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Abstract

The translation of ambiguous text presents a
challenge for translation systems, as it requires
using the surrounding context to disambiguate
the intended meaning as much as possible.
While prior work has studied ambiguities that
result from different grammatical features of
the source and target language, we study seman-
tic ambiguities that exist in the source (English
in this work) itself. In particular, we focus on
idioms that are open to both literal and figura-
tive interpretations (e.g., goose egg), and collect
TIDE,1 a dataset of 512 pairs of English sen-
tences containing idioms with disambiguating
context such that one is literal (it laid a goose
egg) and another is figurative (they scored a
goose egg, as in a score of zero). In experi-
ments, we compare MT-specific models and
language models for (i) their preference when
given an ambiguous subsentence, (ii) their sen-
sitivity to disambiguating context, and (iii) the
performance disparity between figurative and
literal source sentences. We find that current
MT models consistently translate English id-
ioms literally, even when the context suggests
a figurative interpretation. On the other hand,
LMs are far more context-aware, although there
remain disparities across target languages. Our
findings underline the potential of LMs as a
strong backbone for context-aware translation.

1 Introduction

Natural language is inherently ambiguous due to
the competing pressures of efficiency and clarity
in communication (Zipf, 1949; Piantadosi et al.,
2012). As communicators, we disambiguate mean-
ings on the basis of a wide range of contextual fac-
tors, or ask clarifying questions when such context
is not available. Though sometimes overlooked,
the role of ambiguity in NLP has gained growing
interest in recent work (Min et al., 2020; Liu et al.,
2023; Stengel-Eskin et al., 2023).

1Data and code can be found at https://github.com/
jaechan-repo/mt-ambiguity.

Figure 1: TIDE consists of pairs of contrastive sentences
that contain the same idiomatic expression in different
contexts, such that one uses the figurative meaning of
the idiom (left), and another uses its literal meaning
(right). On this set of inputs, ChatGPT is sensitive to
the disambiguating context when translating the idiom,
while NLLB is not.

In machine translation (MT), it has long been
recognized that ambiguities arise when the source
language does not encode grammatical attributes
that the target language requires (Bar-Hillel, 1953;
Prates et al., 2019; Savoldi et al., 2021; Gonen
and Webster, 2020, i.a.). For instance, the English
sentence “I am a doctor” would require disam-
biguating the doctor’s gender for translation to Ger-
man, which has no gender-neutral word for “doc-
tor.” Prior work created contrastive test sets for
such phenomena, to evaluate whether MT mod-
els correctly translate an ambiguous word (here,
“doctor”) when disambiguating context is available
(e.g., “She is a doctor”) (Müller et al., 2018; Baw-
den et al., 2018; Voita et al., 2019b).

In contrast with grammatical ambiguity with re-
spect to a target language, it is relatively less under-
stood how MT systems handle semantic ambiguity
present in the source text itself. For instance, “I
have bigger fish to fry” is ambiguous between fig-
urative (“... at work”) and literal (“... for the
dinner”) interpretations in English, outside of the
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context of translation. Therefore, we extend the
line of work on context-aware translation to seman-
tically ambiguous phrases in English.

To this end, we create TIDE, Translations of
Idioms in Disambiguating context in English, a
dataset of 512 example triples. Each triple con-
sists of an ambiguous subsentence and a pair of
contrastive sentences that contain the subsentence
but add disambiguating context: one to produce a
figurative interpretation of the idiom, and another
to produce a literal interpretation of it (see Fig-
ure 1 for an example). Our creation process for the
triples combines automatic text generation with hu-
man annotation: we use GPT-4 to draft the triples,
which are then scrutinized by human annotators.
Following this, we engage native speakers from
four languages to craft reference translations for a
subset of the dataset.

In our experiments, we evaluate both traditional
neural MT models and language models (LMs).
MT-specific models are trained on large corpora of
parallel sentences, and have formed the foundation
of translation research; LMs are trained without
any explicit supervision for translation, yet recently
demonstrate impressive translation ability (Hendy
et al., 2023). Using TIDE, we compare how these
two types of systems handle ambiguity, and evalu-
ate their sensitivity to disambiguating context. We
find that on ambiguous input, LMs demonstrate
roughly balanced preference between literal and fig-
urative interpretations, whereas MT-specific mod-
els consistently prefer literal ones (§4.1). Given dis-
ambiguating context, LMs are substantially more
context-aware, though this sensitivity declines for
more low-resource target languages; in contrast,
MT-specific models tend to translate idioms liter-
ally irrespective of context (§4.2). Finally, MT-
specific models are better at translation of literal
text than figurative text, whereas this disparity in
LMs is much narrower (§4.3).

We summarize our contributions as follows: (1)
We formalize the challenge of ambiguous idiomatic
language in MT; (2) we create a new translation
benchmark, TIDE, that includes sentences with id-
ioms along with disambiguating contexts (literal
and figurative); (3) we analyze MT systems’ be-
havior with and without disambiguating contexts,
pointing to interesting trends and differences be-
tween LMs and MT-specific models.

2 Creating TIDE

Idioms, though commonplace in daily communi-
cation, pose a challenge for MT systems due to its
inherent ambiguity between literal and non-literal
meanings. Generating the most appropriate transla-
tion among potential disambiguations of the idiom
involves an understanding that extends beyond the
idiom itself, as an MT system must use broader
context clues to discern the most fitting translation.

We present TIDE, a dataset of 512 example
triples. Each triple consists of an ambiguous sub-
sentence, a figurative sentence, and a literal sen-
tence in English, all including the same idiom. The
ambiguous subsentence permits both figurative and
literal interpretations of the idiom, while the figura-
tive and literal sentences introduce additional con-
text that resolves the ambiguity to figurative and
literal readings, respectively. We design subsen-
tences (e.g., “had a card up his sleeve”) to be more
than an idiom itself (here, “card up sleeve”), as
idioms alone can often be unnatural as standalone
input to an MT system.

We construct TIDE through a human-AI collab-
orative approach following a line of recent work
(Liu et al., 2022; Chakrabarty et al., 2022). We
first manually select candidate idioms from two
large idiom corpora (§2.1). Next, we leverage the
generative power of GPT-4 to efficiently produce
diverse and high-quality text, by prompting it to
write a complete triple for each idiom (§2.2). To
ensure quality and correctness, we then involve hu-
man annotators to filter out invalid triples (§2.3).
Finally, we collect gold translations for a subset of
the dataset among native speakers (§2.4).

2.1 Collection of Idioms

To collect idioms, we scrape THE IDIOMS dic-
tionary2 to obtain 1409 idioms, and additionally
use a dataset of 905 idioms from Rabinovich et al.
(2020); both sources contain corresponding idiom
definitions. We discard duplicate idioms (includ-
ing those that appear in different conjugations) and
proverbs (e.g., All that glitters is not gold), which
are often too self-contained to be disambiguated
with context. Then, we manually select idioms that
are available to a natural and plausible literal inter-
pretation, in addition to their figurative meanings.
This results in a set of 700 idioms with definitions.

2https://www.theidioms.com/

4556

https://www.theidioms.com/


Idiom Figurative Sentence Literal Sentence

tip of the iceberg
to only know a very small
part of the problem

The problems we discovered were just the tip
of the iceberg in this company.

As we approached the glacier, we saw just the
tip of the iceberg above the water.

fall between the cracks
be ignored or unobserved

His request for a promotion fell between the
cracks due to the company’s restructuring.

The small toy fell between the cracks of the
wooden floor.

foam at the mouth
be extremely angry

He was foaming at the mouth when he found
out about the betrayal.

The rabid dog was foaming at the mouth and
needed to be isolated.

foot in the door
succeed with a first step

By volunteering at the company, she got a foot
in the door for a full-time position.

When the door was closing, he quickly got a
foot in the door to prevent it from shutting.

Table 1: Examples in TIDE. A figurative and literal sentence disambiguates the idiom by adding context that
demands figurative and literal interpretations, respectively.

2.2 Generation of Idioms in Context

Next, we draft an example triple for each idiom
by prompting GPT-4 with a fixed prompt, contain-
ing two in-context examples along with additional
guidelines (details in Appendix A). We write a set
of heuristics to automatically identify some types of
ill-formed output, such as when the subsentence is
not an exact substring of the full sentences. When
a rule is violated, we add an additional turn of dia-
logue instructing the model to revise its output to
follow the broken rule. We repeat this until all rules
are followed, or when two revisions are attempted
without success. After this, we have 700 English
triples, each associated with a unique idiom.

2.3 Human Annotation

Of course, the triples collected in §2.2 may not cor-
rectly use idioms literally and figuratively, and gen-
erated text is susceptible to fluency and coherence
issues. To ensure data quality, we recruit crowd-
workers on Amazon Mechanical Turk to label each
of the full sentences as using either the literal or
the figurative sense of an idiom. We present each
full sentence independently (not as a pair) to two
different crowdworkers, who are asked to label it
as figurative, literal, or ambiguous with respect to
how it uses the given idiom. They may also indi-
cate that the sentence is invalid if it is offensive or
has fluency issues (see Appendix B for details).

The annotators achieved substantial agreement
on this task, with a Fleiss κ score of 0.721. Fur-
thermore, for 82.9% of examples, there is a com-
plete agreement between both annotators and the
intended label (the label which we ask GPT-4 to
follow when generating triples).

Based on the annotations, we discard triples

where the intended-figurative sentences received
no votes for figurative, or the intended-literal sen-
tences received at least one vote not for literal. This
asymmetry in the filtering heuristic is because we
observe that GPT-4 was far more reliable at gener-
ating figurative uses of idioms than literal ones, and
therefore we enforce a lower bar for retaining figu-
rative sentences. We also discard all the triples that
contain at least one vote for discard. In this way,
we obtain the 512 English triples which constitute
TIDE.

2.4 Collecting Translations

Finally, for a randomly subset of 50 idioms, we
gather reference translations for the contrastive
pairs of figurative and literal sentences from native
speakers of Hebrew, Yoruba, Korean, and Chinese.

3 Experimental Setup

In this section we outline the models (§3.1) and lan-
guages (§3.2) we evaluate, our automatic metrics
(§3.3), and our setup for collecting human evalua-
tions of generated translations (§3.4).

3.1 Models

We evaluate two classes of translation systems: MT-
specific models and LMs. Here, the MT-specific
models use an encoder-decoder architecture and are
trained on large amounts of parallel data, whereas
the LMs are decoder-only models trained to max-
imize likelihood (i.e., next-token prediction) on
predominantly-English text.

MT-Specific Models We evaluate NLLB (Meta,
2022) and Opus MT (Tiedemann and Thottingal,
2020; Tiedemann, 2020). NLLB is trained on par-
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tially synthetic parallel data, and covers 202 lan-
guages.3 Opus MT is a collection of models, each
with a fixed source and target language.4 For both
models, we decode the translation greedily.

Language Models We evaluate ChatGPT
(gpt-3.5-turbo; OpenAI 2022)5 and PaLM 2
(text-bison-001; Google et al. 2023).6 We do
not include GPT-4 as it partially authored the
examples in the dataset.

Both models were trained on a mixture of differ-
ent languages, and in particular PaLM 2’s training
corpus included parallel data for hundreds of lan-
guages. However, both LMs are trained for the
next-token-prediction objective.

We prompt the LM to generate translations zero-
shot with the prompt “Translate the following
English sentence to [target language]:
[source sentence],” and greedily decode the
continuation. We do not provide in-context ex-
amples or further instructions about figurative lan-
guage, in order to create a setting comparable to
the evaluation of MT-specific models.

Google Translate We also include Google Trans-
late7 for reference due to its popularity in com-
mercial use. We do not classify it as either an
MT-specific model or LM due to the lack of public
understanding of how it works.

3.2 Languages

We consider the eight target languages: Spanish
(Es), Hindi (Hi), German (De), Hungarian (Hu), Ko-
rean (Ko), Chinese (Zh), Hebrew (He), and Yoruba
(Yo), which vary in resource-availability and are
typologically and culturally diverse. When the
evaluation requires a gold translation, we focus
on the last four languages for which TIDE contains
human-written references.

3https://huggingface.co/facebook/nllb-200-3.
3B

4The most recent model for each language pair was
downloaded from https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/models: transformer-
big for De, Es, and Hu, transformer-align for He, Hi, and Yo.
Their most recent English to Chinese models by July 2023 do
not produce coherent outputs, so we proceed with the earlier
version available on HuggingFace: https://huggingface.
co/Helsinki-NLP/opus-mt-en-zh. English to Korean mod-
els are not evaluated due to an issue with their PyTorch imple-
mentation, as reported by multiple users.

5API last accessed on June 18, 2023.
6API last accessed on June 17, 2023.
7https://translate.google.com/. API last accessed

on June 14, 2023.

3.3 Automatic Metrics

We use different sets of metrics to evaluate transla-
tions for their literalness and for the overall transla-
tion quality.

Literalness Following Hendy et al. (2023), we
use two metrics to assess the literalness of the trans-
lation: (1) Unaligned Source Words (USW) repre-
sents the number of source words unaligned with
words in the translation, and (2) Non-Monotonicity
(NM; Schioppa et al., 2021) determines the ex-
tent of reordering in the word-to-word alignments
from the source sentence to its translation. For
both metrics, we use the bitext alignments from
the awesome-align framework (Dou and Neubig,
2021) which extract word alignments from mBERT
embeddings.

Translation quality We evaluate translation
quality based on sentence similarity between ref-
erence and predicted translations. We use chrF
(Popović, 2015), BERTScore (Sun et al., 2022), and
BLEURT (Sellam et al., 2020). chrF measures pre-
cision, recall, and F-score of character n-grams.
BERTScore is a contextual embedding-based evalu-
ation metric that leverages the pretrained language
model.8 BLEURT is a learned regression metric for
automatic evaluation of generated text, which uti-
lizes BERT for training on pairwise comparisons of
reference and candidate sentences, calibrated on
human quality judgments.

3.4 Human Evaluation

Due to the documented limitations of automatic
evaluation for translation (Kasai et al., 2022), we
additionally perform human evaluation of model-
generated translations for Chinese, Korean, He-
brew, and Yoruba. We recruit one native speaker for
each language, who are presented with the source
sentences in each triple, along with generated trans-
lations from NLLB, Opus MT, ChatGPT, and PaLM 2.
The model-generated translations are presented in a
random order not shown to the annotator. For each
sentence, they are asked: (1) Does the translation
use the figurative meaning of the idiom, the literal
meaning of the idiom, preserve the ambiguity due
to an equivalent idiom in their language, or is it too
nonsensical to determine? (2) Overall, is the trans-
lation perfectly correct, containing slight errors, or
containing major errors? We use the same subset

8We use XLM-RoBERTa-base embeddings for BERTScore.
(Conneau et al., 2020)
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Figure 2: Non-Literalness of Translations of Ambiguous Subsentences, as measured by the number of unaligned
source words (USW) between the source sentence and its translation, normalized by the within-language average.
Translations from pretrained LMs are less literal than those of MT-specific models, suggesting that LMs prefer less
literal translations of ambiguous input (i.e., without disambiguating context). En → Ko Opus MT models are not
evaluated due to an issue with their implementation.

Figure 3: Human Evaluation of Translations of Ambigu-
ous Subsentences, where annotators are asked to evaluate
whether each translation is figurative, literal, ambiguous due
to an equivalent idiom, or is nonsensical. ChatGPT and PaLM
2 are more balanced in their preference between figurative
and literal translations; Opus and NLLB overwhelmingly prefer
literal translations.

of 50 triples from §2.4. With 3 sentences per triple
and 4 source models for each triple, annotators
each evaluate 600 translations.

4 Experimental Results

In our experiments, we explore MT-specific and
LM systems’ translation behavior on ambiguous
subsentences (§4.1), their sensitivity to disam-
biguating context (§4.2), and their overall com-
petence at translating literal versus figurative input
(§4.3).

4.1 RQ1: How do MT systems translate
ambiguous subsentences?

First, we investigate how MT systems behave on
ambiguous subsentences without disambiguating
context, in order to measure their preference for
translating them figuratively or literally. We hy-
pothesize that LMs are more likely to produce less
literal translations of ambiguous subsentences than
MT-specific systems, based on recent findings in
Raunak et al. (2023). Unlike their setting, here the
source sentences are always ambiguous, so both
literal and figurative translations are correct.

Automatic Evaluation We measure the literal-
ness of translations using USW and NM, where higher
values mean less literal translations (§3.3). Within
each language, we normalize values by the average
across systems in that language. This is because
the metrics are not comparable across target lan-
guages, as they depend on linguistic properties of
each target language. Shown in Figure 2, LMs (in
blue) produce translations with higher USW scores
than MT-specific models (in orange), across all tar-
get languages. In particular, Opus MT is the most
literal model across all target languages. More-
over, we observe that the differences between LMs
and MT-specific models become less pronounced
for more under-resourced languages (the languages
are ordered left to right based on count of pages in
Common Crawl9).

9https://commoncrawl.github.io/
cc-crawl-statistics/plots/languages
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Figure 4: Sensitivity to Disambiguating Context, as measured by BERTScore-P, describes how well an MT
model adapts to disambiguating context for an otherwise ambiguous subsentence. The metric is based on how
the translation of the ambiguous subsentence changes between the two full sentences, and is normalized by the
in-language mean. LMs generally demonstrate greater context-awareness than MT-specific models.

Figure 5: Human Evaluation of Sensitivity. A set of gener-
ated translations is considered context-sensitive when it uses
the figurative (or literal) sense of an idiom given figurative
(or literal) disambiguating context. ChatGPT and PaLM 2 are
much more context-sensitive than Opus MT and NLLB, which
tend to translate idioms literally irrespective of context.

Results based on NM (shown in Appendix C) cor-
roborate our findings for SVO languages. This met-
ric is inherently limited to target languages with the
same word order as the source language (English
in this work, with SVO order).

Human Evaluation In Figure 3, we show the
human judgments of translations of ambiguous
subsentences, indicating whether the translation
is ambiguous, literal, figurative or nonsense. These
results corroborate findings from automatic evalu-
ation, and show even clearer distinctions. Overall,
ChatGPT and PaLM 2 demonstrate much more bal-
anced preferences between figurative and literal
translations, compared to Opus MT and NLLB. For

the target language Chinese, ChatGPT prefers a fig-
urative translation 62% of the time; however, that
preference declines dramatically as the target lan-
guage becomes more low-resource, dropping to
6% for Yoruba. PaLM 2 demonstrates more robust
preferences across target languages, consistently
preferring figurative translations 28% to 46% of the
time. In contrast, Opus MT and NLLB overwhelm-
ingly prefer literal translations, choosing a figura-
tive translation only 4% to 20% of the time.

4.2 RQ2: How sensitive are MT systems to
disambiguating context?

We next explore to what extent the predicted trans-
lation of an ambiguous subsentence changes when
disambiguating context is available.

Automatic Evaluation Intuitively, if the LM is
not sensitive to context, then the translation of the
ambiguous subsentence, pa, should be equally con-
tained in the translation pℓ for the literal sentence,
and the translation pf for the figurative sentence.
That is, the way the ambiguous subsentence a is
translated should not be affected by the added con-
text. On the other hand, if pa is more contained in
pℓ than in pf (or vice versa), that would mean how
the model handles a changes with the context.

Therefore, we operationalize the sensitivity to
disambiguating context as

|contained_in(pa, pl)− contained_in(pa, pf )|

where contained_in() is a measure of unidirec-
tional sentence similarity. Here, we use chrP and
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Figure 6: Overall Translation Quality for Literal (left) and Figurative (right) Sentences, as measured by
BLEURT between the reference and prediction. While LMs and MT-specific models show comparable performance
in translating literal sentences, NMT models are much weaker on figurative source sentences.

BERTScore-P, the precision outputs of chrF and
BERTScore, both ranging from 0 to 1. A higher
value of sensitivity (close to 1) indicates high sen-
sitivity to disambiguating contexts.

Figure 4 shows the sensitivity results for the dif-
ferent models. The LMs, PaLM 2 and ChatGPT,
generally exhibit a higher degree of sensitivity
across most language pairs. Comparatively, the
MT-specific models, Opus MT and NLLB, show less
sensitivity. Opus MT, in particular, consistently
demonstrates the lowest context sensitivity for all
target languages.

Human Evaluation In human evaluation, a
model is considered context-sensitive on a triple
if annotators indicate that the idiom is translated
figuratively for the figurative sentence, and literally
for the literal sentence. Otherwise, the model is in-
sensitive. As shown in Figure 5, both ChatGPT and
PaLM 2 are very sensitive to context, though there
is still room for improvement. For instance, for
En→Zh translation, ChatGPT and PaLM 2 translate
correctly for 76% and 72% of idioms, respectively.
Yet, the sensitivity of both models declines mono-
tonically as the target language becomes more
low-resource. In particular, for En→Yo translation,
ChatGPT translations are entirely nonsensical, and
are qualitatively reported as frequently containing
hallucinations completely unrelated to the source.

Nonetheless, Opus MT and NLLB are substantially
less context-aware, correctly adapting to disam-
biguating context only 11.5% and 34.5% of the
time, respectively. Yet, their more consistent per-
formance across languages suggests that dedicated

training for translation leads to better results on
low-resource languages.

4.3 RQ3: Are there performance disparities
between figurative and literal
translations?

Finally, we investigate if translation systems have
systematic performance gaps between translating
figurative versus literal input.

Automatic Evaluation We use the reference
translations collected in §2.4, and measure text sim-
ilarity between predicted and reference translation
with BLEURT.

The results are shown in Figure 6. Across the
board, models are more capable at literal transla-
tion than figurative translation. Yet, the gap is more
pronounced for MT-specific models compared to
LMs. ChatGPT and PaLM 2 exhibit performance
gaps of 2.92% and 4.85%, respectively, between lit-
eral (higher) and figurative translations, on average
across languages. For OPUS and NLLB this disparity
is higher: 16.4% and 11.7%, respectively.

Overall, MT-specific models and LMs demon-
strate comparable performance on literal transla-
tions, while NMT models lag behind LMs on figu-
rative translations.

Human Evaluation In Figure 7, we compare
how human annotators evaluate the correctness of
translations overall, with the options perfect, minor
mistakes, and major mistakes. Consistent with find-
ings from automatic evaluation, ChatGPT and PaLM
2 demonstrate more consistent performance across
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Figure 7: Human Evaluation of Overall Translation Quality, reported separately for figurative versus literal
source sentences. Opus and NLLB are substantially better at literal translation than figurative translation overall,
whereas ChatGPT and PaLM 2 exhibit a much smaller disparity between literal and figurative translation quality.

literal and figurative translations. However, Opus
and NLLB are notably stronger at literal translations
than figurative ones.

We additionally observe that on Yoruba, the most
low-resource language we study, Opus MT and
NLLB actually far outperform ChatGPT and PaLM 2.
We speculate that pretrained LMs are particularly
strong on languages that were well-represented dur-
ing pretraining; when this is not the case, it may
produce degenerate text by entirely failing to grasp
the translation task.

5 Related Work

Ambiguity in translation Context-aware trans-
lation usually focuses on grammatical features that
the source language does not encode but the tar-
get language requires, such as formality (e.g., Chi-
nese has a formal and informal “you”; Voita et al.,
2019a), gendered pronouns (e.g., French has a male
and female “it”; Müller et al., 2018; Yin et al.,
2021), verb form (e.g., Spanish has six verb forms
for past tense; Fernandes et al., 2023), and ellipses
(e.g., “We all did” in English cannot be translated to
Russian without identifying the elided verb; Voita
et al., 2019b). Another well-studied issue is lexi-
cal cohesion, where the same phrase in the source
sentence (e.g., a named entity like “Julia”) should
be translated consistently each time (Wong and Kit,
2012; Kuang et al., 2018). In contrast, our work
extends the study of context-aware translation to
expressions which are ambiguous in the source lan-
guage alone, focusing on idiomatic expressions.

TIDE joins a family of contrastive datasets that test
model sensitivity to contextual information (Müller
et al., 2018; Bawden et al., 2018; Voita et al., 2019b,
i.a.).

Translation of figurative language Figurative
language has received considerable attention in MT
research. Some work has studied the hidden repre-
sentations or attention patterns of MT-specific mod-
els when processing multi-word expressions (Rik-
ters and Bojar, 2017; Garcia et al., 2021; Dankers
et al., 2022), or proposed methods to improve trans-
lation of these expressions (Zaninello and Birch,
2020; Gamallo and Garcia, 2019). In particular,
Baziotis et al. (2023) show that monolingual pre-
training improves figurative translation, which may
explain our finding that pretrained LMs generate
less literal translations and are more sensitive to
disambiguating context.

The most closely related work, Raunak et al.
(2023), compare how LMs and MT-specific sys-
tems translate sentences with idiomatic expressions,
and similarly find that LMs produce substantially
less literal translations. We go further by evaluat-
ing how these models handle ambiguous input and
their sensitivity to disambiguating context.

Datasets for idiom translation Fadaee et al.
(2018) introduced the first extensive dataset for
idiom translation, identifying data scarcity as one
of core challenges in this domain. EPIE (Saxena
and Paul, 2020) is a large-scale corpus with 25K
potentially idiomatic expressions (PIEs), with rep-
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resentation of both figurative and literal usages.
MAGPIE (Haagsma et al., 2020) is a more expan-
sive dataset of 50K samples that also contain genre
labels. PECTI (Tang, 2022) curated a parallel En-
glish translation dataset of Chinese idioms. While
these datasets offer a general-purpose testbed, the
contrastive sentence pairs in TIDE enable finer-
grained analysis, while the fluency of source sen-
tences matches (if not exceeding) that of naturally-
occurring datasets.

6 Conclusion

In this work we focus on semantic ambiguity in ma-
chine translation, specifically when using idiomatic
language. We introduce a new benchmark (TIDE)
of sentences that include idioms, along with dis-
ambiguating contexts (both literal and figurative).
We then use TIDE to investigate the behavior of dif-
ferent translation systems on ambiguous input and
their sensitivity to disambiguating context, uncov-
ering new strengths of pretrained LMs compared
to MT-specific models.

Our findings point to pretrained LMs as a promis-
ing backbone for translation systems, and we fore-
see a future that combines the strong language un-
derstanding of LMs with dedicated supervision for
translation.
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Limitations

In this work we study ambiguous source sentences
specifically through idioms that are available to
both literal and figurative interpretations. While
this allows us to efficiently collect a dataset and
perform focused evaluation, ambiguity occurs in
more diverse forms, and we encourage future work
to collect more data in the form of TIDE. Con-
temporary work collects a dataset of ambiguous
sentences (with direct disambiguations, rather than
disambiguating context), and is a promising start
(Liu et al., 2023).

In addition, we only study the behavior of trans-
lation systems when English is the source language,
due to the availability of English idiom collections.
Yet figurative expressions vary greatly across lan-
guages (Kabra et al., 2023), and our conclusions
may not necessarily generalize to translation from
other languages.
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A TIDE Creation Details

A.1 Sentence generation

We use GPT-4 to generate the 700 triples consist-
ing of an ambiguous subsentence, a figurative sen-
tence, and a literal sentence. The configuration
parameters were set as follows: max_tokens=512,
temperature=0, and top_p=1. The prompt is
shown in Table 2.

In addition, the generation process undergoes
iterative refinements under a set of criteria, dur-
ing which we prompt the GPT-4 instance to rewrite
the entire triple if the generation included any pro-
hibited words: “literally”, “figuratively”, “ambigu-
ously”, “physically”, “metaphorically”, and “be-
cause”. These words are observed to potentially
degrade sentence quality, as they often prompt the
GPT-4 to merely provide working definitions of the
idioms instead of generating novel context. We
also ensure through these refinements that the am-
biguous subsentence is indeed a substring of the
figurative and literal sentences.

A.2 Processing pronouns

As written in the generation prompt (Table 2), we
ban GPT-4 from including subjects in the ambigu-
ous subsentence as we observe that GPT-4 fre-
quently uses personal pronouns which end up dis-
ambiguating the whole subsentence (e.g., He is a
chip off the old block is not ambiguous due to the
pronoun he). Following the generation stage, we
conduct additional rule-based modifications to the
sentences to facilitate the translation process for
MT models. In cases where the ambiguous subsen-
tence begins with a lexical verb, and both the literal
and figurative sentences include interchangeable
subjects preceding the verb, we make alterations
so that both use the same pronoun, which are then
incorporated into the shared subsentence. These al-
terations include converting “he” to “she”, “she” to
“he”, and “he”/“she” to “they” to have the pronoun
shared between the figurative and literal sentence.

Figure 8: Amazon Mechanical Turk (MTurk) Worker
Interface, containing 3 example problems.

B Amazon Mechanical Turk (MTurk)
details

We employ Amazon Mechanical Turk (MTurk), a
crowdsourcing marketplace, to collect well-formed
triples, composed of an idiom and corresponding
ambiguous subsentence, figurative sentence, and
literal sentence, generated by GPT-4 as described
in §2.2.

We select 30 workers based on their scores in a
qualification test human intelligence task (HIT) that
we administer. This test, which typically requires
less than 30 minutes to complete, consists of 20
handcrafted problems in the exact format as the
main HIT. Upon completion, workers receive a
payment of $7.

In both the qualification test and the main task,
each problem presents an English utterance derived
from a randomly shuffled pool of 700 ambiguous
subsentences, 700 figurative sentences, and 700
literal sentences. The problem also provides the
corresponding idiom in use and its dictionary (figu-
rative) definition. With this information, workers
must ascertain whether the idiom was used in a fig-
urative, literal, or ambiguous context, or if the ut-
terance should be discarded. The option to discard
is included to eliminate nonsensical or offensive
generations.
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For the main task, we gather multiple gold labels
for each problem to ensure accuracy and credibility.
This means that multiple workers are assigned the
same problem. We initially release a batch of first
50 problems of the pool, collecting 4 gold labels for
each to examine interannotator agreement. Based
on our observation that 2 gold labels are sufficient,
we proceed to collect only 2 labels for the remain-
ing batches. Workers are remunerated at a rate of
$0.30 for every 5 problems completed, an interval
expected to take 1 minute.

For how we utilize these labels, see §2.3.

C Additional results

See Figure 9 and Figure 10 for additional results
on RQ1 and RQ2, respectively.
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Figure 9: Non-Literalness of Ambiguous Subsentences. This graph visualizes non-monotonicity (NM) between
the translation of each language pair, quantifying the level of word order shifts that occur during translation.

Figure 10: Sensitivity, |contained_in(pa, pf )− contained_in(pa, pl)|, computed using chrP (the precision score of
chrF) as the implementation of contained_in.
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System: Your task is to write an AMBIGUOUS phrase, a FIGURATIVE sentence, and a LITERAL sentence that use
the given IDIOM. Consider the IDIOM “burn the bridge” as an example. An AMBIGUOUS phrase would allow for
both figurative and literal interpretations of the IDIOM. For example, the phrase “burned the bridge with him” can be
interpreted figuratively (in context of interpersonal relationships) or literally (burning down the physical bridge). A
FIGURATIVE sentence must add extra words to your AMBIGUOUS phrase to only allow for a figurative, metaphorical
interpretation. For example, the sentence “She burned the bridge with him because he publicly criticized her works”
only makes sense in the figurative context of human relationships. A LITERAL sentence must add extra words to your
AMBIGUOUS phrase to only allow for a literal, word-by-word interpretation. For example, the sentence “She burned
the bridge with him after crossing it” only makes sense in literal context of a physical bridge that can be crossed. Note
these warnings:

• Unless the idiom already contains a subject, your ambiguous phrase must not introduce any subjects.

• Do not end your ambiguous phrase with a preposition.

• Do not write more than one sentence for each figurative or literal sentence.

• Surround your AMBIGUOUS phrase with delimiters <>.

• When you write the LITERAL and FIGURATIVE sentences, do NOT modify the spelling of the AMBIGUOUS
phrase in any way. The AMBIGUOUS phrase must be an exact substring of the FIGURATIVE and LITERAL
sentences.

In
-C

on
te

xt
E

xa
m

pl
es

{
User: break the ice





Assistant: {

“AMBIGUOUS”: “<broke the ice with our teammates>”,

“FIGURATIVE”: “we <broke the ice with our teammates> by initiating a conversation”,

“LITERAL”: “holding steel ice hammers tightly, we <broke the ice with our teammates>”

}{
User: felt pins and needles





Assistant: {

“AMBIGUOUS”: “<felt pins and needles>”,

“FIGURATIVE”: “waiting for our boss to respond, we <felt pins and needles> in the room”,

“LITERAL”: “she <felt pins and needles> on the floor when she spilled sewing supplies”

}

A
dd

ed
M

es
sa

ge
s

{
User: goose egg





Assistant: {

“AMBIGUOUS”: “<got a goose egg>”,

“FIGURATIVE”: “he <scored a goose egg> after studying so diligently for the test”,

“LITERAL”: “she <got a goose egg> from her grandfather’s backyard”

}{
User: The AMBIGUOUS phrase must be an exact substring of the FIGURATIVE sentence, but yours

isn’t. Rewrite your AMBIGUOUS phrase, FIGURATIVE sentence, and LITERAL sentence accordingly.



Assistant: {

“AMBIGUOUS”: “<got a goose egg>”,

“FIGURATIVE”: “he <got a goose egg> after studying so diligently for the test”,

“LITERAL”: “she <got a goose egg> from her grandfather’s backyard”

}

Table 2: Prompt for GPT-4 to generate one triple. The instruction is stated once, followed by two complete
in-context examples. Finally, only the idiom is provided for the last example. In this case, the generation does not
meet the requirement that the ambiguous subsentence must be a substring of the figurative sentence. We request a
new triple, to which GPT responds with a triple that meets all the requirements.
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