PROTEGE: Prompt-based Diverse Question Generation from Web Articles

Vinayak S Puranik
Amazon
puranikv@amazon.com

Anirban Majumder
Amazon
majumda@amazon.com

Vineet Chaoji
Amazon
vchaoji@amazon.com

Abstract

Rich and diverse knowledge-bases (KB) are
foundational building blocks for online knowl-
edge sharing communities such as StackOver-
flow and Quora, and applications such as con-
versational assistants (aka chatbots). A pop-
ular format for knowledge bases is question-
answer pairs (or FAQs), where questions are
designed to accurately match a multitude of
queries. In this paper, we address the prob-
lem of automatic creation of such Q&A-based
knowledge bases from domain-specific, long-
form textual content (e.g., web articles). Specif-
ically, we consider the problem of question gen-
eration, which is the task of generating ques-
tions given a paragraph of text as input, with
a goal to achieve both diversity and fidelity of
the generated questions. Towards this goal we
propose PROTEGE, a diverse question gener-
ation framework which consists of (1) a novel
encoder-decoder based Large Language Model
(LLM) architecture which can take a variety of
prompts and generate a diverse set of candidate
questions, and (2) a hill-climbing algorithm
that maximizes a sub-modular objective func-
tion to balance diversity with fidelity. Through
our experiments on three popular public Q&A
datasets, we demonstrate that PROTEGE im-
proves diversity by +16% and fidelity by +8%
over diverse beam search and prompt-based
baselines.

1 Introduction

In a data rich era, identifying, extracting and gen-
erating responses to user’s questions has become
the next challenge. While search engines provide a
simple interface for users to get responses to their
queries, getting answers to complex queries still
remains a challenge (Krishna et al., 2021). As a
result, specialized knowledge bases that extract and
store question-answer pairs have become prevalent.

Many applications rely on a knowledge base of
generated question-answer pairs, to ensure reliable,
accurate and as close to human-generated informa-
tion to their users. For instance, a key frustration

for online shopping is the difficulty in identifying
the right product that suits the requirement. For
high-consideration products such as laptops and
smartphones, at times customers lack the human
touch that they would otherwise experience in an
offline store where trained sales agents can explain
features of each product and provide high-level
guidance to select the right one. The sales agent
can proactively query the customer to understand
her requirement, help refine her needs and finally
recommend the right products. In order to bridge
the gap between online and offline shopping ex-
perience, multi-turn goal-oriented dialog systems,
also known as chatbots offer a promising direc-
tion. Chatbots help users to familiarize technical
concepts, acquire domain knowledge, get recom-
mended products that they are likely to buy, closely
mimicking the offline shopping experience.

Towards curating a large scale knowledge bank,
Large Language Models (LLMs) (Devlin et al.,
2019; Raffel et al., 2020; Brown et al., 2020) have
shown remarkable success in learning in-depth
knowledge from data. They do so without access to
any external memory as the knowledge is imbibed
in the model parameters. While this is fascinating,
on the downside, the model may hallucinate (Mar-
cus, 2020) and generate answers that are factually
incorrect. As a result, modern chatbot systems em-
ploy a Retrieval-Augmented Generation (RAG) ar-
chitecture (Lewis et al., 2020) that has two compo-
nents: a) an encoder-decoder network that does the
natural language understanding of user queries and
language generation and b) a back-end knowledge-
base (KB) that indexes relevant bits of information
for the task at hand. The encoder maps user inputs
to a dense representation which is used to query
the KB and retrieve evidences. The evidences, as
well as the input, are fed to the decoder to generate
the final response.

Scalable generation of knowledge-bases is funda-
mental to the success of the RAG and the underly-

5449

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 5449-5463
December 6-10, 2023 ©2023 Association for Computational Linguistics

ing chatbot application. In this work, we investigate
automatic generation of a knowledge-base. Unlike
traditional RAG system (Lewis et al., 2020; Izacard
et al., 2022) that indexes webpages and large docu-
ments, we look for a knowledge-base in the form
of question-answer pairs. Not only this helps us
improve the accuracy of evidence retrieval, but also
allows rich applications to be easily built on top of
it e.g., suggesting related questions, navigation of
the KB etc, for improved customer experience. Our
focus is on educational questions, i.e., questions
that help user familiarize with product concepts
(“What is the difference between SSD and HDD?”)
and use-case guidance (“What is the recommended
configuration for a gaming laptop?”).

Question generation is the task of generating
questions given a paragraph of text as input. Ques-
tion generation quality can be attributed to two
characteristics: a) Fidelity that measures the se-
mantic coherence of generated questions and our
ability to answer them from the input paragraph,
and b) Diversity which measures lexical and se-
mantic dissimilarity between generated questions.
Many previous works (Rajpurkar et al., 2018, 2016;
Kwiatkowski et al., 2019) have addressed the task
of generating questions from text. While it is essen-
tial to generate questions that are of high fidelity,
for knowledge-base completion, it is imperative to
have a diverse question set. To promote diversity,
current question generation models rely on beam
search. The resulting set, however contains many
structurally similar questions with minor lexical
changes that warrant the same answer. There has
been prior work (Elhamifar et al., 2012; Song et al.,
2018; Vijayakumar et al., 2018) in NLP on diver-
sity. In particular, Song et al. (Song et al., 2018)
addresses diversity via Determinantal Point Pro-
cesses (DPP) for neural conversation models, it can
be adapted for question generation task.

While these approaches are helpful in maximiz-
ing diversity, they fall short in terms of generat-
ing high fidelity output. Naively borrowing these
techniques may allow the model to hallucinate and
generate questions that are not answerable from
the input paragraph. Addressing the task of diverse
question generation through the lens of monotone
sub-modular function (Bach, 2013) alleviates this
problem and provide additional benefits. On one
hand, this formulation provides flexibility in con-
trolling diversity and fidelity of the output. On the
other hand, we can leverage a well-known greedy

algorithm (Nemhauser et al., 1978) to generate a
near optimal set of questions, therefore, increasing
yield and quality simultaneously.

We propose PROTEGE (PROmpT-based
divErse question GEneration), a diverse question
generation framework which consists of two
stages (1) a novel encoder-decoder based LLM
architecture which can take a variety of prompts
and generate a diverse set of candidate questions,
and (2) a greedy hill-climbing algorithm that
maximizes a sub-modular objective function to
balance diversity with fidelity. We demonstrate that
PROTEGE improves diversity by +16% and fidelity
by +8% while also improving text generation
metrics, over strong baselines. Our experiments on
three popular public Q&A datasets indicate that
PROTEGE consistently outperforms both diverse
beam search-based and prompt-based baselines.

2 PROTEGE: Prompted Question
Generation

Question generation models take a source con-
text x represented as a sequence of sentences
x = (x1,x2---), pass them through an encoder
to learn its latent representation and finally through
a decoder to generate the output question y =
(y1,y2 - --) with one word y; at a time. Given
training data-set D = {(z,y)}, the model param-
eters 6 are learned by maximizing the likelihood
function -, yeplogPr(y | z;0) The encoder
and decoder are implemented as Transformer net-
works (Vaswani et al., 2017). The encoder con-
sists of N, layers where each layer contains a
self-attention and feed-forward block. The en-
coder takes an input 2 € RE*S*F and passes
it through all the encoder blocks to generate an
output 4 = ENCODER(z) € RBEXSXF 1 The
n'™ encoder block is a Transformer layer TRANS-
FORMER(m(”_l)) which takes the input (=1
from previous layer and generates the output (™).
The encoder blocks are applied in a sequence and fi-
nally we get the output & = z(N¢). To generate the
i™ output word ;. 1, we take the previous words
Y.; = Y1..; and the encoder output / and pass them
through Ny decoder blocks. Each decoder block
contains a self-attention, cross-attention and feed-
forward layer. The decoder blocks are also applied
in a sequence and at the final layer it emits the next

word y; 11 = y,(JNd).

"Here B is the minibatch size, S is the sequence length
and F' denotes the embedding dimension.

5450

A
>N Ne
'\AJ =

X | by
h, h
Ml Cross Cross |7 *
Attention Attention Encoder —>
D,
ke
: 4™
LayerNorm " T
Te,Tp

A

Decoder

MDe Dy
&
I Self Attention D;
p— Modified
(n—1) Decoder Layer
Y

(a) (0)

Figure 1: Model Architecture of PROTEGE encoder
and decoder. The left figure (a) shows the modifica-
tions (components shown in color) done to the standard
decoder architecture. As shown in the figure (b), the En-
coder takes the context and prompt as input and generate
representations h. and h,,. The decoder is modified to
incorporate cross-attention with h. and h, and a mixup
layer to aggregate the outputs.

2.1 Controlled Generation

For controlled generation of questions, we feed
the input document along with various types of
prompts to the encoder. This requires some modifi-
cation to the standard encoder-decoder architecture.
We use two encoders: one for the document (or, the
context) and the other for the prompt signals (Dou
et al., 2021). Similar to Transformer architecture,
each encoder has 1 + N, layers where the first N,
layers use shared parameters O, for the context
and prompt. The final encoder layers consist of an
additional Transformer block for the context and
prompt inputs with individual parameters O, ©,,
respectively. More specifically, given context .
and prompt x,,, we run the following computation
on the encoder side,

he = TRANSFORMER (ENCODER (z,, ©.) , O,)
h, = TRANSFORMER (ENCODER (), ©.) , 0))

Our decoder attends to both the context and prompt
signals h., h,. We achieve it by modifying the
standard architecture as follows. Unlike standard
decoder, each decoder layer attends to both context
and prompt embeddings from the encoder via cross-
attention layers and their combined output is fed to

the feed-forward network. More specifically, each
decoder layer performs the following computation,

4" = LN (y.(ffl) + SA(y.(ffl))) (1)
C) Yin

d™ = LN (d§;;> +CA(h d(”))) 2)

df) = LN (df) + CA(h,,d)))

P
") = Mixup (d&"), dim) (4)
y§) =L (dll) + FR(S))

Here LN, SA, CA, FF are abbreviations for lay-
ernorm (Ba et al., 2016), cross-attention (Vaswani
et al., 2017), self-attention (Vaswani et al., 2017)
and feedforward layers. MIXUP is an aggrega-
tion layer that combines the context and prompt

cross-attention outputs d((;"), dj(,") to generate df,z)t

ie. d™ = AT . [d™ al™]. We propose various
ways to implement MIXUP: a) treat \ as a tunable
hyper-parameter, b) learn \ as a free parameter or
via attention (Lin et al., 2017) weights. Note that
by setting A = [1, 0], we recover the standard de-
coder. More details about the architecture choice

are described in Appendix A.

2.2 Prompt Signals

We use two types of prompts: a) keyword-based:
we define an entity dictionary based on domain
knowledge search keywords such as, brands, fea-
tures etc. Entities from this dictionary can be
used as a prompt, b) sentence-based: we iden-
tify informative sentences from the context and
use them as prompt input. Further, there are two
strategies to compute the prompts: a) HEURIS-
TIC: extract prompts from the context based on
manually defined rules or ML models, b) ORA-
CLE: extract prompts from both context and the
ground-truth question. Note that the ORACLE strat-
egy requires the ground-truth and hence, can be
used only during training whereas HEURISTIC can
be used during both training and inference. While
using ORACLE during training and HEURISTIC in
inference leads to train, test mismatch of distribu-
tion of prompts, our hypothesis is that it will help
establish strong correlation between the prompts
and the generated questions. In Appendix B we
describe the various prompt signals we have used
for our experiments.

5451

2.3 Balancing Diversity and Fidelity of
Questions

At the end of the first stage of PROTEGE, we have
generated a diverse set of questions by varying the
prompt input to the model. However, in practice,
some of these questions may be irrelevant, i.e., they
can’t be answered from the current context. In the
second stage, we leverage an algorithm that selects
a subset of questions which is both relevant and
diverse. Let’s assume that the previous step has
generated N questions Q = {q1,q2 - ,qn } from
a document D. The objective of the current step is
to select a subset Q' C @ of size k, that maximizes

QD)=
n - diversity (Q') + (1 —n) - relevance(Q’, D) (6)

Here 7 is a hyper-parameter that balances the rel-
evance (i.e., fidelity) and diversity. We discuss
various choices for implementing the diversity and
relevance functions. The relevance of a question set
(@ is determined via answerability i.e. how likely
the question can be answered from the given con-
text. The answerability of a question set @)’ is calcu-
lated as fo(Q', D) = >_ o AE(D, q) where AE
is an answerability model build on top of standard
LLM encoders such as BERT (Devlin et al., 2019).
We use n-grams to define diversity of a question
bank. Let z,(q) denote the set of n-grams in ¢ af-
ter removing stop-words. We define diversity as
diversity (Q') = >_,.c1,2,3) | Ygeq 2n(@)]-

Note that the diversity expression promotes
unique n-grams across questions and has been used
as standard metric to measure diversity of text gen-
erated by LLMs in prior works, such as (Zhang
et al., 2018). It can be noted that the diversity func-
tion is sub-modular (Bach, 2013) which makes the
objective function (@', D) sub-modular as well.
Although maximization of a sub-modular function
is NP-Hard, it is well-known that the algorithm
that greedily picks each item has provably good
approximation guarantee (Nemhauser et al., 1978).

3 Experiments

3.1 Datasets

A supervised dataset for the question generation
task typically consists of question and answer pairs
along with a “context” input. In order to prove the
efficacy of our approach for a specific domain of
‘shopping guidance’, we curate a custom dataset,
termed SEARCHQA, by extracting QA pairs from
a third-party search engine. We submit customized

shopping guidance queries to the search engine
and extract questions, answer snippets and URLs
from the search results. We further pre-process the
extracted content to form question, answer, con-
text triplets. We also leverage three popular bench-
mark Q&A datasets namely, (1) SQUAD 2.0 (Ra-
jpurkar et al., 2018), (2) NQ Natural Questions
dataset (Kwiatkowski et al., 2019), and (3) MS
MARCO (Nguyen et al., 2016a). In Appendix C
we describe the pre-processing logic used to cre-
ate the question, answer, context triplets from raw
datasets. Table 7 in Appendix C lists the dataset
statistics.

3.2 Implementation details

Our models are based on the popular T5 (Text-to-
Text Transfer Transformer) (Raffel et al., 2020)
architecture. TS models closely follow the encoder-
decoder Transformer implementation originally
proposed in (Vaswani et al., 2017) with minor modi-
fications. For baseline models (section 3.3), we use
the vanilla T5ForConditionalGeneration imple-
mentation from the HuggingFace Transformer li-
brary (Wolf et al., 2019). For our prompt-based
controlled generation models we extend the vanilla
implementation by including (as described in sec-
tion 2.1) (1) an additional encoder for the prompt
input which shares parameters with the original
encoder, (2) a new cross-attention block in the de-
coder which is initialized with pre-trained weights
from the original cross-attention block.
Hyper-parameter settings. To make it feasible to
train a large number of models, for all our exper-
iments we use the t5-small variant with 60MM
parameters as the base implementation. We use a
learning rate of 5e-5, epsilon of 1e-8 with AdamW
optimizer. We use a sequence length of 512. We
train all models up to 10 epochs with a training
batch size of 4 and choose the checkpoint with the
best performance on the validation set. We train our
models on a single GPU of an AWS EC2 instance
with a GPU memory of 64GB.

3.3 Baselines

BASELINE-BEAM Only the context is passed as
input (without any additional prompts) and Diverse
Beam Search (DBS) (Vijayakumar et al., 2016)
is used to generate top-k questions. Diversity pa-
rameters num_beam_groups and diversity_penalty
are fine-tuned by optimizing for diversity metrics
through a grid search.

BASELINE-PROMPT Prompts are concatenated

5452

BERT

Dataset Model Dist-11 Dist-21 Dist-31 Ent-17 Ent-21 Ent-31 Score | Fidelity 1
BASELINE-BEAM 0.5379 0.6963 0.7675 3.5454 3.7396 3.6759 0.9009 0.8408
SEARCHQA BASELINE-PROMPT 0.6333 0.7817 0.8489 3.4667 3.6144 3.5300 0.8895 0.8449
PROTEGE 0.7351 09197 0.9632 39869 4.2143 4.0804 0.8235 0.9085
BASELINE-BEAM 0.5589 0.6930 0.7425 3.7763 3.9316 3.8460 0.8763 0.8106
SQUAD BASELINE-PROMPT 0.6413 0.8215 0.8792 3.9315 4.1840 4.1150 0.8334 0.7958
PROTEGE 0.7490 0.9340 0.9680 4.2678 4.5285 4.4187 0.7915 0.8812
BASELINE-BEAM 0.5032 0.5968 0.6529 3.5582 3.6160 3.5487 0.8991 0.7015
NQ BASELINE-PROMPT 0.6216 0.7522 0.8244 3.7311 3.8580 3.8131 0.8439 0.7447
PROTEGE 0.7028 0.8522 09117 4.0141 4.1824 4.1169 0.8048 0.8151
BASELINE-BEAM 0.5148 0.6330 0.7170 2.7588 2.6920 2.3905 0.8986 0.7995
MS MARCO BASELINE-PROMPT 0.6421 0.7756 0.8672 2.8324 2.7905 2.5382 0.8660 0.7502
PROTEGE 0.7177 0.8693 0.9426 3.4144 3.4548 3.2191 0.8138 0.8278

Table 1: Diversity metrics for PROTEGE and baselines across QA datasets.

with context to form a single input to vanilla T5.
For a fair evaluation, we use exactly the same set
of prompts used in the corresponding controlled
generation (PROTEGE) model. For instance, sup-
pose PROTEGE model uses ground-truth question
entities as ORACLE prompts (training) and context
entities as HEURISTIC prompts (inference), the ex-
act same strategy is used for this baseline as well.

3.4 Metrics

Diversity metrics. We evaluate on two popular
n-gram based lexical diversity metrics (1) Distinct-
n (Li et al., 2016), which measures the percentage
of unique n-grams out of total number of n-grams
in a set of generated questions. We report Dist-1,
Dist-2 and Dist-3 metrics, (2) Entropy-n (Zhang
et al., 2018), which measures how evenly the n-
gram distribution is for a given question set. These
two metrics are popularly used in literature to evalu-
ate lexical diversity of generated responses (Zhang
et al., 2018; Han et al., 2022; Stasaski and Hearst,
2022; Tevet and Berant, 2020). To measure se-
mantic diversity we report a BERTScore (Zhang
et al., 2020), which is measured as the average
BERTScore of each pair of generated questions.
BERTScore measures the semantic similarity be-
tween a pair of generated sentences, hence lower
the average BERTScore better the diversity.

Fidelity metrics. To report a fidelity (or “answer-
ability””) metric, we train a separate BERT-based
model that takes a context and a question and out-
puts a probability score for the question being an-
swerable from the context. The ROC AUC of this
BERT model was observed to be 0.84. We tune
the threshold of this model to operate at a preci-
sion of 85%, corresponding to a recall of 30%.
A higher bar on the precision allows us to select
questions which are highly likely to be answerable

from the context, at the cost of missing out on other
answerable questions. We compute the answerabil-
ity score for each generated question and report the
average.

NLG metrics. Finally, to evaluate the “close-
ness” of generated questions with respect to the
ground-truth questions we also report standard
NLG metrics popular in literature, namely: (1)
METEOR (Banerjee and Lavie, 2005) which is
measured as a harmonic mean of unigram preci-
sion and recall, (2) BLEU-4, a cumulative 4-gram
BLEU (Papineni et al., 2002) score, which is an
evaluation of matching grams of specific order (1-
gram, 2-gram etc.) (3) ROUGE-L, a version of
ROUGE (Lin and Och, 2004), which measures the
longest common subsequence (LCS) between the
generated and reference text.

4 Results

Diversity results. For the SEARCHQA dataset,
among several choices for prompt signals (de-
scribed in section 2.2) we highlight the best results
obtained in this section and describe the trade-offs
among the choices in section 4.1. In all our tables
we highlight the first best result and underline the
second best result. Note that 1" for a metric indi-
cates higher values are preferred whereas | indi-
cates lower values are preferred. For SEARCHQA
dataset, we observe in table 1 that across all the met-
rics our algorithm (PROTEGE) does significantly
better than both baselines. On Dist-1, Dist-2 and
Dist-3 metrics, PROTEGE does 16%, 18%, 13%,
respectively, better than the second best result. On
Ent-1, Ent-2 and Ent-3 metrics, PROTEGE shows an
improvement of 12%, 13% and 11%, respectively,
compared to the second best result. PROTEGE also
reduces BERTScore by 7%, and improves Fidelity
by 8%. PROTEGE generates almost double the

5453

Top-1 Top-2 Top-3
Dataset Model METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L
BASELINE-BEAM 0.3088 0.3794 0.3375 0.3598 0.4188 0.3853 0.3968 0.4449 0.4185
SEARCHQA BASELINE-PROMPT 0.2850 0.3539 0.3163 0.3359 0.3951 0.3629 0.3567 0.4099 0.3798
PROTEGE 0.2767 0.3479 0.3004 0.3638 0.4161 0.3803 0.4034 0.4456 0.4161
BASELINE-BEAM 0.1678 0.2346 0.2083 0.2062 0.2674 0.2458 0.2332 0.2900 0.2721
SQUAD BASELINE-PROMPT 0.1487 0.2109 0.1968 0.1990 0.2583 0.2481 0.2256 0.2830 0.2694
PROTEGE 0.1593 0.2289 0.2053 0.2155 0.2826 0.2565 0.2490 0.3085 0.2833
BASELINE-BEAM 0.3998 0.4634 0.4307 0.4346 0.4884 0.4607 0.4570 0.5035 0.4792
NQ BASELINE-PROMPT 0.3627 0.4333 0.4016 0.4192 0.4725 0.4520 0.4452 0.4888 0.4724
PROTEGE 0.3089 0.3965 0.3391 0.3855 0.4517 0.4055 0.4262 0.4786 0.4433
BASELINE-BEAM 0.4217 0.4712 0.4637 0.4748 0.5105 0.5096 0.5024 0.5298 0.5292
MS MARCO BASELINE-PROMPT 0.3740 0.4228 0.4317 0.4423 0.4799 0.4894 0.4749 0.5048 0.5122
PROTEGE 0.3788 0.4234 0.4120 0.4631 0.4874 0.4821 0.5064 0.5187 0.5171

Table 2: NLG metrics for PROTEGE and baselines across QA datasets.

number of unique questions compared to BASE-
LINE-PROMPT. Thus, given the same context PRO-
TEGE generates a higher number of unique ques-
tions which are better both in terms of diversity and
fidelity, compared to baselines.

For the benchmark datasets, we observe in Table
1 that across datasets, PROTEGE improves on all the
diversity metrics (Dist-n & Ent-n) when compared
to both the baselines. For example, on the Dist-1
metric, compared to the second best (which is con-
sistently BASELINE-PROMPT), PROTEGE shows an
improvement of 17%, 13% and 12%, respectively,
for SQUAD, NQ and MS MARCO. On fidelity,
compared to the second best, PROTEGE performs
9%, 9% and 4% better, respectively, for SQUAD,
NQ and MS MARCO. Significant reduction is also
observed on BERTScore. PROTEGE generates 1
to 3 unique questions (on an average) more than
BASELINE-PROMPT.

NLG results. We present metrics separately for
top-1, top-2 and top-3 generated questions. The
metrics for top-k is computed using the question
(among top-k) which results in the maximum ME-
TEOR score with reference to the ground-truth
question. As described earlier, for BASELINE-
BEAM we use beam search to generate the top-k
questions, while for BASELINE-PROMPT we pick
the top-k questions based on generation score. For
PROTEGE we select the top-k questions returned
by our second-stage algorithm (section 2.3, which
greedily selects the question that maximizes diver-
sity and fidelity.

For the SEARCHQA dataset, in table 2 we ob-
serve that for the top-1 question the best metrics are
obtained from the BASELINE-BEAM model. From
our model’s point of view this is expected as the
topmost question is selected based on diversity and

fidelity objectives, and hence need not be closest to
the reference ground-truth. However, as we allow
PROTEGE to select more questions (top-2 and top-
3) the model often generates a question closer to the
ground-truth, which shows in top-2/top-3 results
where PROTEGE does better than both the baselines
in matching with the reference. In other words,
if we allow top-2 questions, PROTEGE shows the
best performance with an improvement of 1.1% in
METEOR (but, shows second best performance in
BLEU-4 and ROUGE-L). Similarly, for top-3 ques-
tions the corresponding improvements are +1.7%,
+0.2% for METEOR and BLEU-4 scores. We ob-
serve similar trends for SQUAD among benchmark
datasets.

For the NQ and MS MARCO datasets, although
PROTEGE shows a significant improvement over
baselines on diversity metrics, improvements are
not observed on NLG metrics. We explain our
hypothesis for this observation in Appendix D.

Human evaluation. We performed human
evaluation to compare the quality of top-k gener-
ated questions between PROTEGE and BASELINE-
BEAM. Annotators were asked to label each set of
generated questions (for a given context) w.r.t., a)
Readability (no. of readable & meaningful ques-
tions), b) Diversity (no. of semantically unique
questions), c) Fidelity (no. of questions answer-
able from the context). In figure 2 we observe that
PROTEGE improves on BASELINE-BEAM with an
absolute improvement of 5% on readability, 32%
on diversity, 36% on answerability. Appendix I
describes the details of the human audits.

4.1 Ablation studies

Effect of prompt signals. For the SEARCHQA
dataset we experiment with a variety of (keyword-
based and sentence-based) prompt signals as de-

5454

100
920
80
70
60
50
40
30
20
10

B4 BASELINE-BEAM
B PROTEGE

XXX
Yete%Y

X R I I
RS

L

Soletotolotedetotetoledels!
250
7575
2
25

X

KR KRR KRR KRR L
9%

000.000

<
250

o
Yetel!

K,
XA

bogele!

XL

X
fa%!
5
o
%
55

%
e
e
55

< XA
olete

0
% Readable % Diverse % Answerable

Figure 2: Results of human evaluation.

scribed in 2.2. In table 3 we present the effects of
prompt signals on diversity metrics.

Training prompt Inference prompt BERT

(ORACLE) (HEURISTIC) Dist-11 Score | Fidelity 1

Baseline 0.5379 0.9009 0.8408

Answer text Context span (size=1) 0.7351 0.8235 0.9085

Answer text Context span (size=2) 0.6925 0.8405 0.9005

Answer text Context-span (size=4) 0.6268 0.8730 0.8817

Answer keywords Lcywords from 0.6931 0.8419 0.8977
context span (size=1)

Answer keywords <y Words from 0.5735 0.8578 0.8906
context span (size=2)

Answer keywords <y Words from 0.6215 0.8829 0.8684
context span (size=4)

Question entities Context entities 0.7459 0.8234 0.8765

Table 3: Effect of prompt signals on diversity metrics.

Across all prompt choices, PROTEGE does better
than BASELINE-BEAM on all metrics. Answer text
(with a context span of size 1 during inference) per-
forms the best on BERTScore and Fidelity metrics
and second best on Dist-1 metric. Question enti-
ties shows the best performance on Dist-1 metric,
which is due to the fact that the model is trained
to generate a question around the specific entity
passed as a prompt. Based on these results, we
typically use answer text as a preferred choice for
the prompt. Detailed metrics are in Appendix F.

Effect of ORACLE prompting. Across datasets,
ORACLE prompting yields the best performance
in terms of matching the ground-truth question.
(Refer figure 4 and table 11 in Appendix G). This
ablation shows the efficacy of our architecture in in-
corporating the prompt when generating a question,
i.e., providing the “exact” prompt elicits a question
which is relatively closer to the ground-truth.

Effect of greedy algorithm. As described in
section 2.3, our algorithm takes the candidate set of
questions generated in the first stage (prompt-based
controlled generation) and in the second stage per-
forms a greedy algorithm, at each step optimizing

Post-Greedy
BERT

Pre-Greedy
BERT

Dataset Dist-1 1 Score | Fidelity T Dist-1 1 Score | Fidelity 1
SEARCHQA 0.6158 0.8665 0.8387 0.7351 0.8235 0.9085
SQUAD 0.6911 0.8161 0.8030 0.7490 0.7915 0.8812
NQ 0.6254 0.8414 0.7483 0.7028 0.8048 0.8151
MS MARCO 0.6472 0.8402 0.7566 0.7177 0.8138 0.8278

Table 4: Effect of greedy algorithm on diversity metrics.
Pre-Greedy is the output of prompt-based controlled
generation (section 2.1), while Post-Greedy is the out-
put of greedy hill-climbing algorithm (section 2.3).

Fidelity

—&— Diversity

Diversity (Dist-1)
[=]
~
o

% Fdelity
0.74 *

& 10.83

00 0.1 02 03 04 05 06 0.7 0.8 09 10
n

Figure 3: Diversity vs fidelity.

for both diversity and fidelity.

In table 4 we see that as an effect of this greedy
algorithm, across datasets both diversity and fi-
delity metrics show a marked improvement. On
an average, post-greedy Dist-1 metric improves by
13% and Fidelity improves by 9%. Further, in Ap-
pendix H we show the effects of greedy algorithm
on all the diversity and NLG metrics.

Diversity versus fidelity. Our algorithm to bal-
ance diversity and fidelity of questions (section
2.3) allows us to control the trade-off between di-
versity and fidelity through the 7 parameter. Figure
3 shows how controlling the 7 parameter allows
us to operate at different points for diversity and
fidelity. Low 7 results in high fidelity, while high
7 results in high diversity. For our experiments we
used an 7 around 0.5 to achieve the right trade-off.
Table 8 in Appendix E shows the full metrics as a
result of varying 7.

4.2 Qualitative study

In Table 5 we provide qualitative examples of ques-
tions generated by PROTEGE when compared with
BASELINE-BEAM output. Due to paucity of space
we do not include the context input which is fed
to both the models. The second column shows the
output of BASELINE-BEAM given the context input
alone. The third column is a sample of the prompts
which are fed to PROTEGE model (along with con-

5455

Context ID BASELINE-BEAM output

Prompt inputs
(keywords and sentences)

PROTEGE output

Is i3 processor fast?

ram, intel, core i3, processor, ddr3

How much RAM does Intel Core i3
processor support?

Cl1
. The Intel Core i3 processor series supports DDR3 RAM .
. ssor slow? 2
Is i3 processor slow? with frequencies of 1,066 or 1,333 MHz. Can i3 processors support DDR4?
Core i3 processors have maximum thermal design power ‘What is the maximum power rating of
ratings ranging from 16 to 73 watts. an i3 processor?
Which encoder is best for OBS? live streaming What e.nc?)der should Luse for live
o) streaming?
Is Nvidia good for OBS? cpu, gpu Is OBS CPU or GPU intensive?
. . . L . Is GPU Nvidi hi f
‘Which encoder is best for streaming? gpu, nvidia, graphics card (;lfs"U vidia graphics card good for
Is the MacBook Air lighter than M1? macbook air, weight Is MacBook Air or M2 heavier?
c3 The M2 Air is a better choice for the vast majority of people
Is it better to buy MacBook Air or M2? over the 13-inch M2 MacBook Pro model, even though the Is the M2 Air better than M2 Pro?
Pro has slightly better performance and longer battery life.
Is the M2 chip better than Pro? It’s also noticed whenever you slot it into a bag or carry it Is the MacBook Air M2 good for
around. traveling?
What is the best bps for streaming? compression, refiucmg ﬁl§ sizes, computer science binary, What is thf: best compression tool
c4 data representation add, bitesize add, useful tool, part for str g?
What is a good speed for streaming? user would experience buffering, regular drops, without, quality Does compressing a file reduce quality?
Is 128kbps good for streaming? around 1, 500 kbps, sd How many kbps is normal for str ing?

Table 5: Table showing anecdotes of questions generated by PROTEGE and BASELINE-PROMPT.

text). We have shown examples of prompt key-
words (e.g., first row), as well as prompt sentences
(e.g., second row). Finally last column shows the
output of PROTEGE model given the prompt and
context as input. We observe that given a con-
text PROTEGE leverages the prompts effectively
in generating diverse questions when compared to
BASELINE-BEAM output. Especially, when sen-
tences are passed as prompts they often appear to
be answers to the generated question.

5 Related Work

Rule-based (Heilman and Smith, 2010; Fabbri et al.,
2020) and DNN based (Sun et al., 2018; Yin et al.,
2020) models are used for question generation
from text corpora. Answer extraction (Rajpurkar
et al., 2016; Kwiatkowski et al., 2019) or machine
comprehension (Hermann et al., 2015; Jozefowicz
et al., 2016) is a branch of NLP where the goal
is to extract answer snippet from text documents
given a question as input. In both cases, either
the question or the answer is given as input. QA
extraction models (Alberti et al., 2019; Du et al.,
2017; Reddy et al., 2017; Krishna and Iyyer, 2019)
are generally pipeline-based which generates the
question and the answer in a sequence. Boros et
al. (Boros et al., 2021) uses a question-answering
system to detect specific events in textual content
(e.g., tweets, blogs). In this context, the entity in-
formation is used to frame template-based question
(e.g., Where did the [attack] happen?) where
attack is an event of interest). Zhang et al. (Zhang
et al., 2021) propose combining entity linkage with
a QA system. However, our objective is differ-

ent as we enrich the QA extraction technique by
augmenting it with entity level metadata.

6 Conclusion and Future Work

In this paper we present PROTEGE, a transformer
based two-stage question generation framework
based on prompts that balances diversity of the
generated questions with their fidelity. Through ex-
tensive experiments on multiple datasets we show
that PROTEGE significantly improves diversity (by
+16%) and fidelity (by +8%) compared to strong
baselines. As a future work, we will extend our
models to simultaneously generate both questions
and answers. In preliminary experiments on the
task of extracting answers for questions from a
given context, we have observed that providing the
“entities” in the question as additional prompt sig-
nals to a BERT-based model improves the answer
extraction quality by up to +4.2% in F1 score. Sim-
ilar applications to other NLG tasks such as docu-
ment summarization and FAQ creation are possible
using the framework proposed in our paper. Exten-
sion of our work to non English languages is part
of future work.

Limitations

One limitation of PROTEGE is that it is tightly
integrated with existing transformer architecture.
Therefore to test its efficacy with Large Language
Models (LLMs), we would need access to the pre-
trained model parameters. While this is possi-
ble for publicly available Large Language Mod-
els (LLMs) such as Vicuna (Chiang et al., 2023),
Falcon (Penedo et al., 2023) and LLaMA (Tou-

5456

vron et al., 2023), we will miss out state-of-the-art
LLMs such as GPT-4 (OpenAl, 2023) and Chat-
GPT 2. Further our approach requires large GPU
cluster to train which may lead to higher carbon
emission.

Experimental evidences suggest that when con-
text span is used as prompt, our model may hal-
lucinate or mention incomplete product names or
product family. For example, instead of “Core i7
12700K CPU”, it may generate a question with
“Core 17 12700 CPU” which is ambiguous (i7
12700K CPU has a base frequency of 3.6 GHz
in comparison to 2.1 GHz for i7 12700F). Gener-
ating questions with fully-qualified product names
will be a direction of our future work.

References

Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,
and Michael Collins. 2019. Synthetic QA corpora
generation with roundtrip consistency. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6168—6173, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. Cite
arxiv:1607.06450.

Francis Bach. 2013. Learning with Submodular Func-
tions: A Convex Optimization Perspective. Now Pub-
lishers Inc., Hanover, MA, USA.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Emanuela Boros, Jose G. Moreno, and Antoine Doucet.
2021. Event detection as question answering with
entity information. CoRR, abs/2104.06969.

Tom Brown, Benjamin Mann, et al. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877-1901. Curran Associates, Inc.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Zhttps://chat.openai.com.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. GSum: A gen-
eral framework for guided neural abstractive summa-
rization. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4830-4842, Online. Association for
Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1342—-1352,
Vancouver, Canada. Association for Computational
Linguistics.

Ehsan Elhamifar, Guillermo Sapiro, and René Vidal.
2012. Finding exemplars from pairwise dissimilari-
ties via simultaneous sparse recovery. In Advances in
Neural Information Processing Systems, volume 25.
Curran Associates, Inc.

Alexander Fabbri, Patrick Ng, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. Template-based
question generation from retrieved sentences for im-
proved unsupervised question answering. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4508-4513, On-
line. Association for Computational Linguistics.

Seungju Han, Beomsu Kim, and Buru Chang. 2022.
Measuring and improving semantic diversity of di-
alogue generation. In Findings of the Association
Jfor Computational Linguistics: EMNLP 2022, pages
934950, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
609-617, Los Angeles, California. Association for
Computational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard

5457

https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
http://arxiv.org/abs/1607.06450
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
http://arxiv.org/abs/2104.06969
http://arxiv.org/abs/2104.06969
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://proceedings.neurips.cc/paper_files/paper/2012/file/8e296a067a37563370ded05f5a3bf3ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/8e296a067a37563370ded05f5a3bf3ec-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://aclanthology.org/2022.findings-emnlp.66
https://aclanthology.org/2022.findings-emnlp.66
https://aclanthology.org/N10-1086
https://aclanthology.org/N10-1086
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf

Grave. 2022. Atlas: Few-shot learning with retrieval
augmented language models.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling.

Kalpesh Krishna and Mohit Iyyer. 2019. Generating
question-answer hierarchies. In Association for Com-
putational Linguistics.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answering.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4940-4957. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119, San Diego, California. Association
for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 605-612, Barcelona, Spain.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. ArXiv, abs/1703.03130.

Gary Marcus. 2020. The next decade in ai: Four steps
towards robust artificial intelligence.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
1978. An analysis of approximations for maximiz-
ing submodular set functions—i. Math. Program.,
14(1):265-294.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016a. Ms marco: A human generated machine read-
ing comprehension dataset. CoRR, abs/1611.09268.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016b. MS MARCO: A human gener-
ated machine reading comprehension dataset. CoRR,
abs/1611.09268.

OpenAl. 2023. Gpt-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset for
falcon 1lm: Outperforming curated corpora with web
data, and web data only.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yangqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Sathish Reddy, Dinesh Raghu, Mitesh M. Khapra, and
Sachindra Joshi. 2017. Generating natural language
question-answer pairs from a knowledge graph using
a RNN based question generation model. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 376-385, Valencia,
Spain. Association for Computational Linguistics.

Yiping Song, Rui Yan, Yansong Feng, Yaoyuan Zhang,
Dongyan Zhao, and Ming Zhang. 2018. Towards a
neural conversation model with diversity net using
determinantal point processes. In Proceedings of the

5458

http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://arxiv.org/pdf/1602.02410.pdf
https://arxiv.org/pdf/1602.02410.pdf
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
http://arxiv.org/abs/2002.06177
http://arxiv.org/abs/2002.06177
https://doi.org/10.1007/BF01588971
https://doi.org/10.1007/BF01588971
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#NguyenRSGTMD16
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#NguyenRSGTMD16
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/E17-1036
https://aclanthology.org/E17-1036
https://aclanthology.org/E17-1036

Thirty-Second AAAI Conference on Artificial Intelli-
gence and Thirtieth Innovative Applications of Artifi-
cial Intelligence Conference and Eighth AAAI Sym-
posium on Educational Advances in Artificial Intelli-

gence, AAAT'18/TAAT 18/EAAT’18. AAAI Press.

Katherine Stasaski and Marti Hearst. 2022. Semantic
diversity in dialogue with natural language inference.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 85-98, Seattle, United States. Association for
Computational Linguistics.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma,
and Shi Wang. 2018. Answer-focused and position-
aware neural question generation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3930-3939, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Guy Tevet and Jonathan Berant. 2020. Evaluating the

evaluation of diversity in natural language generation.
CoRR, abs/2004.02990.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1).

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. CoRR, abs/1610.02424.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:

State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Xusen Yin, Jonathan May, Li Zhou, and Kevin Small.
2020. Question generation for supporting informa-
tional query intents. CoRR, abs/2010.09692.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Wenzheng Zhang, Wenyue Hua, and Karl Stratos. 2021.
Entqa: Entity linking as question answering. CoRR,
abs/2110.02369.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational re-
sponses via adversarial information maximization. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

APPENDIX

A Architecture Choices

The architecture for controlled generation is de-
scribed in Section 2.1. We once again highlight our
key modifications to the standard encoder-decoder
architecture in order to achieve our objective of
controlled question generation:

* Introduction of an additional encoder stack
(with 1 + N, layers) for the “prompt” input.
The first N, layers share the parameters with
the encoder stack for the “context” input. The
final layer (a transformer block) has its own
individual parameters. This choice is not only
to reduce computations, but also due to the
fact that the difference between context and
prompt signals is expected be at a higher-level
which is captured only at the top layer of the
encoder.

* Modification of each decoder block to attend
to the “context” and “prompt” embedding via
separate cross-attention layers. The output
of the cross-attention blocks are combined
using a MIXUP operation and fed to the feed-
forward layer. It is important to note that this
is a fundamental change to the standard de-
coder architecture. The intuition for this ar-
chitecture is that the cross-attention with the
prompt signal influences the decoder to fo-
cus on certain topics while the cross-attention
with the context influences the decoder to im-
prove relevance of the questions generated
w.r.t. the context. Together the aggregated
cross-attention influences the model to gen-
erate a question around the prompt while re-
maining true to the information present in the
context. This aggregation of the decoder cross-
attention with the context and prompt embed-

5459

https://doi.org/10.18653/v1/2022.naacl-main.6
https://doi.org/10.18653/v1/2022.naacl-main.6
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/D18-1427
http://arxiv.org/abs/2004.02990
http://arxiv.org/abs/2004.02990
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2010.09692
http://arxiv.org/abs/2010.09692
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/2110.02369
https://proceedings.neurips.cc/paper_files/paper/2018/file/23ce1851341ec1fa9e0c259de10bf87c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/23ce1851341ec1fa9e0c259de10bf87c-Paper.pdf

ding happens throughout all the decoder lay-
ers.

One of our baselines, BASELINE-PROMPT, can be
viewed as a combination of “context” and “prompt”
tokens at the input level (i.e., early fusion) via
cross-attention. We also performed limited experi-
ments to combine the encoder outputs for the con-
text (h.) and prompt (h,) (i.e., mid-level fusion)
and observed it to perform worse than BASELINE-
PROMPT. Our experiments also suggested that a
single cross-attention and MIXUP was not sufficient
to guarantee faithfulness of the generated questions
w.r.t. the prompt signal, and hence needs to be
repeated in each decoder layer.

B Prompt signals

In table 6 we describe the various prompt signals
we have used for our experiments.

C Dataset details

Search QA (SEARCHQA): We start by creating
a set of custom templates for shopping guidance
queries (e.g., things to consider when buying a
<category>, main features of a <usecase> <cat-
egory>). We expand the templates by populating
the slots to create a seed set of search queries (e.g.,
main features of a gaming laptop). For each query,
we submit a search request to a third-party search
engine and extract questions, answer snippets and
URLs. Further, we extract the textual content from
the URLs. We thus collect a dataset of size ~100K.
After filtering out rows where we are (a) unable to
extract the URL content (b) unable to locate the
answer in the extracted URL content we are left
with ~60K datapoints. Finally, for each question,
answer, URL datapoint, starting from the textual
content extracted from the URL we extract mul-
tiple paragraphs (each containing the answer in
different locations) to create a “context” input (data
augmentation). Thus, each question, answer, URL
datapoint expands into N question, answer, context
datapoints. From the URLSs set we create two mu-
tually exclusive set of domain names, one each for
train and test datasets (to ensure that models gener-
alize across unseen domains), which allows us to
create a training dataset with ~100K rows, and a
dev and test datasets each with ~5K rows each.
SQuAD 2.0(SQUAD): The Stanford Question
Answering Dataset 2.0 (Rajpurkar et al., 2016) is
a public dataset consisting of crowdsourced ques-
tions on a selection of Wikipedia articles. The

dataset consists of a paragraph/context, a set of
questions relevant to the context and for each ques-
tion, an answer which is a phrase from within the
context. We ignore unanswerable questions (where
is_impossible = True). We split the original train
dataset into train (~80K rows) and dev (~5K rows)
by splitting based on titles. We sample from the
original validation set (consisting of ~10K unique
datapoints) to create a test set (~5K rows).

Google Natural Questions (NQ): Natural Ques-
tions (Kwiatkowski et al., 2019) is a collection
of real user questions submitted to Google and
answers gathered from Wikipedia by annotators.
From the original dataset we parse the gques-
tion_text, the long_answer (and treat it as a context)
and the short_answer (and treat it as an answer)
which is usually a phrase from within the context
(except for yes/no answers). We filter out contexts
that contain HTML tables (<Table>) and also fil-
ter out very long contexts (>= 20 sentences). We
sample from the original training data of ~307K
datapoints to create a train (~120K rows) and dev
(~5K rows). We similarly parse the original ~7.8K
validation set to create a test set (~3.5K rows).

MS MARCO: MS MARCO (Microsoft Machine
Reading Comprehension) (Nguyen et al., 2016b)
is a large scale collection of datasets (machine
reading comprehension, passage ranking, etc.) of
which we leverage the question answering dataset.
Queries (questions) are sampled from Bing logs
and 10 most relevant passages for the query are
generated. Human annotators then tag passages
that contain an answer to the question and identify
the answers from the relevant passages. From the
original dataset, for a given query we randomly
select one answer and then randomly sample 3
passages (selecting one passage that contains the
answer and two passages that do not contain the
answer), shuffle and concatenate the passages to
form our input context. We sample from the origi-
nal train and dev datasets to create a train (~100K
rows), dev (~5K rows) and test (~5K rows).

D NQ & MS MARCO observations

For the NQ and MS MARCO datasets, although
PROTEGE shows a significant improvement over
baselines on diversity metrics, improvements are
not observed on NLG metrics. In the case of NQ
and MS MARCO datasets, the answer is often a
short phrase (specifically, in NQ we use the “short
answer” provided in the dataset). During inference,

5460

Training (ORACLE)

Inference (HEURISTIC)

Answer text Text of the ground-truth answer.

Iteratively select a window of k (=2)
sentences from the context.

Keywords derived from the ground-truth
answer using RAKE (Rapid Automatic

Answer keywords
Keyword Extraction) algorithm.

Iteratively select a window of k (=2)
sentences from the context and derive
the keywords from the context window.

Entities from ground-truth question identified
using a pre-defined dictionary of domain-specific

Question entities

Iteratively select a window of k (=2)
sentences from the context and derive

entities. the entities from the context window.
Table 6: Prompt signals.
SEARCHQA SQUAD NQ MS MARCO
Train Dev Test Train Dev Test Train Dev Test Train Dev Test
of rows 100000 5432 5432 82775 4022 5000 124011 5000 3438 100000 5000 5000
Avg.contextsize)00 1000 1000 502 485 538 418 423 416 1018 9.69 9.67

(# sentences)

Avg. question size

(# words) 7.17 721 719

10.73

10.27 9.05 9.06 9.09 597 588 5.88

Avg. answer size
(# sentences)

212 215 215 1.00 1.00

1.00 0.79 0.80 0.77 115 115 1.16

Avg. answer size

(# words) 3922

39.70

39.87 3.17 3.06

3.61 339 341 342 12.91 15.32

Table 7: Dataset statistics.

we select the top-k phrases/keywords from the con-
text, using an unsupervised keyword detection al-
gorithm (RAKE), as prompt signals. Hence, for
most examples the specific phrase/keyword which
is part of the ground-truth answer does not always
get selected. Due to this reason, although we gener-
ate a number of answerable and diverse questions
from the context, we may not necessarily generate
a question semantically similar to the ground-truth
question. On the other hand, the baseline tech-
niques take as input only the context and no other
controlling signal and hence, are more likely to gen-
erate a question similar to the ground-truth. This
issue is not seen with SEARCHQA and SQUAD
datasets, where answers are usually complete sen-
tences which are picked as a candidate prompt sig-
nals during inference. Further we note that for all
datasets, including NQ and MS MARCO, when
the model is provided with the exact ground-truth
answer-based prompt, it indeed generates a ques-
tion semantically closer to the ground-truth ques-
tion as observed in the Section 4.1 (“Effect of OR-
ACLE prompting”).

Below we provide examples to illustrate why on
NQ and MS MARCO datasets the performance of
PROTEGE is lower than baselines on NLG metrics.
As seen in the examples below the question gener-
ated by PROTEGE depends on the phrase/keyword
that gets selected during inference, which need not

necessarily match the phrase/keyword that elicits
ths ground-truth question.

Example in NQ:
Context: The American Civil War was fought in
the United States from 1861 to 1865...
Ground-truth question: who took part in the
american civil war
Ground-truth short answer: nationalists of the
Union

Prompt Generated question
president abraham who was president when
lincoln the civil war began

where did the civil war

united states .
take place in

Example in MS MARCO:

Context: Jesse James (VII) Producer | Actor. At
first glance, Jesse James is the consummate biker
rebel...

Ground-truth question: who is married to jesse
Jjames

Ground-truth short answer: Karla James, Janine
Lindemulder, Sandra Bullock and Alexi DeJoria.:

E Ablation: Balancing diversity vs fidelity

Table 8 shows the full metrics as a result of varying
7.

5461

Prompt

Generated question

Jesse James (VII)
Producer | Actor.

who is jesse james

Tattoos, knives, goatee,
black t-shirts and skulls

what is jesse james

all around him famous for
eta Dist-1 Dist-2 Dist-3 Ent-1 Ent-2 Ent-3 Fidelity

0.00 0.5686 0.7338 0.8149 3.5514 3.7571 3.7190 0.8895
0.01 0.5901 0.7599 0.8383 3.6003 3.8137 3.7683 0.8894
0.10 0.6165 0.7898 0.8633 3.6668 3.8854 3.8288 0.8882
0.25 0.6287 0.8030 0.8743 3.6984 3.9183 3.8569 0.8857
0.50 0.6408 0.8161 0.8850 3.7303 3.9518 3.8854 0.8784
0.75 0.6508 0.8263 0.8928 3.7580 3.9794 3.9084 0.8611
0.90 0.6542 0.8296 0.8952 3.7683 3.9890 3.9164 0.8447
0.99 0.6547 0.8296 0.8951 3.7709 3.9911 3.9183 0.8371
1.00 0.6554 0.8295 0.8944 3.7651 3.9825 3.9077 0.8284

Table 8: Diversity vs Fidelity with varying 7.

F Ablation: Effect of prompt signals

In tables 9 and 10 we present the complete set of
diversity and NLG metrics based on the choice
of prompt signals. Specifically for the NLG met-
rics, regardless of the choice of prompt signal for
top-1 question, BASELINE-BEAM generates ques-
tions closest to ground-truth followed by answer
keywords. For top-2 and top-3, the best strategy
in general is to pass answer keywords as prompts
during training and keywords from context spans
of size 2 or 4 during inference. The best result
with answer keywords is better than the best result
with answer text, indicating that model benefits
more when passed keywords rather than full text
as guidance signal. Among different context span
sizes passing a larger window (2 or 4 sentences)
leads to better results. The worst performing is
question entities possibly because model tends to
overfit on the specific prompted entities, while it
generalizes when passed with a larger window of
keywords/sentences.

G Ablation: ORACLE prompting

Figure 4 and table 11 (with the complete set met-
rics for ORACLE vs HEURISTIC prompting) shows
that on an average there is a 40+% improvement
in METEOR metrics from HEURISTIC prompting
compared to ORACLE prompting.

0.450| &5 METEOR

B BLEU-4

0.425 == ROUGE-L

0.400
0.375
0.350
0.325
0.300

0.275

0.250

BASELINE-BEAM PROTEGE-HEURISTIC PROTEGE-ORACLE

Figure 4: ORACLE vs HEURISTIC prompts.

H Ablation: Effect of greedy algorithm

Table 12 shows the effect of greedy algorithm on
the full set of diversity metrics. As expected, across
all datasets diversity metrics improve with greedy
algorithm.

In table 13 we observe that post-greedy top-1
METEOR reduces for some datasets. This is ex-
pected as the generated question from the first stage
is often replaced by a question which displays high
diversity and fidelity. However, at top-2 and top-3
the METEOR slightly increases (except for NQ)
indicating that the greedy algorithm implicitly fa-
vors the question more closer to the ground-truth
(which is also expected to be answerable) as long
as it improves the diversity.

I Audit SOP

We perform human audits with 2 auditors to com-
pare the generated questions between PROTEGE
and BASELINE-BEAM (for a sample of ~200 con-
texts). For each data point, auditors record the fol-
lowing details regarding the top-k generated ques-
tions: (A) Are the questions readable and mean-
ingful (i.e., well-formed and complete sentences)?
(B) Out of the readable questions, how many ques-
tions are semantically unique (measures semantic
diversity)? (C) Out of the readable questions, how
many questions are answerable from the context
(measures fidelity)? In case of conflicts on any of
the labels, a third auditor re-verifies the decision to
resolve the conflict. Finally, we take a cumulative
count for each aspect and measure the percentage
of readable, unique and answerable questions.

5462

Training prompt

Inference prompt

BERT

Dataset Model (ORACLE) (HEURISTIC) Dist-11 Dist-21 Dist-37 Ent-17 Ent-21 Ent-31 Score | Fidelity
BASELINE-BEAM NA NA 0.5379 0.6963 0.7675 3.5454 37396 3.6759 0.9009 0.8408
Answer-Text Context span (size=1) 0.7351 09197 09632 39869 4.2143 4.0804 0.8235 0.9085
S QA Answer-Text Context span (size=2) 0.6925 0.8829 0.9390 3.8926 4.1388 4.0343 0.8405 0.9005
EARCH —
PROTEGE Answer-Text Context-span (size=4) 0.6268 0.8077 0.8786 3.6813 39115 3.8432 0.8730 0.8817
Answer-Keywords oy ords from 06931 08810 09376 39216 4.1666 4.0688 08419 0.8977
context span (size=1)
Answer-Keywords ey words from 0.6552 08410 09059 38174 4.0624 39861 0.8578 0.8906
context span (size=2)
Answer-Keywords ey Words from 0.6215 07859 0.8572 3.6352 3.8325 3.7730 0.8829 0.8684
context span (size=4)
Question-Entities ~ Context entities 0.7459 09278 0.9629 3.9967 4.2152 4.0664 0.8234 0.8765
Table 9: Effect of prompts on diversity metrics.
Top-1 Top-2 Top-3
Dataset Model Training prompt Inference prompt \ pypop BrEU-4 ROUGEL METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L
(ORACLE) (HEURISTIC)
BASELINE-BEAM NA NA 03088 03794 03375 03598 04188 03853 03968 04449 0.4185
Answer-Text Context span (size=1) 02444 03186 0.2740 03273 03845 03510 03779 04223 03966
s . Answer-Text Context span (size=2) 02588 03334 0.2902 03430 03992 03671 03921 04341 04110
C
FARCHQ PROTEGE Answer-Text Context-span (size=4) 02821 03560 03102 03655 0.4200 0.3866 03964 04440 04148
Answer-Keywords i?i‘:;'f;;"(‘:zezl) 02646 03387 0.2895 03520 0.4060 03697 04002 04415 04157
Answer-Keywords f:i‘:;"\’;:;"(‘:}ze=2) 02767 03479 0.3004 03638 04161 0.3803 04034 0.4456 04161
Answer-Keywords fi‘g;’f;::i‘:ze: " 02938 03627 03162 03666 0.4201 0.3836 03929 0.4398 0.4072
Question-Entities ~ Context entities 02275 02929 0.2502 03004 03534 03191 03387 03786 03521
Table 10: Effect of prompts on NLG metrics.
BASELINE-BEAM PROTEGE (HEURISTIC) PROTEGE (ORACLE)
Prompt Choice METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L
Dataset -
(Training) top-1 top-1 top-1 top-1 top-1 top-1 top-1 top-1 top-1
Answer-Text 0.2821 0.3560 0.3102 0.3221 0.4043 0.3518
SEARCHQA A pswer-Keywords 03088 0.3794 0.3375 02938 03627 03162 03107 03915 03353
Question-Entities 0.2275 0.2929 0.2502 0.4213 0.5032 0.4564
SQUAD Answer-Text 0.1678 0.2346 0.2083 0.1593 0.2289 0.2053 0.2777 0.3442 0.3133
NQ Answer-Text 0.3998 0.4634 0.4307 0.3089 0.3965 0.3391 0.4224 0.4763 0.4518
MS MARCO Answer-Text 0.4217 0.4712 0.4637 0.3788 0.4234 0.4120 0.4940 0.5364 0.5226
Table 11: Effect of ORACLE prompting.
Pre-Greedy Post-Greedy
BERT BERT
Dataset Dist-1 Dist-2 Dist-3 Fidelit, Dist-1 Dist-2 Dist-3 Fidelit,
)) 0 Score | y T)) 0 Score | y T
SEARCHQA 0.6158 0.8009 0.8743 0.8665 0.8387 0.7351 0.9197 0.9632 0.8235 0.9085
SQUAD 0.6911 0.8744 0.9222 0.8161 0.8030 0.7490 0.9340 0.9680 0.7915 0.8812
NQ 0.6254 0.7597 0.8294 0.8414 0.7483 0.7028 0.8522 0.9117 0.8048 0.8151
MS MARCO 0.6472 0.7984 0.8928 0.8402 0.7566 0.7177 0.8693 0.9426 0.8138 0.8278
Table 12: Effect of greedy algorithm on diversity metrics.
Pre-Greedy Post-Greedy
Dataset METEOR METEOR METEOR METEOR METEOR METEOR
atase top-1 top-2 top-3 top-1 top-2 top-3
SEARCHQA 0.2952 0.3646 0.4002 0.2767 0.3638 0.4034
SQUAD 0.1386 0.1996 0.2368 0.1593 0.2155 0.2490
NQ 0.3550 0.4146 0.4435 0.3089 0.3855 0.4262
MS MARCO 0.3662 0.4562 0.5021 0.3788 0.4631 0.5064

Table 13: Effect of greedy algorithm on NLG metrics.

5463

