
proportional to the ¢; (|0]) or £ (||0]|?) norm of
the parameter vector. Exact decoding of the most
likely label sequence is achieved with Dynamic
Programming (DP); furthermore, an adaptation of
the forward-backward algorithm computes the pos-
terior distribution of any y; conditioned on x.

Using CRFs for sequence labelling tasks has
long been the best option in the pre-neural era, ow-
ing to (i) fast and data-efficient training procedures,
even for medium-size label sets (e.g. hundreds of
labels (Schmidt et al., 2013)) and higher-order label
dependencies (Vieira et al., 2016), (ii) the ability
to handle extremely large sets of interdependent
features (Lavergne et al., 2010). They can also be
used in combination with dense features computed
by deep neural networks (Lample et al., 2016).

2.2 Augmenting labels with translations

One of the challenges of automatic glossing is the
need to introduce new lexical glosses in the course
of the annotation process. This requires extend-
ing the basic CRF approach and incorporating a
growing repertoire of lexical labels. We make the
assumption [H] that these new labels can be ex-
tracted from the L2 translation (z in Figure 1).

Informally, this means that the grammatical label
set Vg now needs to be augmented with L2 words
in z or equivalently, with indices in [1 ... |z|]. This
raises two related questions: (a) how to exactly
specify the set of labels ) in inference and training.
(b) depending on answers to question (a), how to
learn the model parameters?

In our model, we additionally consider an ex-
tra source of possible lexical labels, V7, (), which
contains likely glosses for morphemes in . There
are several options to design ), (x): for instance,
to include all the lexical glosses seen in training or
to restrict to one or several glosses for each word
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x¢. In our experiments (§5), we select for each mor-
pheme in x the most frequently associated gloss
in the training corpus. ) thus decomposes into
a global part Vs and a sentence-dependent part
Yr(x)U[L...|z]]. Performing inference with this
model yields values y; that either directly corre-
spond to the desired gloss or correspond to an inte-
ger, in which case the (lexical) gloss at position ¢
is zy,. Formally, the gloss labels are thus obtained
as gy = ¢(y¢), with ¢() the deterministic decoding
function defined as Vy € Yo U V() : ¢(y) =y
andVi € [1...]z]|] : (i) = 2.

Training this hybrid model is more difficult than
for regular CRFs, for lack of directly observing
y¢. We observe instead §; = ¢(y;): while the
correspondence is non-ambiguous for grammatical
glosses, there is an ambiguity when g, is present in
both YV;,(x) and z, or when it occurs multiple times
in z. We thus introduce a new, partially observed,
variable o; which indicates the origin of gloss y;:
o = 0 when y; € Yo U Yr(x) and o, > 0 when
y¢ comes from L2 word z,,. The full model is:

po(y,olr,z) = m
By making the origin of the lexical label(s) explicit,
we distinguish in §3.3 between feature functions
associated with word occurrences in z and those
for word types in Yy, (x) (Tickstrom et al., 2013).

Learning 6 with (partially observed) variables is
possible in CRFs and yields a non-convex optimi-
sation problem (see e.g. (Blunsom et al., 2008)). In
this case, the gradient of the objective is a differ-
ence of two expectations (Dyer et al., 2011, eq. (1))
and can be computed with forward-backward re-
cursions. We, however, pursued another approach,
which relies on an automatic word alignment a be-
tween lexical glosses and translation (§3.1) to pro-
vide proxy information for 0. Assuming a; = 0 for
grammatical glosses and unaligned lexical glosses
and a; > 0 otherwise, we can readily derive the
supervision information o; needed in training, ac-
cording to the heuristics detailed in Table 1, which
depend on the values of y; and a;.

Three heuristic supervision schemes are in Ta-
ble 1, which vary on how ambiguous label sources
are handled: (S1) only considers dictionary entries,
which makes the processing of unknown words im-
possible; (S2) only considers translations, possibly
disregarding correct supervision from the dictio-

e, the correct label is always part of the search space.

exp {BTG(m,y, z, o)} .

Yt ag Ot Sys
€ Vo =010 all
eYr(xz) | =010 all

>0 |0 (s1)
>0 | at (82)
>0 || apifyy = 24, | (S3)
0 otherwise
ZVi(x) | =0 0% all
>0 || at all

Table 1: Three supervisions for the hybrid CRF model.
(*) means that the correct label does not occur in the
dictionary nor in the translation. To preserve reference
reachability,” we augment Y, (z) with the correct label.

nary; (S3) assumes that the label originates from
the translation only if an exact match is found.

3 Implementation choices

3.1 Aligning lexical glosses with target words

To align the lexical glosses with the L2 translation,
we use SimAlign (Jalili Sabet et al., 2020), an unsu-
pervised, multilingual word aligner which primar-
ily computes source / target alignment links based
on the similarity of the corresponding embeddings
in some multilingual space. Note that our task is
much simpler than word alignment in bitexts, as
the lexical gloss and the translation are often in the
same language (e.g. English or Spanish), meaning
that similarities can be computed in a monolingual
embedding space. We extract alignments from the
similarity matrix with Match heuristic, as it gave
the best results in preliminary experiments. Match
views alignment as a maximal matching problem in
the weighted bipartite graph containing all possible
links between lexical glosses and L2 words. This
ensures that all lexical morphemes are aligned with
exactly one L2 word.?

one home two khan place become be

in one home there is no place for two kings

Figure 3: Example of SimAlign alignment between lex-
ical glosses and an English translation (Tsez sentence).

Figure 3 displays an alignment computed with
the Match method. Most alignments are trivial
and associate identical units (e.g. one/‘one’) or
morphologically related words (e.g. son/‘sons’).
Non-trivial (correct) links comprise (khan/‘kings’),

3 Assuming there are fewer lexical glosses than L2 words.
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which is the best option as ‘khan’ does not occur
in the translation. A less positive case is the (er-
roneous) alignment of be with ‘“for’, which only
exists because of the constraint of aligning every
lexical gloss. Nevertheless, frequent lemmas such
as ‘be’ will occur in multiple sentences, and their
correct labels are often observed in other training
sentences. We analyse these alignments in §5.4.

3.2 Implementing the hybrid CRF model

Following e.g. (Dyer et al., 2011; Lavergne et al.,
2011), our implementation of the CRF model*
heavily relies on weighted finite-state models and
operations (Allauzen et al., 2007), which we use to
represent the spaces of all possible and reference
labellings on a per sentence basis, and to efficiently
compute the expectations involved in the gradient,
as well as to search for the optimal labellings and
compute alignment and label posteriors.

Training is performed by optimising the pe-
nalised conditional log-likelihood with a variant
of gradient descent (Rprop, (Riedmiller and Braun,
1993)), with ¢; regularisation to perform feature
selection, associated with parameter value 0.5 that
was set during preliminary experiments and kept
fixed for producing all the results below.

Given the size of our training data (§4.1) and
typical sentence lengths, training and decoding are
very fast, even with hundreds of labels and millions
of features. A full experiment for Lezgi takes about
20 minutes on a desktop machine; processing the
larger Tsez dataset takes about 10 hours.

3.3 Observation and label features

Our implementation can handle a very large set
of sparse feature functions g(), testing arbitrary
properties of the input L1 sequence in conjunction
with either isolated labels (unigram features) or
pairs of labels (bigram features). Regarding L1, we
distinguish between orthographic features, which
test various properties of the morpheme string (its
content, prefix, suffix, CV structure and length),
and positional features, which give information
about the position of the morpheme in a word; all
these features can also test the properties of the
surrounding morphemes (within the same word or
in its neighbours). Note that a number of these
features abstract away the orthographic content, a
property we exploit in our multilingual model.

“Our code is available at: https://github.com/

shuokabe/gloss_lost.

On the label side, feature functions test the gloss
value y and type b (GRAM or LEX); for labels
aligned with an L2 word, we additionally collect
its PoS p° and its position [ in z, which acts as a
distortion feature.® Such label features enable us
to generalise alignment patterns for unknown L1
morphemes. More about features in Appendix A.

4 Experimental conditions

4.1 L1 languages

We consider five (out of seven) languages from the
SIGMORPHON 2023 Shared Task on Interlinear
Glossing (Ginn et al., 2023): Tsez (ddo), Gitksan
(git), Lezgi (lez), Natugu (ntu; surprise language),
and Uspanteko (usp; target translation in Spanish).’
Table 2 gives general statistics about the associated
datasets; a brief presentation of these languages is
in Appendix B and in (Ginn et al., 2023).

language ddo git lez ntu usp

train 3,558 31 701 791 9,774
dev 445 42 88 99 232
test 445 37 87 99 633

Table 2: Number of sentences for each language

4.2 Pre-processing L2 translations

L2 translations are lemmatised and PoS tagged
with spaCy,® using the en_core_web_sm and
es_core_news_sm pipelines for English and Span-
ish respectively. All lemmas in the translation are
lowercased except for proper nouns.

4.3 Multilingual corpus

We also explore multilingual pre-training by lever-
aging a recent IGT corpus, IMTVault (Nordhoff
and Kriamer, 2022), which contains IGT examples
from various publications in Language Science
Press. In an attempt to capture cross-linguistic pat-
terns, we only keep sentences with a well-defined
language code with at least 30 sentences, since the
languages we study range from 31 to thousands of
sentences, leaving us 173 languages. The dataset

SFor labels in Yz (x), we associate the most frequently
found PoS tag in the training dataset via alignment. As gram-
matical morphemes have no aligned target words, we use the
generic label GRAM for all grammatical glosses.

®Non-aligned units (i.e. glosses from )y, (x) and Y¢) have
dedicated positions (—1 and —2, respectively).

"We did not run our models on the Nyangbo (nyb) dataset,
which does not include a translation tier.

8https: //spacy.io/.
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is shuffled and then split into 30K training, 2K
development, and 2K test datasets.

4.4 SimAlign settings

Since the glosses and the translation are in the same
language, we use the embeddings from the En-
glish BERT (bert-base-uncased) (Devlin et al.,
2019) when the L2 language is English and mBERT
(‘bert-base-multilingual-uncased’) for Span-
ish (for Uspanteko). We stress here that our model
is compatible with several target languages, SimA-
lign being an off-the-shelf multilingual (neural)
aligner.

Our preliminary experiments showed that the em-
beddings from the O-th layer yielded the best align-
ments, especially compared to the 8-th layer, which
seems to work best in most alignment tasks. A
plausible explanation is that contextualised embed-
dings are unnecessary here because lexical glosses
do not constitute a standard English sentence (for
instance, they do not contain stop words, and their
word order reflects the L1 word order).

4.5 Evaluation metrics

We use the official evaluation metrics from the
Shared Task: morpheme accuracy, word accuracy,
BLEU, and precision, recall, and F1-score com-
puted separately for grammatical (Gram) and lexi-
cal (Lex) glosses. We report the results of our best
system with all metrics in Appendix.

4.6 Baselines

Below, we consider three baseline approaches
which handle glossing as a sequence-labelling task:

* maj: a dictionary-based approach, which as-
signs the majority label (grammatical and lex-
ical) seen in the training dataset to a source
morpheme and fails for out-of-vocabulary
morphemes;

* CRF+maj: a hybrid model relying on a CRF
to predict grammatical glosses and a unified
lexical label (as in (Moeller and Hulden, 2018;
Barriga Martinez et al., 2021)). Known lexical
morphemes are then assigned a lexical label
according to the maj model;

e BASE_ST: 1is the Transformer-based base-
line developed by the SIGMORPHON Shared
Task organisers and detailed in Ginn (2023).°

*https://github.com/sigmorphon/2023glossingST/
tree/main/baseline.

5 Experiments

5.1 Results

Table 3 reports the scores of the baselines from
§4.6, as well as the best results in the Shared
Task on Automatic Glossing (BEST_ST)'? and the
results of variants of our system on the official
testsets. We only report below the word- and
morpheme-level (overall) accuracy, which are the
two official metrics of the Shared Task.'!

model ddo git lez ntu usp
maj 653 281 812 815 728
CRF+maj - 294 849 88.1 762
BASE_ST 75.7 164 345 41.1 76.6
BEST_ST 85.8 315 854 893 785
CRF (Sl) 36.2 255 653 59.0 532
CRF (S2) 51.5 299 528 650 633
CRF (s3) 85.6 33.6 828 89.1 789
maj 79.1 512 858 87.1 795
CRF+maj - 51.1 883 923 825
BASE_ST 853 253 51.8 49.0 825
BEST_ST 92.0 524 87.6 928 845
CRF (s1) 60.1 47.8 73,5 73.0 655
CRF (S2) 702 453 650 76.8 733
CRF(s3) 919 524 870 928 844

Table 3: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for baseline systems and three
variants of the hybrid CRF model on the test dataset.
Best scores in each language & metrics are in bold.'?

A first observation is that system (S3), which
effectively combines the information available in
a dictionary and obtained via alignment in an inte-
grated fashion (see §2.2) greatly outperforms (S1)
(only dictionary) and (S2) (only alignment), obtain-
ing the best performance among our three variants.
(S3) is also consistently better than all the base-
lines, with larger gaps when few training sentences
are available (e.g. Gitksan or Lezgi). In compari-
son, the BERT-based baseline suffers a large per-
formance drop in very low-data settings, as also
reported in (Ginn, 2023). Our CRF model also
achieves competitive results compared to the best
system submitted to the Shared Task, especially
for the word-level scores. These scores confirm

10https: //github.com/sigmorphon/2023glossingST/
blob/main/results.md.

"Full results of CRF ($3) in Appendix D.

12CRF+maj was not computed on Tsez because the number

of features is too prohibitive. For our systems, CRF (S1) and
CRF (S2) are the lower bounds of our results.
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that decent to good accuracy numbers can be ob-
tained based on some hundreds of training sen-
tences. Note, however, that annotated datasets of
that size are not so easily found: in the IMT Vault
(Nordhoff and Kriamer, 2022), only 16 languages
have more than 700 sentences, which is about the
size of the Lezgi and the Natugu corpora.

5.2 Handling unknown morphemes

Leveraging the translation in glossing opens the
way to better handle morphemes that were unseen
in training. Table 4 displays some statistics about
unknown morphemes in test datasets. For most
languages, they are quite rare, representing solely
around or below 10% of all lexical glosses in the
test set, with Gitksan a notable outlier (Ginn et al.,
2023). Among those unseen morphemes, a signif-
icant proportion (from a third in Tsez up to 70%
in Gitksan) of the reference lexical gloss is not
even present in the translation!? (cf. ‘not in L2’
in Table 4). Taking this into account nuances the
seemingly low accuracy for unknown lexical mor-
phemes: in Uspanteko, for instance, the system
reaches an accuracy of 29.3 when the best achiev-
able score is about 35. To have a more optimistic
view of our prediction, we ‘approximate’ lexical
glosses with lemmas from the translation, using
automatic alignments (e.g., king instead of khan in
Figure 3). By evaluating the unknown morphemes
with their reachable labels'# (cf. ‘align. accuracy’
line), we get higher scores, such as 40.4 in Natugu.

language ddo git lez ntu usp
number 44 200 64 47 181
proportion (%) 1.02 749 9.65 6.16 10.9
not in L2 15 143 42 24 117
gold accuracy 18.2 12.0 4.7 29.8 29.3
align. accuracy 159 18.0 10.9 404 56.9

Table 4: Statistics about unknown lexical morphemes in
testsets. We report the morpheme-level accuracy.

5.3 Data efficiency

An important property of our approach seems to be
its data efficiency. To better document this property,
we report in Table 5 the morpheme-level accuracy
obtained with increasingly large training data of

3We studied the exact match with any lemmas in the transla-
tion; composed glosses are hence always considered as absent.

“Whenever possible; if the lexical gloss has no automatic
alignment, we keep the reference gloss.

size (50, 200, 700, 1,000, 2,000, full) in Tsez. With
200 examples already, our model does much better
than the simple baseline maj and delivers usable
outputs. (S3) also has a faster improvement rate
than the baseline for small training datasets (e.g.
almost +7 points between 200 and 700 sentences),
while maj increases by only +4 points. The return
of increasing the dataset size above 1,000 is, in
comparison, much smaller. While the exact num-
bers are likely to vary depending on the language
and the linguistic variety of the material collected
on the field, they suggest that ML techniques could
be used from the onset of the annotation process.

train 50 200 700 1,000 2,000 full
maj 61.0 724 76.7 716 787 79.1
CRF (S3) 669 80.6 875 892 90.7 919

Table 5: Morpheme-level accuracy with increasing train-
ing data size in Tsez for two systems.

5.4 Analysis of automatic alignments

Our approach relies on automatic alignment com-
puted with SimAlign to supervise the learning pro-
cess. When using the Match method, (almost) all
lexical glosses are aligned with a word in the trans-
lation (cf. footnote 3). We cannot evaluate the
overall alignment quality, as reference alignments
are unobserved. However, we measure in Table 6
the proportion of exact matches between the refer-
ence gloss and the lemma of the aligned word.

model ddo git lez ntu usp
exact match 513 432 51.2 60.6 478

Table 6: Proportion of exact matches between the ref-
erence gloss and the lemma of the aligned word with
SimAlign for the training datasets.

Overall, around half of our alignments are triv-
ial and hence sure, which is more or less in line
with the proportions found by Georgi (2016), albeit
lower due to the marked linguistic difference be-
tween L1 and L2 in our case. These seemingly low
scores have to be nuanced by two facts. First, they
are a lower bound to evaluate alignment quality
since synonyms (such as khan/king) are counted as
wrong alignments. In some cases, inflected forms
are also used as a gloss (e.g., dijo/decir in Uspan-
teko). Second, the alignment-induced glosses are
not used as is in our experiments: they supplement
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the output label with their PoS tag and their po-
sition in the L2 sentence. This means that even
non-exact matches can yield useful features.

Removing L2 stop words We carried out a
complementary experiment where we filtered stop
words in the L2 translation in Gitksan to remove
a potential source of error in the alignments. The
number of unaligned lexical glosses (§3.1) thus
increases, which generally means a reduced noise
in the alignment for the Match method. Yet, us-
ing these better alignments and reduced label sets
in training and inference yields mixed results:
+1 point in word accuracy, —2 points in morpheme
accuracy.

5.5 Multilingual pre-training

Cross-lingual transfer techniques via multilingual
pre-training (Conneau et al., 2020) are the corner-
stone of multilingual NLP and have been used in
multiple contexts and tasks, including morpholog-
ical analysis for low-resource languages (Anasta-
sopoulos and Neubig, 2019). In this section, we
apply the same idea to evaluate how well such
techniques can help in our context. We train the
model to predict the nature of the gloss (grammati-
cal or lexical) with multilingual features (see Ap-
pendix A): for a given morpheme, its position in
the word, its length in characters, its CV skeleton,
and the number of morphemes in the word. Using
IMTVault (§4.3) for this task, the model reaches
around 80 of accuracy.

model ddo git lez ntu usp
CRF (S3) 85.6 336 828 89.1 789
+ IMT 853 33.1 834 89.0 79.0
CRF (S3) 919 524 87.0 92.8 844
+ IMT 91.8 528 87.1 925 845

Table 7: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for the model without and with
multilingual pre-training on the test dataset.

We use these pre-trained weights to initialise the
multilingual features in our (S3) system. To help
feature selection, we notably reduce the value of
£1 to 0.4. Pre-training results (+ IMT) are in Ta-
ble 7. We note that pre-training has a negligible
effect, except in some metrics, such as in Lezgi for
the word level. We observed that the most impor-
tant weights in the pre-trained model correspond

5We identify consonants and vowels based on orthography.

to delexicalised pattern features that are relevant in
IMT Vault but not present at all in our datasets.

Cross-lingual study Besides, since in our stud-
ied languages, Tsez and Lezgi belong to the same
language family, we reiterate this methodology but
with the Tsez dataset as a pre-training source to
predict Lezgi glosses. This kinship is also explored
through successful cross-lingual transfer in (Zhao
et al., 2020). We obtain 83.3 and 87.1 for word
and morpheme accuracy, which is very close to the
performance with (and without) IMT Vault despite
containing fewer sentences.

Very low resource scenarios A final experiment
focuses on a very low training data scenario. Save
the Gitksan corpus, the test languages already rep-
resent hundreds of annotated sentences. This con-
trasts with actual data conditions: in IMT Vault,
for instance, only 16 languages have equivalent or
more sentences than Lezgi (the second-lowest lan-
guage in terms of training sentences in our study; cf.
§5.1). We thus focus here on (simulated) very low-
resource data settings by considering only 50 sen-
tences'® selected from the training data.

model ddo lez ntu usp

CRF (S3) 47.6 537 649 459
+IMT 48.0 54.0 656 483
CRF (S83) 669 633 747 575
+IMT 673 634 753 59.2

Table 8: Accuracy at the word (top) and morpheme
(bottom) levels for (S3) without and with multilingual
pre-training on the test dataset with 50 training sen-
tences.

Table 8 reports the results obtained with this
configuration. We observe that using the multi-
lingual pre-training helps for all languages to a
more noticeable extent than before. These three
experiments confirm the potential of multilingual
transfer for this task, which can help improve per-
formance in very low-resource scenarios. Contrar-
ily, when hundreds of sentences are available, pre-
training delexicalised features proves ineffective,
sometimes even detrimental.

5.6 Feature analysis

One positive point in using models based on CRFs
relies on access to features and their correspond-

'Filtering IMTVault with this threshold would lead to
124 languages kept.
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ing learnt weights. We report in Appendix E ten
features with the largest weight in Natugu.

Among the top 1% of active features in Natugu
in terms of weight, we find two features testing
the gloss type b with the morpheme length: (LEX,
6+) and (LEX, 5). These indicate that longer mor-
phemes are likely to have a lexical label. Such
an analysis can also be relevant to weights learnt
through multilingual pre-training. For instance,
(LEX, 5) is among the top 10% features on the IMT-
Vault dataset, suggesting a cross-lingual tendency
of longer morphemes being lexical.

6 Related work

Language documentation With the ever-
pressing need to collect and annotate linguistic
resources for endangered languages, the field of
computational language documentation is quickly
developing, as acknowledged by the ComputEL
workshop.!” Regarding annotation tools, recent
research has focused on all the steps of language
documentation, from speech segmentation and
transcription to automatic word and morpheme
splitting to automatic interlinear glossing.

(Xia and Lewis, 2007; Georgi et al., 2012, 2013)
use, as we do, interlinear glosses to align morphs
and translations, then to project syntactic parses
from L2 back to L1, a technique pioneered by Hwa
et al. (2005), or to extract grammatical patterns
(Bender et al., 2014). Through these studies, a
large multilingual database of IMGs was collected
from linguistic papers, curated, and enriched with
additional annotation layers (Lewis and Xia, 2010;
Xia et al., 2014) for more than 1,400 languages.
(Georgi, 2016) notably discusses alignment strate-
gies in ODIN and trains a multilingual alignment
model between the gloss and translation layers - in
our work, we extend multilingual training to the
full annotation process. Another massive multilin-
gual source of glosses is IMT Vault, described in
(Nordhoff and Krimer, 2022), studied in §5.5.

Automatic glossing  Automatic glossing was
first studied in (Palmer et al., 2009; Baldridge and
Palmer, 2009), where active learning was used to
incrementally update an underlying tagging system
focusing mainly on grammatical morphemes (lex-
ical items are tagged with their PoS). (Samardzi¢
et al., 2015) added to this an extra layer aimed to
annotate the missing lexical tags, yielding a system
that resembles our CRF+maj baseline.

17https ://computel-workshop.org/.

Both (Moeller and Hulden, 2018) and
(McMillan-Major, 2020) rely on CRFs, the latter
study being closer to our approach as it tries to
combine post-hoc the output of two CRF models
operating respectively on the L1 and L2 tier, where
our system introduces an integrated end-to-end
architecture. Zhao et al. (2020) develop an
architecture inspired by multi-source neural
translation models, where one source is the L1
sequence, and the other the L2 translation. They
experiment with Arapaho, Lezgi, and Tsez, while
also applying some sort of cross-lingual transfer
learning. The recent SIGMORPHON exercise
(Ginn et al., 2023) is a first attempt to standardise
benchmarks and task settings and shows that
morpheme-level accuracy in the high 80s can be
obtained for most languages considered.

Latent variable CRFs models Extended CRF
models were proposed and used in many studies,
including latent variables to represent, e.g. hidden
segmentation as in (Peng et al., 2004) or hidden syn-
tactic labels (Petrov and Klein, 2007). Closer to our
work, (Blunsom et al., 2008; Lavergne et al., 2011)
use latent structures to train discriminative statis-
tical machine translation systems. Other relevant
work on unsupervised discriminative alignment are
in (Berg-Kirkpatrick et al., 2010; Dyer et al., 2011),
while Niehues and Vogel (2008) use a supervised
symmetric bi-dimensional word alignment model.

7 Conclusion

This paper presented a hybrid CRF model for
the automatic interlinear glossing task, which was
specifically designed and tailored to work well in
low data conditions and to effectively address is-
sues due to out-of-vocabulary morphemes. We
presented our main approach, which relies on
analysing the translation tier, and discussed our
main implementation choices. In experiments with
five low-resource languages, we obtained accuracy
scores that match or even outperform those of very
strong baselines, confirming that accuracy values in
the 80s or above could be obtained with a few hun-
dred training examples. Using a large multilingual
gloss database, we finally studied the possibility of
performing cross-lingual transfer for this task.
There are various ways to continue this work
and improve these results, such as removing the
noise introduced via erroneous alignments links—
either by marginalising over the ‘origin’ variable,
by filtering unlikely alignments based on link poste-
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rior values, or by also trying to generate alignment
links for function words (Georgi, 2016; McMillan-
Major, 2020). Our initial experiments along these
lines suggest that this may not be the most promis-
ing direction. We may also introduce powerful neu-
ral representations for L1 languages; while these
were usually available for a restricted number of
languages, recent works have shown that even low-
resource languages could benefit from these tech-
niques (Wang et al., 2022; Adebara et al., 2023).

Limitations

The main limitation comes from the small set of lan-
guages (and corresponding language family) stud-
ied in this work. In general, texts annotated with
Interlinear Morphological Gloss are scarcely avail-
able due to the time and expertise needed to an-
notate sentences with glosses. However, corpora
such as IMTVault (Nordhoff and Kramer, 2022) or
ODIN (Lewis and Xia, 2010) or languages such as
Arapaho (39,501 training sentences in the Shared
Task) pave the way for further experiments.
Moreover, another shortcoming of our work
stems from the fact that we do not use neural mod-
els in our work, while, for instance, the best submis-
sion to the Shared Task relies on such architectures.
In this sense, we have yet to compare the scala-
bility of our performance to larger data. Still, one
of our main focuses was to tackle glossing in very
low-resource situations for early steps of language
documentation and to study how to handle previ-
ously unseen morphemes at the inference step.
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A Model features

The input side x is the L1 morpheme sequence;
from each x;, from which we also deduce the fol-
lowing features: its position ¢ within the word
coded as a numerical value (from O to n) for com-
plex words, or as ‘F’ for free morphemes, its
length [ in characters, its 3-char prefix and suffix
(d and e respectively), the number of morphemes
in the word, and its CV skeleton dl (Consonant
and Vowels) based on the orthography of the mor-
pheme. Figure 4 displays an example of input and
the associated features, while Table 9 illustrates the
output label format according to the origin of the
gloss.

With all these inputs to predict the output labels,
we compute unigram and bigram feature functions,
detailed in Table 13.

Besides, we add features that test properties be-
tween the source and translation: a copy feature to
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input features outputs features
i source : position length  first3 last 3 copy  position CV skele- || reference GRAM or PoS |, copy position
morph. m ! (in word) ¢ l letters d  letters e src cs sIc ps ton dl gloss y LEX b tag p : trg ct trg pt
0 nesi } 0 4 nes esi 0 1/4 Ccvcyv he.oBL LEX PRON l 0 1/4
1 S ! 1 1 s s 0 1/4 C GENI GRAM GRAM ' -1 -2
2| fono | F 5 tio ono 0 2/4  CCVCV | three LEX NUM |0 3/4
3 uzi | F 3 uzi uzi 0 2/4 VCVv son LEX NOUN |, 0 4/4
4 ZOW ! 0 3 ZOW ZOW 0 3/4 cvC be.NPRS LEX VERB ! 0 2/4
5 no 1 1 n n 0 4/4 C PSTUNW GRAM  GRAM | -l 2

Figure 4: Example of input, outputs, and associated features to Lost for the Tsez reference sentence of Figure 1.

Origin Y b D l

Ya GENl GRAM GRAM -

Vi (x) king LEX NOUN -
210 khan LEX NOUN 10
yi,00 =10 khan LEX NOUN 10

Table 9: Example of output features extracted from each
label set, using the example of Figure 3. The reference
(yt, o) is the training supervision.

handle glosses that literally appear in the L2 sen-
tence (namely, proper nouns) and a distortion fea-
ture which tests the difference in relative positions
between the source morpheme and the (possible)
lexical label, whenever a; > 0.

B Brief language presentation
We describe below the studied languages.

* Tsez (ddo) is a Nakh-Daghestanian language
spoken in the Republic of Dagestan in Russia.

* Gitksan (git) is a Tsimshian language spo-
ken on the western coast of Canada (British
Columbia).

* Lezgi (lez) is a Nakh-Daghestanian language
spoken in the Republic of Dagestan in Russia
and in Azerbaijan.

* Natugu (ntu) is an Austronesian language spo-
ken in the Solomon Islands.

» Uspanteko (usp) is a Mayan language spoken
in Guatemala.

According to Ethnologue (Eberhard et al., 2023),
the two Nakh-Daghestanian languages have be-
tween 10K to 1M speakers, while the other three
have fewer than 10K users.

C Number of active features

Table 10 presents the number of active features
(in thousands) selected among all features (in mil-

lions) for S3. We note here that thanks to the [;-
regularisation term, most feature weights are set
to 0 and less than 1% of the features are actually
retained.

ddo git lez ntu usp
Active S3 196k 4k 51k 73k 151k
Total 18M 1M 26M 44M 29M

Table 10: Number of selected features among all com-
puted features for the S3 system in each language.

D Full results

Table 11 displays the results of the S3 system
with all metrics presented in §4.5. Two scores
of accuracy are computed for both morpheme and
word levels: an overall (Ovr) value and a sentence-
averaged value (Avg).

E Example of learnt features

Table 12 displays 10 features with the largest
weight in the S3 system in Natugu. Here, we ignore
trivial features for numbers or punctuation signs
that also have high weight values. The ID of the
feature refers to Table 13.
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Morpheme Acc. Word Acc. BLEU (Morpheme) Lex Gram

Ovr: 91.9 Ovr: 85.6 P:91.7 P:92.1

Tsez (ddo) 81.3 R:90.7 R:93.0
Avg: 91.9 Avg: 85.6 F1:91.2 Fl1:92.5

Ovr: 52.4 Ovr: 33.6 P:23.0 P:76.7

Gitksan (git) 19.2 R:27.0 R:68.4
Avg: 53.1 Avg: 33.1 F1:24.8 F1:72.3

Ovr: 87.0 Ovr: 82.8 P: 872  P:86.7

Lezgi (lez) 73.1 R:87.5 R:86.2
Avg: 86.4 Avg: 82.0 F1: 87.3 Fl: 86.5

Ovr: 92.8 Ovr: 89.1 P:90.1 P:955

Natugu (ntu) 82.8 R:89.8 R:95.8
Avg: 92.6 Avg: 88.7 F1: 899 Fl1:95.6

Ovr: 84.4 Ovr: 78.9 P:78.1  P:89.9

Uspanteko (usp) 69.4 R:763 R:91.8
Avg: 79.3 Avg: 74.6 F1: 772 F1:90.8

Table 11: Full results with our S3 system on the IGT Shared Task test dataset.

ID Feature Weight
25 be A 1/4 A ngi A 3/4 2.91
9 PREP A NMLZ1 A mz 2.49
25  market A 4/4 A maket A 2/4 2.49
8 body A rtq 2.36
25 tree A 3/4 A nc A 1/4 2.29
7 SUBR A kx 2.28
3 SUBR A kx 2.28
25 catechist A 4/4 A katkis A 2/4 2.28
8 take A twz 2.28
25 eat A 3/4 A mu A 4/4 2.28

Table 12: 10 features with the largest weight in Natugu.
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ID Feature Test Example (cf. Figure 4 ¢ = 5)

1 uni-gloss 1(g; = g) PST.UNW

2 bi-gloss 1gi=9)AL(gi-1 =¢) (be.NPRS, PST.UNW)

3 uni-gloss-morph 1(gi = g) AN 1(m; = m) (PST.UNW, n)

4 uni-gloss-bi-morph 1(gi = g) AN1(mi—1 = m') AL(m; =m) (PST.UNW, Zow, n)

5 uni-gloss-position Lgi=g)NL(t;i=1) (PST.UNW, 1)

6 uni-gloss-length Lgi=9g) AL =1) (PST.UNW, 1)

7  uni-gloss-start 1(g; =g) AN1(d; =d) (PST.UNW, n)

8 uni-gloss-end 1(gi=g) A 1l(e; =e) (PST.UNW, n)

9  bi-gloss-morph (g = 9) N1(gi-1 = ¢') AN1(m; =m)  (be.NPRS, PST.UNW, n)
10 *uni/bi-bin 1(b; = b) (AL(b;j—1 = b)) GRAM ((LEX, GRAM))
11 uni/bi-pos 1(p; = p) ALl(pi—1 =P')) GRAM ((VERB, GRAM))
12 uni-bin-morph 1(b; =b) A1(m; =m) (GRAM, n)

13 *uni-bin-position/length 1(b; =b) ANL(t; =t)/1(1; =1) (GRAM, 1)/ (GRAM, 1)

14 uni-bin-start/end 1(b; =b) AN1(d; =d)/1(e; =€) (GRAM, n) / (GRAM, n)

15 *uni-bin-bi-position b, =b) ALt =) AN1(timr =) (GRAM, 0, 1)

16  bi-bin-gloss Lgi=g) A1(biz1 = V) (LEX, PST.UNW)

17  bi-gloss-bin 1(b; =b)A1(gi-1=¢') (be.NPRS, GRAM)

18  uni-pos-morph 1(p; = p) AL(m; = m) (GRAM, n)

19  bi-pos-gloss g =g) AN Lipi—1 =) (VERB, PST.UNW)

20 bi-gloss-pos 1pi=p) ANL(gi-1 =¢) (be.NPRS, GRAM)

21  uni-pos-start/end p;=p)ANLd; =d)/1(e; =€) (GRAM, n) / (GRAM, n)

22 uni-copy-trg 1(ct; = ct) -1

23 uni-copy-trg-src L(ct; = ct) A 1(es; = cs) (-1,0)

24 uni-posi-ts 1(pt; = pt) A L(ps; = ps) (-2, 4/4)

25  uni-gloss-morph-pts 1(g; = g) A L(pt; = pt) (PST.UNW, -2, n, 4/4)
AL(m; =m) A L(ps; = ps)

26 uni-gloss-delex g9i =g) AN1(dl; = dl) (PST.UNW, C)

27  *uni-bin-delex b; =b) A1(dl; = dl) (GRAM, C)

28 uni-pos-delex ; (GRAM, C)

29  *uni-bin-bi-delex
30 *bi-bin-bi-delex

(GRAM, CVC, O)

b = b) AN1(dl—1 = dl') AN 1(dl; = dl)
b (LEX, PST.UNW, CVC, C)

i1 =) A L(b = b)
AL(dl;—1 = dl/) A1(dl; = dl)
1(bz = b) A l(ti = t) A l(mll = ml)

31 *uni-bin-rel-morph-position (GRAM, 1, 2)

Table 13: Unigram and bigram features for our submissions: features about the main gloss label on top, those
involving the two other general outputs, and other additional features at the bottom. Star-marked feature names
indicate multilingual features also used for pre-training.
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