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Abstract

Neural reasoning accuracy improves when gen-
erating intermediate reasoning steps. However,
the source of this improvement is yet unclear.
Here, we investigate and factorize the benefit
of generating intermediate steps for symbolic
reasoning. Specifically, we decompose the
reasoning strategy w.r.t. step granularity and
chaining strategy. With a purely symbolic
numerical reasoning dataset (e.g., A=1, B=3,
C=A+3, C?), we found that the choice of
reasoning strategies significantly affects the per-
formance, with the gap becoming even larger
as the extrapolation length becomes longer.
Surprisingly, we also found that certain configu-
rations lead to nearly perfect performance, even
in the case of length extrapolation. Our results
indicate the importance of exploring effective
strategies for neural reasoning models. !

1 Introduction

Artificial intelligence researchers have been at-
tempting neural-symbolic integration for a long
time (d’Avila Garcez and Lamb, 2020; Hamilton
et al., 2022). Neural models tend to perform better
when generating intermediate reasoning steps in
addition to the answer. This phenomenon was seen
across various reasoning tasks, such as math word
problems (Wei et al., 2022; Cobbe et al., 2021; Ko-
jima et al., 2022; Recchia, 2021; Lewkowycz et al.,
2022), commonsense reasoning (Wei et al., 2022;
Wang et al., 2022), and symbolic reasoning (Wei
et al., 2022; Kojima et al., 2022). However, it is
yet unclear which factors in the intermediate step
generation bring the benefit. Previous studies often
used different strategies for step generation in an ad-
hoc manner. To investigate this, we break down the
neural reasoning process into two strategies: output
strategy and chaining strategy (Figure 1). The
output strategy (§2.1) determines the granularity of

'Code available at: https://github.com/aolneko/

reasoning-strategy
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Figure 1: In a controlled setting, we found that

output and chaining strategy choice significantly impact
performance when conducting multi-step reasoning.

intermediate reasoning step generation (all at once
vs. step-by-step vs. token-by-token). Some studies
trained the models to generate reasoning steps
and a conclusion derived from them at once (Nye
et al., 2021; Lewkowycz et al., 2022; Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2022;
Recchia, 2021), some generated a single reasoning
step given the input and iterated this process until
achieving a conclusion (Sanyal et al., 2022; Picco
et al., 2021; Tafjord et al.,, 2021), and others
iteratively generated sub-goals as well as reasoning
steps (Liang et al., 2021; Shwartz et al., 2020).

In turn, the chaining strategy (§2.2) defines
the reasoning path direction (shortest path vs.
exhaustive path vs. backward path). For ex-
ample, some studies used a backward chaining
process (Picco et al., 2021; Rocktédschel and Riedel,
2017; Cingillioglu and Russo, 2019), while others
adopted exhaustive searches (Tafjord et al., 2021;
Liang et al., 2021; Yang et al., 2022).

To compare the strategies, we prepared a test bed
of numerical reasoning problems in a simplified
language (Figure 1). This format allows for more
controlled testing while serving as a necessary
condition—should a model fail to solve it, it cannot
be expected to adequately generalize to more
complex math word problems.

We found that both strategies substantially affect
the symbolic reasoning performance of neural
seq2seq learners. Overall, iterative generation
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(a) All-at-once: output the entire reasoning chain and
answer in a single call. Step-by-step: iteratively build
the output with a single calculation step per call. Token-
by-token: iteratively output only one foken per call.
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(b) The graph nodes represent variables and edges their dependencies.
Shortest path: a minimal chain starting from the first necessary
equation. Exhaustive: greedily solve all equations until the target
is reached. Backward: start from the target’s equation, backtrack
over dependencies until a known value is reached, then solve each
equation in order.

Figure 2: Overview of (a) output and (b) chaining strategies given the INPUT: D=A+2, A=1, B=A+1, C=3+B, C?

outperformed all-at-once outputting, and roughly
granular reasoning steps (i.e., shortest-path chain-
ing) lagged behind finely granular steps (i.e.,
exhaustive and backward chaining). Surprisingly,
some settings had near-perfect performance even in
generalization tests which extrapolate over greater
reasoning depths and unseen numbers during train-
ing.

2 Experimental settings

Problem definition. We evaluated the models’
ability to iteratively perform arithmetic operations
over given symbols. Given a series of equations,
the task is to answer the value of a target variable
(Figure 1). Each question also has a certain reason-
ing depth—the number of necessary equations to
reach the answer. For example, the depth of the
question A=1, B=2+A, C=3+B, D=2, C?is 3 (A=1,
B=2+A, C=3+B).

Each equation defines either an assignment (e.g.,
A=1) or a modular addition and an assignment
(e.g., B=3+1). The addition is mod 100. The
question contexts also contain distractors that are
not necessary to calculate the answer (e.g., D=A+2
in Figure 1). A value assigned to a particular vari-
able is typically referred to in different equations
(e.g., A=1, B=A+1). Numbers, variables, and the
ordering of equations are randomly assigned.

Motivation for using artificial data There are
mainly three advantages to this dataset. First, the

symbolic format allows easier control of reasoning
depth for generalization tests. Specifically, we
trained a model using instances with shallow (1-5)
depths and evaluated them with instances with
shallow/deep (1-12) depths. On the other hand,
math word problems are harder to control for
reasoning depth (e.g., it is not easy to come up with
various instances which have a reasoning depth of
10). Second, we wanted to avoid the "spurious bias"
that natural (math word) texts implicitly bring into
the model (Gururangan et al., 2018; Gupta et al.,
2021; Al-Negheimish et al., 2021; Sugawara et al.,
2018; Jia and Liang, 2017; McCoy et al., 2019).
Third, we assume that our setting is the necessary
condition for solving math word problems. It is
unreasonable to expect that a model that can’t solve
this pure numerical reasoning task can solve more
complex tasks.

In total, we prepared 5K instances for training
and 2.4K for testing.

2.1 Output strategies

We compared three configurations: all-at-once,
step-by-step, and token-by-token (Figure 2a).
All-at-once: The model outputs the entire
reasoning chain and the final answer in a single
call (i.e., chain-of-thought style) (Wei et al., 2022;
Cobbe et al., 2021; Yavuz et al., 2022; Shwartz
et al., 2020) . In this setting, the more reasoning
steps, the longer the sequence the decoder must
generate at once.
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Step-by-step: The model outputs a single
reasoning step per call. Each generated step is
concatenated to the past input, and the model
again generates the next step (i.e., proofwriter
style) (Liang et al., 2021; Sanyal et al., 2022; Picco
et al., 2021; Tafjord et al., 2021; Shwartz et al.,
2020) . This process is iterated until the model
outputs the answer or until a set maximum number
of iterations is reached (100). Token-by-token:
This is the same as step-be-step chaining, but the
decoder outputs only a single foken per call. We
set the maximum number of steps to 500.

Comparing all-at-once and the others reveals
the effect of changing the sequence length that
the decoder outputs in a single call. In addition,
comparing step-by-step and token-by-token quan-
tifies the advantage of breaking a problem into
meaningful units.

2.2 Chaining strategies

Particular variables sometimes depend on another
variable; the key to reaching the correct answer
is determining the order in which the equations
are referred to. Regarding existing studies, we
compared three chaining strategies: shortest-path,
exhaustive, and backward chaining (Figure 2b).
Shortest-path chaining: The model straight-
forwardly solves the equations starting from the
first solvable one (i.e., involving a known value)
and ending with the target (Wei et al., 2022; Cobbe
et al., 2021; Yavuz et al., 2022; Shwartz et al.,
2020). Here, the reasoning behind determining
the shortest path is not outputted by the model.
Exhaustive chaining: The model greedily
solves all given equations until the target value
is reached (Tafjord et al., 2021; Liang et al.,
2021; Yang et al., 2022). Specifically, the model
calculates the left-most solvable equation in each
step. Note that this strategy typically derives a long
reasoning chain; from an engineering perspective,
this strategy is inefficient.

Backward chaining: The model starts from the
equation for the target variable and backtracks over
the dependent equations until it reaches a known
value (Picco et al., 2021; Rocktischel and Riedel,
2017; Cingillioglu and Russo, 2019). Then, it
solves each equation in order by inserting known
or calculated values until the target one is reached.
No chaining: As a baseline, we also examined
the setting where the model was trained to directly
output the answer.

all step gold

I
o
a

normalized
frequency

000960 200 100 ~ 200 100 200
text length

Figure 3: Distributions of the total reasoning chain
length (num. characters). The all-at-once and step-
by-step generate those at depth 12.

3 Results

Models: We used the pre-trained T5-base,
T5-large > (Raffel et al., 2020), and BART-
base 3 (Lewis et al., 2020). Results of BART-base
are in Appendix C.

Note that their pre-defined tokenizers have all

the numbers from @ to 9, and the numerical values
in our dataset are divided into digits (e.g., “12”
should be “@@1 @@2”) in advance, following Kim
et al. (2021).
Training: The models were first pre-trained using
a 10K simple dataset for 30 epochs, then trained
with the 5K training set (1K training instances
for each reasoning depth.) for 2000 epochs. The
experiment setting details are in Appendix A. In
addition, we prepared 0.2K test instances for each
reasoning depth. This pre-training is intended
to teach the models primitive operations (i.e.,
assignment, reference, and addition). The pre-
training dataset contains two types of single-depth
instances: assign-refer type (e.g., A=1,A?) and
operate-assign-refer type (e.g., A=1+3, A?). All
the results in the paper are averages of the results
on three different seeds.

3.1 Output strategies

We compared the output strategies while fixing the
chaining strategy to the shortest path. Figure 4a
shows the accuracy per reasoning depth. Note
that the accuracy score here denotes whether the
answer (e.g., C=6) is correct. We observed the
following: (i) generating intermediate reasoning
steps enhance the performance, and (ii) among
the output strategies, step-by-step works the best,
and all-at-once works the worst. The format of
the dataset in this study is simple. Therefore, this
result indicates the low symbolic reasoning ability
of neural models and the necessity of the choice of

2https://huggingface.co/docs/transformers/
model_doc/T5

3https://huggingface.co/docs/transformers/
model_doc/bart
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Figure 4: Accuracy changes of the models against reasoning depth. The gray range represents the training data
domain (1-5 depth). Figure (4a) shows the performance degradation with the increase of reasoning steps when using
the all-at-once strategy. Figure (4b) shows that the combination of step-by-step output and backward/exhaustive

chaining leads to successful generalization.

Depth Shortest Backward  Exhaustive
6 99.3/99.3 100/ 100 99.7/99.7
8 95.5/95.7 100/ 100 99.8/99.8
12 76.7/77.7  99.5/99.5 98.2/98.3

Table 1: Accuracy of the T5-base model with the step-
by-step output strategy at each depth (chain/answer).

Question: A=1, B=2+A, B?

Error types Gold Prediction

Copying error B=2+A, B=6+A,
B=2+1, B=6+1,
B=3 B=7

Hasty assignment ~ B=2+A, (skip step)
B=2+1, B=2+2,
B=3 B=4

Table 2: Illustrative examples of the errors under the
step-by-step, shortest-path chaining settings. (skip step)
denotes that the reasoning steps is accidentally skipped.

an appropriate reasoning strategy.

We hypothesized that the source of all-at-once’s
inferiority was that the decoder overfitted to output
a similar length of reasoning steps as those in
the (shallower) training data. In fact, the models
generated relatively shorter reasoning steps in the
out-of-domain (e.g., depth of 12) setting when
using the all-at-once strategy (Figure 3); this
supports our hypothesis.

The advantage of step-by-step over token-by-
token suggests the advantage of breaking the
problem into meaningful units (reasoning step)
and modeling each step in a single call of the
encoder-decoder.

3.2 Chaining strategies

Figure 4b and Table 1 show the results on each
depth with a fixed step-by-step output strategy.

Note that the accuracy of the chain (left side of the
scores) was measured based on not an exact match
but mathematically. For example, even if the order
of generated equations is different, it is correct. The
results of a fixed token-by-token output strategy are
in Appendix B.

While the performance dropped in the shortest-
path setting as the reasoning depth increased,
with either the exhaustive or backward chaining,
models successfully solved the task even when
extrapolating to depths 6-12. The models correctly
generated the intermediate steps (nearly perfect)
as well as the final answer in the exhaustive and
backward chaining settings (Table 1). Note that
these strategies were ineffective with all-at-once
outputting.

Gontier et al. (2020) compared chaining strate-
gies and concluded that models that didn’t generate
reasoning steps had better generalization perfor-
mance than models that did when the reasoning
chains were long. However, our results suggest
that the choice of the appropriate output strategy
improves the reasoning ability of the model.

We considered that the source of shortest-path
inferiority was the rough granularity of the given
reasoning steps. The models don’t know the
shortest path before outputting the reasoning steps.
Therefore, both the exhaustive and shortest path
chaining approaches must search for variables other
than those on the shortest path. As shown in Fig-
ure 2b, the exhaustive chaining approach is taught
this process explicitly. On the other hand, the
shortest-path chaining approach must be learned
that by training data that don’t include this process.
We thought this difference affected the accuracy
and concluded that the accuracy is higher when
the granularity of given intermediate steps is
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finer, even though they are long.

Therefore, we concluded that the accuracy is
higher when the granularity of intermediate
steps is finer, even though they are long.

3.3 Error analysis

We also analyzed the errors of the depth-12 in-
stances under the shortest-path strategy. * We
observed two types of errors: (i) copying errors and
(ii) hasty assignment. Table 2 shows an illustrative
example of each error type and the percentage of
these errors. The most frequent one (53%) was
a simple copying error, where the model failed
to accurately copy an original equation into the
reasoning chain. This erroneous copying ability
is consistent with Xu et al. (2020) and supports
the advantage of introducing a copy mechanism to
the model (Ontanon et al., 2022). Second, a hasty
assignment is the model skipping the step to copy
the equation from context and instead assigned it a
random value. Note that these errors were almost
addressed in the other strategies; this could stem
from the difficulty of the implicit calculation of the
shortest path.

3.4 Models’ scalability

To investigate the scalability, we compared T5-
large with T5-base. Figure 5 shows the result.
T5-large had a similar trend but slightly lower
accuracy on all-at-once and step-by-step compared
to TS-base. The reason may be that T5-large needs
more data for updating the weights of the entire
model. On the other hand, the accuracy of T5-large
is higher than T5-base on token-by-token. It’s
because the data size of token-by-token is as token
lengths of output sequence times as the data size
of all-at-once, as shown in Figure 2a. This result
indicates that the parameter size of the model needs
to be larger to output token-by-token.

4 Conclusions

We investigated and factorized the reasoning strat-
egy in symbolic numerical reasoning with neural
seq2seq models. We found that the combination of
step-by-step output and finely granular reasoning
leads to successfully performing symbolic reason-
ing. Our results support the potential of neural
models for symbolic reasoning.

“In total, 32 instances were analyzed. That is the total
number of incorrect answers on one seed.

—_
o

accuracy
o
(2

o
o

2 4 6 8 10 12
reasoning depth
- all (t5-base) all (tb-large)

step (tb-large)
token (t5-large)

——- step (t5-base)
..... token (tb-base)

Figure 5: Accuracy changes of the T5-base and T5-large
against reasoning depth. The gray range presents the
training data domain (1-5 depth). This figure shows that
the accuracy of T5-large with token-by-token is higher.

Limitations

We found that even simple symbolic reasoning
requires the appropriate selection of reasoning strat-
egy. It is unclear whether our findings generalize to
more complex symbolic reasoning and/or problems
written in natural language. If our findings do
not generalize in these different settings, we must
address the gap in future work. For example, we
start with one of the simplest tasks and find out
when models fail as we add complexity to tasks
one by one.

From the engineering perspective, the iterative
strategies are limited to the input length of the
model. For example, in our experiments, when
adopting the setting where reasoning depths are
greater than 13, the input length of step-by-step
and token-by-token became longer than the input
length limit of T5 (i.e., 512 tokens).

In addition, gigantic language models (e.g., GPT-
3) have recently been used. Including these models
in our study is one of our future works.
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Figure 6: Accuracy changes of token-by-token per
reasoning depth. The gray range presents the training
data domain (depths 1-5).
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Figure 7: Accuracy changes of the T5-base and
BART-base models per reasoning depth. The gray range
presents the training data domain (depths 1-5). T5 seems
to outperform BART.

A Details on Experimental Settings

We first examined the learning rate from 1073,
104, and 1075; among them, we used the largest
rate at which the loss converged. After training
models, we used the model with the lowest valida-
tion loss among the per-epoch checkpoints during
the training reported. We used four NVIDIA V100
GPUs for NVLink 16GiB HBM?2.

B Results of Token-by-token

Figure 6 shows the results on each depth with
a fixed token-by-token output strategy. Like
step-by-step, the performance drops in the shortest-
path setting as the reasoning depth increases. In
addition, the exhaustive or backward successfully
solves the task even when extrapolating to depths
6-12.

C Different Architectures

We also tested BART-base (Lewis et al., 2020) as
a baseline to investigate the effectiveness of the
NLP-task-oriented objectives used in the T5-style
pre-training. Figure 7 shows this result. In this

particular setting, TS was superior to BART. This
suggests that the NLP-task-oriented objectives
benefit symbolic reasoning.

D Other errors

We analyzed the cases where the answer is correct
and the chain is wrong. Table 3 shows examples
of chain errors. Ignoring the incorrect step is
an example of the model outputting the correct
reasoning step after outputting an incorrect one.
Correct assignment is an example in which the
assignment accidentally makes the model output
the correct step. Finally, Non-affecting error is an
example in which a variable not on the shortest
path is wrongly assigned a value.
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Question: A=1, C=5+B, B=2+A, D=3+A, C?

Chain error types Gold Prediction

Ignoring the incorrect step  A=1, B=2+A, B=2+1, B=3, C(=5+B, A=1, B=2+D, B=2+A, B=2+1, B=3,
C=5+3, C=8 C=5+B, C=5+3, C=8

Correct assignment A=1, B=2+A, B=2+1, B=3, C(=5+B, A=1, B=2+D, B=2+1, B=3, C(=5+B,
C=5+3, C=8 C=5+3, C=8

Non affecting error A=1, B=2+A, B=2+1, B=3, C(=5+B, A=1, B=2+A, B=2+1, B=3, D=3+A,
C=5+3, C=8 D=3+2, D=5, C=5+B, C=5+3, C=8

Table 3: These instances are examples of chain errors. Note that the final answers are correct.
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