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Abstract

Usage-based theories of language acquisition
have extensively documented the processes by
which children acquire language through com-
municative interaction. Notably, Tomasello
(2003) distinguishes two main cognitive capac-
ities that underlie human language acquisition:
intention reading and pattern finding. Intention
reading is the process by which children try
to continuously reconstruct the intended mean-
ing of their interlocutors. Pattern finding refers
to the process that allows them to distil lin-
guistic schemata from multiple communicative
interactions. Even though the fields of cogni-
tive science and psycholinguistics have studied
these processes in depth, no faithful computa-
tional operationalisations of these mechanisms
through which children learn language exist
to date. The research on which we report in
this paper aims to fill part of this void by in-
troducing a computational operationalisation
of syntactico-semantic pattern finding. Con-
cretely, we present a methodology for learn-
ing grammars based on similarities and differ-
ences in the form and meaning of linguistic
observations alone. Our methodology is able
to learn compositional lexical and item-based
constructions of variable extent and degree of
abstraction, along with a network of emergent
syntactic categories. We evaluate our method-
ology on the CLEVR benchmark dataset and
show that the methodology allows for fast, in-
cremental and effective learning. The construc-
tions and categorial network that result from
the learning process are fully transparent and
bidirectional, facilitating both language com-
prehension and production. Theoretically, our
model provides computational evidence for the
learnability of usage-based constructionist the-
ories of language acquisition. Practically, the
techniques that we present facilitate the learn-
ing of computationally tractable, usage-based
construction grammars, which are applicable
for natural language understanding and produc-
tion tasks.

1 Introduction

Usage-based theories of language acquisition ar-
gue that the ability of children to learn language is
based on two general cognitive capacities: inten-
tion reading and pattern finding (Tomasello, 2003,
2009). Intention reading refers to the capacity of
children to understand the communicative inten-
tions of their interlocutors. Pattern finding refers
to the ability to recognise similarities and differ-
ences in sensory-motor experiences, and to use this
ability for categorisation and schema formation
(Tomasello, 2003, p. 3-4). Pattern finding thus
provides mechanisms for generalising across differ-
ent communicative interactions, thereby construct-
ing abstract schemata that represent the linguistic
knowledge of a language user. In the context of
language acquisition, intention reading and pattern
finding are two key cognitive capacities that are
highly complementary. Intention reading allows
a language learner to reconstruct the meaning of
an utterance that they observe during a commu-
nicative interaction. Pattern finding then provides
the mechanisms to learn a grammar based on the
combination of these observed utterances and their
reconstructed meanings.

There exists an impressive body of theoretical
and empirical evidence for both intention reading
(Bruner, 1983; Sperber and Wilson, 1986; Meltzoff,
1995; Nelson, 1998) and pattern finding (Goldberg,
1995; Croft, 2000; Diessel, 2004; Goldberg, 2006).
However, no comprehensive mechanistic models
that provide a faithful operationalisation of either
of these cognitive processes exist to date. In this pa-
per, we aim to fill part of this void by presenting a
computational operationalisation of pattern finding
mechanisms that can bootstrap a grammar based
on a set of semantically annotated utterances alone.
As such, we assume that the outcome of the inten-
tion reading process is given, hence the availability
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of the utterances’ semantic representations, but that
neither a segmentation of the utterances nor any
pre-existing morpho-syntactic or other grammati-
cal information can be used. For a computational
model that operationalises the intention reading
process, and that integrates it with the pattern find-
ing mechanisms introduced in this paper, we refer
the interested reader to Nevens et al. (2022).

A validation of our methodology on the CLEVR
benchmark dataset for visual question answering
(Johnson et al., 2017) shows that it allows for fast,
incremental and effective grammar learning. The
result of this learning process is a fully-operational,
productive construction grammar that can be used
for both language comprehension, i.e. mapping
from utterances to their meaning representation,
and language production, i.e. mapping from a
meaning representation to an utterance.

The scientific contribution of this paper is
twofold. On the one hand, it provides computa-
tional evidence for the cognitive plausibility of
usage-based theories of language acquisition by
introducing a mechanistic model of the acquisition
of construction grammars from scratch. On the
other hand, the techniques that we present pave
the way for learning computationally tractable,
large-scale, usage-based construction grammars
that facilitate both language comprehension and
production. Apart from their theoretical impor-
tance, such grammars are also highly valuable for a
large range of application domains, including intel-
ligent conversational agents (Verheyen et al., 2022)
and the semantic analysis of discourse (Willaert
et al., 2020; Beuls et al., 2021).

The remainder of this paper is structured as fol-
lows. Section 2 presents the dataset, task and learn-
ing problem that we address. Section 3 introduces
our novel methodology for learning construction
grammars. Section 4 presents the evaluation re-
sults. Related work is discussed in Section 5. A
concluding discussion is provided in Section 6.

2 Data

There are two main requirements for datasets to be
compatible with the methodology that we present
in this paper. First of all, they need to consist of
utterances that are annotated with a representation
of their meaning. Second, they need to be large
enough so that they contain enough utterances that
are similar to each other, but not equal, in terms
of either form or meaning. The availability of ex-

emplars that are sufficiently close to each other
is a necessary precondition for any generalisation
process and is fully consistent with the prevail-
ing hypotheses of how children acquire language
(Tomasello, 2003). The exact required size of a
dataset is as a consequence directly related to the
variety and the degree of complexity of the utter-
ances and meaning representations that it contains.

In this paper, we present and validate our
methodology using the CLEVR dataset for visual
question answering (Johnson et al., 2017). The
utterances in the dataset are semantically anno-
tated and the dataset contains ample examples of
utterance-meaning pairs that are similar but not
equal to each other. The utterances are English
questions about images of scenes depicting differ-
ent configurations of geometrical figures. Each
question is annotated with a semantic representa-
tion that captures the logical meaning that underlies
it. An example of such a scene, a question and its
semantic representation is shown in Figure 1.

The semantic representation in Figure 1 takes
the form of a set of predicates that share argu-
ments with each other. In the figure, the predicates
are drawn in the form of a network, based on the
variables that they share. The meaning represen-
tation of a question can naturally be represented
as a query, i.e. a series of steps that need to be
taken in order to answer the question. Each pred-
icate represents a step in this reasoning process,
and intuitively corresponds to an atomic cognitive
operation that a human or machine can perform.
In the case of the example utterance ‘How many
rubber spheres are there?’, the reasoning process
consists of four main steps. The first predicate,
GET-CONTEXT, binds the image to the variable
‘Isource’. Then, the FILTER predicate filters the
image for instantiations of the concept of SPHERE.
The result of this filtering operation, i.e. the set
of all spheres that are in the image, is bound to
the variable ‘?spheres’. This set of spheres is sub-
sequently filtered by another FILTER predicate for
instantiations of the concept of RUBBER. The re-
sulting set of rubber spheres is bound to the variable
‘“Irubber-spheres’. Finally, the set of rubber spheres
is counted by the COUNT predicate and the result
is bound to the variable ‘7nr-of-rubber-spheres’.
The meaning of the question ‘How many rubber
spheres are there?’ corresponds thus informally to
filtering an image for spheres, filtering the spheres
for rubber objects and counting the result of this
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How many rubber spheres are there?

(filter

“?rubber-spheres

(count ?nr-of-rubber-spheres ?rubber-spheres) AJ (bind

(get-context

“?source)
(filter ?spheres

?source “?sphere) \

?spheres “?rubber) (bind shape-category ?sphere

—

material-category ?rubber rubber)

sphere)

Figure 1: Example scene, question, and procedural semantic representation from the CLEVR dataset.

last operation. Such meaning representations are
called procedural semantic representations as the
representations themselves are at the same time
executable procedures (Winograd, 1972; Johnson-
Laird, 1977). Our methodology handles procedural
semantic representations without problems, but is
in no way restricted to it. It can handle any se-
mantic representation, as long as it embraces some
notion of compositionality and can be expressed as
a set of predicates. Examples of other compatible
semantic representations include abstract meaning
representation (Banarescu et al., 2013), PropBank
frames (Palmer et al., 2005) and the lambda calcu-
lus (Church, 1932; Montague, 1974).

The CLEVR dataset consists of three splits: a
training split of 70,000 images and 699,989 ques-
tions, a validation split of 15,000 images and
149,991 questions, and a test split of 15,000 im-
ages and 149,988 questions. The questions in the
training and validation splits come with semantic
annotations, whereas the test set does not. As we
require these annotations in order to evaluate our
model, we use the training split of the CLEVR
dataset as training set and the validation split as
test set. The question-annotation pairs embrace
various aspects of reasoning, including attribute
identification (‘There is a large cube; what is its
color?’), counting (‘How many green spheres are
there?’), comparison (‘Are there an equal number
of large cubes and small things?’), spatial relation-
ships (‘What size is the cylinder that is right of the
yellow shiny thing that is left of the cube?’) and log-
ical operations (‘How many objects are either red
cubes or yellow cylinders?’). For the purposes of
this paper, we have selected the subset of CLEVR
questions that do not involve comparison, spatial re-
lationships or logical operations. The main reason
for this is that these are complex cognitive oper-
ations that often correspond to long and complex
utterances that are far removed from the linguistic
expressions that children (or even other humans)
are faced with. Our final training and test sets

consist of 47,134 questions and 10,044 questions
respectively.

The learning task that we address consists in
operationalising pattern finding mechanisms that
facilitate the learning of a bidirectional construc-
tion grammar. The grammar should be able to map
between the CLEVR utterances and their semantic
representation, both in the comprehension (form to
meaning representation) and the production (mean-
ing representation to form) direction.

3 Methodology

The input to the learning process consists of utter-
ances that are annotated with a representation of
their meaning. The output of the learning process
should consist in form-meaning mappings (con-
structions) that can be used for comprehending and
producing utterances. The form-meaning mappings
are represented in, and processed using, Fluid Con-
struction Grammar (Steels, 2011; Van Eecke and
Beuls, 2017; van Trijp et al., 2022).

3.1 Holophrase Constructions

Let us for a moment take the perspective of the
learning algorithm. At the beginning of the learn-
ing process, the construction inventory is empty
and the first utterance-meaning pair from the cor-
pus comes in. At this point, the only thing that
the learning algorithm can do is to store an ex-
act mapping between the observed form and its
meaning. Such a holistic mapping corresponds to
a holophrase construction and is usable as such,
albeit only for comprehending and producing the
exact same utterance as the one that was observed.
In order to use such a construction in the compre-
hension direction, it suffices to match the form side
of the construction with an utterance and return the
meaning side of the construction if the matching
process succeeded. In order to use the same con-
struction in the production direction, the meaning
side of the construction must be matched with a se-
mantic network and the form side must be returned.

1349



When a next observation comes in, the learning
algorithm first checks whether it is already cov-
ered by constructions that have been acquired pre-
viously. When this is the case, the constructions
that are involved in the successful comprehension
and production of the observation are reinforced
by incrementing their entrenchment score. If the
observation is not covered, the algorithm checks
whether there are any generalisations that can be
made based on the combination of the novel obser-
vation and any previously acquired constructions.
It is these generalisation mechanisms that embody
Tomasello (2003)’s pattern finding capacity and
are thereby at the core of the construction learn-
ing process. We have identified three classes of
mechanisms that facilitate the learning of general
constructions by algorithmically reasoning over
similarities and differences between existing con-
structions and novel observations.

3.2 Generalising over Holophrase
Constructions

The first class of mechanisms facilitates the gener-
alisation of holophrase constructions with respect
to novel observations. These mechanisms can learn
item-based constructions that capture the similar-
ities between a novel observation and an existing
holophrase construction that was learnt based on
a similar, but not equal, observation. These item-
based constructions abstract away from the differ-
ences between the observation and the holophrase
construction.

For example, imagine that a holophrase construc-
tion has already been learnt based on the observa-
tion of the utterance ‘How many rubber spheres are
there?’ and the semantic network shown in Figure
1. Now, a novel utterance ‘How many rubber cubes
are there?’ 1is observed, along with a very simi-
lar meaning network in which the predicate ‘(bind
shape-category ?cube cube)’ appears at the place of
‘(bind shape-category ?sphere sphere)’. The gen-
eralisation mechanisms compute the similarities
and differences between the construction and the
observation in terms of both form and meaning,
and make a new item-based construction that maps
between the utterance ‘How many rubber ?X are
there?’ and the semantic network from Figure 1
in which the non-overlapping predicate has been
replaced by a variable. At the same time, two new
lexical constructions are created, which capture
the differences between the observation and the

original holophrase construction. In our example,
these will be a construction that maps between the
utterance ‘cubes’ and the meaning representation
‘(bind shape-category ?cube cube)’ and a construc-
tion that maps between the utterance ‘spheres’ and
the meaning representation ‘(bind shape-category
?sphere sphere)’. Finally, categorial links are made
between the ?X slot in the item-based construction
and the new lexical constructions. These categorial
links capture that ‘cubes’ and ‘spheres’ can both
appear in the ?X slot of the construction for ‘How
many rubber ?X are there?’. A schematic represen-
tation of this learning process is shown in Figure
2.

There are three different scenarios in which
mechanisms of this class are active. The
first scenario concerns utterances which extend
holophrases that are already known. An exam-
ple would be the generalisation of ‘Are there any
cylinders?’ to ‘Are there any red cylinders?’. In
this case, an item-based construction ‘Are there
any ?X cylinders?’ is learnt, along with a lexical
construction for ‘red’ and a categorial link between
the lexical construction and the open slot in the
item-based construction. The second scenario con-
cerns utterances which reduce known holophrases.
An example would be the reduction of ‘What is the
size of the metal block?’ to ‘What is the size of the
block?’. In this case, an item-based construction
for ‘What is the size of the ?X block?’ is learnt,
along with a holophrase construction for ‘What is
the size of the block?’, a lexical construction for
‘metal’, and a categorial link between the slot in the
item-based construction and the lexical construc-
tion. The final scenario concerns utterances which
are not a mere extension or reduction of each other,
but contain different formal and/or semantic ma-
terial. An example would be the utterances ‘How
many rubber spheres are there?’ and ‘How many
rubber cubes are there?’ discussed above, where
a holophrase construction for ‘How many rubber
spheres are there?’ is already in place. An item-
based construction for ‘How many rubber ?X are
there’ is learnt along with a lexical construction
for ‘cubes’ and a categorial link between the open
slot in the item-based construction and the new lex-
ical construction. Additionally, a second lexical
construction for ‘spheres’ is learnt, along with a
categorial link between the open slot in the item-
based construction and the lexical construction for
‘spheres’.
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“How many rubber
cubes are there?”

how-many-rubber-?X-are-there?-cxn

.

“cubes” > <« ?f @

Slots:
Arguments: [ cube <> ?f]
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Ava thAarAD A

hac what ~nlAar? Avn

“How many rubber >
spheres are there?”
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Slots: [] ]
Arguments: []
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[]

“How many rubber o e
—_— 2
?X are there?” g c

Slots: [ how-many-rubber-?x-are-there?(?X) «» ?c ]
Arguments: []

“spheres” 4—» < ?p

Slots:
Arguments: [ sphere < ?b ]

[1

Figure 2: A schematic representation of a generalisation operator learning an item-based construction and two
lexical constructions based on an existing holophrase construction and a novel observation.

3.3 Learning Constructions Based on a
Partial Analysis

The second class of mechanisms is designed to
handle cases where an observation could not com-
pletely be processed using the existing construc-
tions of a grammar, but where a partial analysis
could be provided. These mechanisms can then
create novel constructions that can work together
with existing constructions so that the entire obser-
vation can be processed successfully. They start
thus from the combination of a novel observation
on the one hand, and an item-based construction
or one or more lexical constructions on the other.
The second class of mechanisms is active in two
different scenarios.

The first scenario concerns observations to
which an item-based construction can apply, but
where there remains material that is not covered
by any of the existing constructions. An example
would be an observation of ‘What is the size of the
green block?’, where a construction for ‘What is
the size of the ?X block?’ is already known, while
no construction for ‘green’ has been learnt yet. The
learning algorithm detects that some aspects of the
form and the meaning of the observation are not
covered by the existing item-based construction
and it creates a novel lexical construction that maps
between those parts of the form and meaning that
were not covered. Additionally, a categorial link is
made between the slot in the item-based construc-

tion and the lexical construction. In our example,
this means that a lexical construction for ‘green’
is learnt, along with a categorial link between this
construction and the ?X slot in the construction for
‘What is the size of the ?X block?’.

The second scenario concerns observations to
which one or more lexical constructions can apply,
but where these constructions do not fully cover
the input. An example would be an observation
of the utterance ‘There is a big red cube; what
is its material?’, where lexical constructions for
‘big’, ‘red’, ‘cube’ and ‘material’ have already been
learnt. The learning algorithm will then create
a new item-based construction that incorporates
all the form and meaning material that remains
after the application of these lexical constructions,
and that abstracts away from these constructions
through the integration of four slots. The result is
an item-based construction of the form ‘There is
a ?A ?B ?C; what is its ?D?’ and four categorial
links from the existing lexical constructions to the
slots in the new item-based construction.

3.4 Extending the Categorial Network

The third class of mechanisms is designed to handle
cases where all necessary constructions are already
in place, but where they cannot combine due to the
absence of certain links in the categorial network.
An example would be the utterance ‘How many
things are there?’ where an item-based construc-
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tion covering ‘How many ?X are there?” and a
lexical construction covering ‘things’ already exist,
but where there is no link in the categorial network
between the lexical construction for ‘things’ and
the ‘7X’ slot in the item-based construction. In
such cases, the learning algorithm adds the missing
link to the categorial network.

3.5 Entrenchment Scores

The constructions created by the learning operators
have scores that reflect their entrenchment. During
processing, higher scored constructions are pre-
ferred over lower scored ones. Upon creation, the
score of a construction is set to 0.5. If used success-
fully, the score is increased by 0.1 and the score of
other constructions of which the application would
also have led to a solution is decreased by 0.3. The
scores are bounded between 0 and 1. There is no
built-in bias towards more general constructions.
However, the fact that more general constructions
are applicable in a broader range of situations and
are therefore more frequently used, will, due to the
dynamics of rewarding successful usage and pun-
ishing competitors, lead to higher entrenchment
scores for more general constructions.

4 Experiments

This section presents a validation of our method-
ology for acquiring constructions on the CLEVR
dataset discussed in Section 2. We first describe the
experimental set-up (Section 4.1) and then present
the evaluation results (Section 4.2).

4.1 Experimental Set-Up

The primary experiment consists in processing the
47,134 observations from our training set using the
learning operators introduced above. For each ex-
perimental run, the observations are shuffled, so
that any side-effects that might be caused by the
order in which the observations are presented are
levelled out. The learning operators are only active
when an observation cannot be processed success-
fully by the constructions that have been learnt so
far. Entrenchment scores are updated after each
communicative interaction. The learning process is
evaluated through four quantitative metrics: com-
municative success, grammar size, number of con-
structions per type and active learning operators.
Communicative success is a binary measure com-
puted by comparing the comprehended meaning
with the gold standard annotation. In the graphs

below, communicative success and active learning
operators are plotted using a sliding window of 50
observations.

For completeness, we also present a secondary
experiment in which the grammar learnt on the
training set is evaluated on the test set. Commu-
nicative success is here averaged over the whole
test set, and grammar size and number of construc-
tions per type do not change during evaluation.

The experimental results reported below are
based on 10 independent experimental runs. The
error bars that are plotted represent percentiles 5
and 95.

4.2 Results

The results obtained through the primary experi-
ment are shown in Figures 3 to 5. Figure 3 displays
the communicative success and grammar size met-
rics respectively on the left and right y-axis as a
function of the number of observations (x-axis).
We can see that the communicative success starts at
0, as the experiment starts with an empty inventory
of constructions. The degree of communicative
success rises rapidly, with more than 90% of the
observations being successfully processed by the
learned grammar after only 500 observations have
been encountered. After 2000 observations, com-
municative success is already achieved in 99.6% of
new observations.

The grammar size starts at O constructions and
grows rapidly in the first phase of the experiment.
After 500 observations, the grammar has reached
its peak size of around 230 constructions that have
some degree of entrenchment. This number then
declines as a result of the rewarding and punish-
ing of constructions. At the end of the learning
process, the resulting grammar consists of 101.5
constructions on average.

An analysis of the types of constructions that are
part of the learned construction inventory is pro-
vided in Figure 4. The results show that holophrase
constructions flourish in the earliest phase of the ex-
periment. In a second phase, item-based and lexical
constructions take over the role of the holophrase
constructions, with an abundance of item-based
constructions being created. Over the course of the
experiment, the linguistic inventory of the learner
gradually reaches a stable state consisting of a lim-
ited number of entrenched lexical constructions and
(more general) item-based constructions. At the
end of the experiment, the grammar consists on av-
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Figure 3: Evolution of communicative success (left y-
axis) and grammar size (right y-axis) over time (full
dataset).

erage of 10.2 holophrase constructions, 57.1 item-
based constructions and 34.2 lexical constructions.
These results show that the holophrase construc-
tions have not yet completely disappeared after
47,134 observations and that the theoretical max-
imum of 35 lexical constructions was attained in
7 out of 10 experimental runs. Note that it is the
dynamic evolution of the number of constructions
per type over time that is important, rather than
the absolute number of constructions at a given
moment in time.
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Figure 4: Evolution over time of the number of con-
structions per type with an entrenchment score > 0 (full
dataset).

Figure 5 shows the active learning operators over
time, zooming in on the first 1000 observations. In
the beginning, only new holophrase constructions
can be created. Then, operators of the first class
can generalise over these holophrase constructions
and create new item-based and lexical construc-
tions. After that, operators of the second class take
over and create constructions based on partial anal-
yses. In the final phase of the experiment, mainly
operators of the third class, which only create new
categorial links, are active.

nothing—holophrase
I+lexical on — —

basedslexical-addition ==« ==
based+lexical deletion ===
lexical—~item-based ===+
item-based—lexical ==
add-categorial-links = = =

Repair Activation
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# Observations

Figure 5: Active learning operators over time (first 1000
observations).

We finally conduct a secondary experiment,
which consists in processing all observations from
the test set using the grammars resulting from
the different experimental runs of the primary ex-
periment. The average communicative success
amounts to a perfect 100% in both the compre-
hension and production direction. The average
grammar size amounts to 101.5 constructions, of
which 10.2 are holophrase constructions, 57.1 are
item-based constructions and 34.2 are lexical con-
structions.

5 Related Work

Prior mechanistic models that operationalise the
learning of constructions can be divided into two
groups, based on the learning task that they address.
A first class of models learns constructions paired
with their meaning representation, either provided
in the form of an annotated corpus (Dominey and
Boucher, 2005; Chang, 2008; Abend et al., 2017) or
obtained through task-oriented communicative in-
teractions in a tutor-learner scenario (Gerasymova
and Spranger, 2010; Beuls et al., 2010; Spranger
and Steels, 2015). A second class of models, as in-
troduced by Gaspers et al. (2011, 2016), is designed
to learn form-meaning pairings under referential
uncertainty. As such, the exact meaning representa-
tions of the input utterances are not provided to the
learning algorithm, but grammars are learnt based
on the combination of input utterances and situa-
tional context snippets. In these experiments, input
utterances always correspond to a single term in
the situational context. In general, both classes of
models have explored interesting ideas on a rather
small scale, either because they were limited to spe-
cific linguistic phenomena (Steels, 2004; Gerasy-
mova and Spranger, 2010, 2012; Beuls et al., 2010;
Spranger and Steels, 2015; Spranger, 2015, 2017;
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Van Eecke and Beuls, 2017, 2018; Van Eecke,
2018), or because of the limited morpho-syntactic
and semantic complexity of the input utterances
(Dominey, 2005a,b, 2006; Chang, 2008; Gaspers
et al., 2011; Gaspers and Cimiano, 2012, 2014;
Gaspers et al., 2016; Abend et al., 2017). In all
of the aforementioned work, either a segmentation
of the input utterances, a lexicon or a set of prede-
fined grammatical categories was provided. With
the exception of the studies by Gaspers et al., the
corpora that were used to learn and evaluate the
models were not made available and were not de-
scribed in sufficient detail to make reproduction
and comparison feasible.

6 Discussion and Conclusion

The scientific contribution of the methodology and
experiments presented in this paper is twofold.
On the one hand, they provide computational ev-
idence for the cognitive plausibility of construc-
tivist theories of language acquisition. These theo-
ries, as most prominently put forward by Tomasello
(2003), attribute the ability of children to acquire
language to two main cognitive capacities: inten-
tion reading and pattern finding. Intention reading
deals with reconstructing the intended meaning
of observed utterances, while pattern finding im-
plements generalisation processes that distil these
reconstructed utterance-meaning pairs into abstract
schemata embodying the linguistic knowledge of
a language user. These schemata can then be used
to fulfil the communicative function of language
through the comprehension and production of natu-
ral language expressions. The methodology intro-
duced in this paper presents a mechanistic model
of the pattern finding capacity. Based on utterances
paired with a representation of their meaning, the
learning algorithm gradually builds up an inven-
tory of concrete to abstract form-meaning map-
pings, called constructions, along with a network
of emergent grammatical categories that captures
how the constructions of the grammar can com-
bine to collaboratively comprehend and produce
utterances. The experiments show that a small num-
ber of general learning operators, which become
active if an utterance cannot be successfully pro-
cessed by the grammar learnt so far, effectively
leads to learning dynamics that are similar to those
described in the psycholinguistic literature (Pine
and Lieven, 1997; Tomasello, 2003; Ambridge and
Lieven, 2015). In the first phase of the learning

process, the learner acquires holistic mappings be-
tween utterances and their meaning representation.
Soon after that, holophrase constructions are gener-
alised to item-based constructions that integrate a
variable slot. At the same time, this generalisation
process leads to the emergence of slot-filling con-
structions, here called lexical constructions. Along
with the item-based and lexical constructions, a net-
work of grammatical categories emerges, capturing
the distribution of construction slots and their ob-
served fillers. In a third phase, more abstract item-
based constructions emerge, with an increasingly
large number of variable slots. In the final phase
of the learning process, most constructions have al-
ready been acquired and most remaining impasses
can be solved by adding new links to the categorial
network. The learning dynamics are influenced by
the degree of entrenchment of constructions. Con-
structions that are often successfully used become
more entrenched, while their competitors are sup-
pressed. As a result of this entrenchment process,
the grammar reaches a stable state, while it remains
adaptive to any changes in the discourse or envi-
ronment. Similar dynamics have been observed
in earlier experiments in the field of evolutionary
linguistics, for instance in experiments on the emer-
gence of compositionality in a population of au-
tonomous agents (De Beule and Bergen, 2006; van
Trijp, 2016).

On the other hand, the methodology and ex-
periments presented in this paper pave the way
for learning computationally tractable, large-scale,
usage-based grammars that facilitate both language
comprehension and production. The proposed
learning algorithm supports online, interactive, in-
cremental, transparent and data-efficient learning.
The learner builds up its human-interpretable in-
ventory of constructions and categories through
the application of transparent syntactico-semantic
generalisation processes. Already after a single
observation, the fragment of linguistic knowledge
acquired by the learner can be successfully used for
language comprehension and production. As more
and more utterance-meaning pairs are observed, the
linguistic knowledge of the learner quickly expands
and becomes better fit for achieving their communi-
cation goals. As a result of the dynamics of reward-
ing successful construction applications and pun-
ishing competing ones, the grammar of the learner
remains ever-adaptive to any changes in the task
or environment. Due to their online, interactive,
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incremental, transparent and data-efficient nature,
we strongly believe that the proposed mechanisms
for learning computational construction grammars
can serve as an excellent basis for implementing
the language acquisition ability of truly intelligent
agents.

Limitations

This paper has introduced a mechanistic model of
the constructivist acquisition of language through
syntactico-semantic pattern finding. Even though
the results that we presented here proved to be
promising and insightful, considerable challenges
and limitations remain.

First of all, the learning operators that we present
facilitate the learning of holistic, item-based and
lexical constructions. At this point, the model does
not include operators that give rise to constructions
that capture more elaborate hierarchical patterns,
including recursive patterns.

Second, the learning operators can adequately
handle word order patterns, even non-contiguous
ones. However, they provide no mechanisms to
learn agreement patterns on an abstract level. As
a consequence, different agreement patterns are
captured in different constructions. This is a less-
than-elegant solution, especially when applied to
morphologically rich languages, as it can lead to a
multiplication of the number of constructions.

Finally, the CLEVR dataset proved to be an
excellent benchmark challenge for an initial val-
idation of this novel methodology, as it consists
of utterances with sufficient repetition, variation
and overlap. It is however a synthetic dataset that
does not reflect the richness of human language use.
More research is needed before this methodology
can be adequately applied to a broader range of
linguistic resources, especially when it comes to
finding generalisations over semantic structures.
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processing of the test set takes less than 15 minutes.
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