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Abstract

While pre-trained language models (PLMs)
have become a de-facto standard promoting
the accuracy of text classification tasks, re-
cent studies (Kong et al, 2020; Dan and
Roth, 2021) find that PLMs often predict
over-confidently. Although various calibration
methods have been proposed, such as ensem-
ble learning and data augmentation, most of
the methods have been verified in computer
vision benchmarks rather than in PLM-based
text classification tasks. In this paper, we
present an empirical study on confidence cali-
bration for PLMs, addressing three categories,
including confidence penalty losses, data aug-
mentations, and ensemble methods. We find
that the ensemble model overfitted to the train-
ing set shows sub-par calibration performance
and also observe that PLMs trained with con-
fidence penalty loss have a trade-off between
calibration and accuracy. Building on these
observations, we propose the Calibrated PLM
(CALL), a combination of calibration tech-
niques. The CALL complements the draw-
backs that may occur when utilizing a cali-
bration method individually and boosts both
classification and calibration accuracy. Design
choices in CALL’s training procedures are ex-
tensively studied, and we provide a detailed
analysis of how calibration techniques affect
the calibration performance of PLMs.

1 Introduction

Trustworthy deployment of machine learning appli-
cations requires accurate and calibrated predictions
to instill their reliability and help users be less con-
fused about models’ decisions (Xiao and Wang,
2019; Liu et al., 2020).

However, modern deep neural networks (DNNs)
produce miscalibrated predictions, i.e., a mismatch
between a model’s confidence and its correctness.
One of the reasons is that an over-parameterized
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Figure 1: Reliability diagrams (DeGroot and Fienberg,
1983) on TREC (Li and Roth, 2002) with PLMs. A
dashed line implies a perfect calibration while PLMs
generally show over-confident predictions.

classifier typically produces over-confident predic-
tions (Guo et al., 2017). Moreover, the miscali-
bration can be exacerbated when DNNs make pre-
dictions on test data different from the training
distribution, i.e., distribution shift (Ovadia et al.,
2019).

To obtain the well-calibrated predictions, many
pioneering studies have shown the calibration effect
of ensemble and regularization techniques focused
on computer vision benchmarks. Ensemble learn-
ing has become one of the standard approaches to
reduce calibration errors (Lakshminarayanan et al.,
2017; Bonab and Can, 2019). Pereyra et al. (2017)
propose the entropy regularized loss which penal-
izes confident output distributions in order to re-
duce overfitting. Hongyi Zhang (2018); Hendrycks
et al. (2020) demonstrate that DNNs trained on
diverse augmented data are less prone to produce
over-confident predictions, leading to the calibra-
tion benefit under the distribution shift.

Intense research effort has focused on improving
the calibration performance of vision models on
image datasets. However, exploration of existing
calibration methods with pre-trained Transformers
(PLMs) has received less attention. Moreover, re-
cent studies show that PLMs such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) pro-
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duce miscalibrated predictions introduced by over-
parameterization (Kong et al., 2020). Therefore, it
is necessary to investigate how modern calibration
techniques affect PLMs’ calibration.

In this paper, focused on PLMs in multi-class

classification tasks, we explore widely used calibra-
tion families, including (1) confidence penalty loss
functions that can be used instead of cross-entropy
loss, (2) data augmentations, and (3) ensemble
methods. We consider a low-resource regime since
the small size of the training dataset amplifies the
miscalibration of models (Rahaman et al., 2021).
We also observe PLMs especially produce unre-
liable predictions in the data scarcity setting (see
Figure 1).
Contributions. We conduct a comprehensive em-
pirical study for the effectiveness of the above cali-
bration methods. In this study, our findings are as
follows:

* A PLM trained with imposing a strong penalty
on the over-confident output shows significant
improved calibration performance, but its accu-
racy can slightly deteriorate.

* For ensemble methods, Deep Ensemble (Laksh-
minarayanan et al., 2017) and MIMO (Havasi
et al., 2021) increase the diversity of predictions,
resulting in the well-calibrated predictions in
the data scarcity setting. However, the ensem-
ble methods show insufficient calibration when
each ensemble member is overfitted to negative
log-likelihood for the training dataset.

* Data augmentation methods that can expose di-
verse patterns such as MixUp (Hongyi Zhang,
2018) and EDA (Wei and Zou, 2019) are more
effective for calibration in PLMs compared to
weak text-augmentation methods (Kolomiyets
et al., 2011; Karimi et al., 2021).

Building on our findings, we present Calibrated
PLM (CALL), a blend of the discussed calibra-
tion methods. Numerical experiments demonstrate
that the components of CALL complement each
other’s weaknesses. For instance, data augmen-
tation and ensemble methods offset the accuracy
decline caused by the confidence penalty loss,
while data augmentation and the confidence penalty
loss counteract overfitting in the ensemble model.
Through our extensive experiments, we show the
CALL’s competitiveness on several text classifica-
tion benchmarks.

2 Related Work

The calibration of machine learning models has
been mainly studied for the trustworthy deploy-
ment of image recognition applications (Lakshmi-
narayanan et al., 2017; Hongyi Zhang, 2018; Guo
et al., 2017). Beyond the computer vision fields, re-
search on the calibration ability of language models
in the NLP domain has also recently been attracting
attention (Desai and Durrett, 2020; Dan and Roth,
2021).

Desai and Durrett (2020) investigate the cal-
ibration ability of PLMs, and they demonstrate
that ROBERTa produces more calibrated predic-
tions than BERT. They also show that tempera-
ture scaling (Hinton et al., 2014) and label smooth-
ing (Szegedy et al., 2016) improve the calibration
performance of PLMs for language understanding
tasks. Dan and Roth (2021) conduct an empirical
study of the effects of model capacity on PLMs and
show that smaller pre-trained transformers provide
more reliable predictions. Moon et al. (2020) find
that PLMs tend to produce over-confident outputs
based on in-distribution (ID) keywords rather than
contextual relations between words. They demon-
strate that keyword-biased predictions can be over-
confident even in out-of-distribution samples with
ID keywords.

Kong et al. (2020) suggest two regularizers
using generated pseudo-manifold samples to im-
prove both ID and out-of-distribution calibration
for PLMs. They use MixUp (Hongyi Zhang, 2018)
as a regularization technique for BERT calibra-
tion and show that mixed training samples on the
data manifold improve the calibration performance.
Similarly, Park and Caragea (2022) propose a vari-
ant of MixUp utilizing saliency signals and also
analyze the impact of combining additional cali-
bration methods with MixUp. However, they only
consider temperature scaling and label smoothing
as additional calibration methods.

3 Why Re-assess Calibration Methods?

Guo et al. (2017) observe that a larger DNN tends
to be more poorly calibrated than a smaller one. As
the size of the parameters for modern DNNs con-
tinues to increase, the miscalibration issues need to
be addressed more than ever.

At the same time, the unique character of PLMs
raises concerns about whether previous findings on
calibration obtained from standard convolutional
neural networks (CNNs) can be successfully ex-
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tended to PLM. For example, PLMs with ensemble
learning may have different behavior compared to
randomly initialized CNNs because naive PLMs
have a massive amount of parameters and are ini-
tialized with pre-trained weights in the fine-tuning
stage.

On the other hand, for the data augmentation, be-
cause image transformations (e.g., flipping, trans-
lation, and rotating) can not be directly applied to
text-based samples, thus, it is also necessary to in-
vestigate the effect of text-specific augmentations
on the calibration of PLMs.

4 Calibration Strategies

In this section, we review the existing literature
used in our experiments and how we applied each
method to PLMs. Calibration methods we explore
are denoted by bold.

4.1 Preliminaries

Notation. Let D = {z;, yi}i]\il be a dataset con-
sisting of N samples, where x; € X is a input and
yi € Y ={1,..., K} is a ground truth label. We
denote by p; = f(y|z;) the predicted distribution
of a classifier f. Class prediction and associated
confidence (maximum probability) of f are com-
puted as y; = argmaxycy, p; and p; = maxey P,
respectively.

In the BERT-style architecture, output of em-
bedding layer, L attention blocks, and the output
dense layer (with softmax function) are denoted by
Zembeds § = {91, .-, gL}, and h, respectively.
Calibration Metrics. A calibrated model provides
reliable predictive probability whose confidence
aligns with its expected accuracy, i.e. E;[|P(y =
y|p) — p|]. Given a finite dataset, Expected Cali-
bration Error (ECE; Naeini et al., 2015) is widely
used as a calibration performance measure. ECE
can be computed by binning predictions into T°
groups based on predictions of f and then tak-
ing a weighted average of each group’s accu-
racy/confidence difference:

Z Bl lacc(By) — conf(By)|, (1)

where By is the group of samples and their cor-
responding confidences belonging to the (%, ).
The acc(B;) and conf(B;) denote average accuracy
and confidence of predictions for B, respectively.
Model calibration also can be measured using

proper scoring rules (Gneiting and Raftery, 2007)

such as Brier score (Brier et al., 1950) and negative
log likelihood (NLL).

4.2 Confidence Penalty Losses

We explore an alternative loss functions that can be
used instead of cross-entropy (CE) loss.

Brier Loss (BL; Brier et al., 1950) is one of the
proper scoring rules, defined as the squared er-
ror between the softmax output and the one-hot
ground truth encoding. BL is related to ECE in
that it is an upper bound of the calibration error by
the calibration-refinement decomposition (Brocker,
2009; Liu et al., 2020).

Entropy Regularized Loss (ERL; Pereyra et al.,
2017) penalizes confident output distributions by
adding the negative entropy:

K
Lert, = L'+ B Zﬁk log pk, )
k=1

where £’ can be an arbitrary classification-based
objective function (e.g., CE and BL), and 3 is the
hyperparameter that controls the strength of the
confidence penalty.

Label Smoothing (LS; Szegedy et al., 2016) is a
commonly used frick for improving calibration that
generates a soft label by weighted averaging the
uniform distribution and the hard label.

4.3 Data Augmentations

Data augmentations have been widely used to
improve the model’s calibration performance in
computer vision fields (Hongyi Zhang, 2018;
Hendrycks et al., 2020; Wang et al., 2021). How-
ever, text augmentations are often overlooked in
the literature on the calibration in NLP tasks. To
the best of our knowledge, we are the first to ex-
tensively study how text augmentation techniques
such as Synonym Replacement (SR; Kolomiyets
et al., 2011), Easy Data Augmentation (EDA; Wei
and Zou, 2019), and An Easier Data Augmentation
(AEDA; Karimi et al., 2021) affect calibration per-
formance. We also investigate the recent variant of
MixUp (Zhang and Vaidya, 2021).

SR randomly choose n words from the input sen-
tence except for stop words and then replace each
of these words with one of its synonyms chosen
using WordNet (Miller, 1995).

EDA is a token-level augmentation method that
consists of four random transformations: SR, Ran-
dom Deletion, Random Swap, and Random Inser-
tion.
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AEDA only use Random Insertion operator that

LR R LRI
. PR :

insert punctuation marks (i.e., , , T,
“’) into a input sentence.

MixUp (Hongyi Zhang, 2018) is a data augmen-
tation strategy using convex interpolations of in-
puts and accompanying labels. Guo et al. (2019)
investigate word- and sentence-level MixUp strate-
gies to apply MixUp to recurrent neural networks.
Zhang and Vaidya (2021) propose MixUp-CLS,
that performs MixUp on the pooled [CLS] token
embedding vector for a last attention layer of PLM.
MixUp-CLS shows improved accuracy for natural
language understanding (NLU) tasks compared to
word-level MixUp. Unless otherwise specified, we
use MixUp-CLS in our experiment.

4.4 Ensembles

Ensemble techniques utilize M/ models by combin-
ing them into an aggregate model and then aver-
age the predictions to produce calibrated outputs:
= Z%zl fm(y|z). We compare the deterministic
model with three ensemble approaches, and the
computational cost of the ensemble methods used
in the experiment is reported in Appendix A.
Deep-Ensemble (DE; Lakshminarayanan et al.,
2017) consists of M randomly initialized models
and provides a calibration effect leveraging the pre-
dictive diversity of ensemble members. When ap-
plying DE to PLMs, M independent models have
different initialization weights only in a penulti-
mate layer since PLMs are initialized with pre-
trained weights.

Monte Carlo Dropout (MCDrop; Gal and Ghahra-
mani, 2016) interprets Dropout as an ensemble
model, leading to its application for uncertainty
estimates by sampling M times dropout masks at
test time.

Multi-Input and Multi-Output (MIMO). To al-
leviate the high computational cost and memory
inefficiency of DE, Havasi et al. (2021) propose
the multi-input and multi-output architecture by
training M sub-networks inside a CNN.

In original MIMO, the M inputs (images)
{xm}%zl are sampled from Dy, MIMO con-
catenates multiple inputs per channel before the
first convolution layer and produces multiple out-
puts using M independent output dense layers. The
feature extractor of CNN remains unchanged. For
the training procedure, all ensemble members have
the same mini-batch inputs with probability p, and
the inputs are randomly sampled from the training

dataset with probability 1 — p.

For applying MIMO to the PLMs, the following
consideration arise; When multiple inputs are con-
nected before the embedding layer, the length of
tokens is M times longer. Thus, applying MIMO
to PLMs in this manner is inefficient for a dataset
that consists of long sentences.

Instead, we modify the original configuration of
MIMO so that it can be applied to various NLP
tasks. For PLM, the output of the first attention
layer Z is calculated by averaging multiple outputs
of M independent first attention blocks {g'™ }

m=1"

| M
zZ = M Z gqn(zembed)- (3)
m=1
To produce multiple predictions, we use M
modules that consist of the last attention blocks
{g" ,]‘,{:1 and dense layer h. The ensemble predic-
tion is calculated by:

h(gi"(g'(2)), )

where ¢’ = {g2,...,gr—1} is the shared attention
blocks.

#train #dev #test [,y #classes
SST2 | 70k 0.7k 1.8k 19 2
20NG | 9.1k 22k 7.5k 320 20
TREC | 49k 05k 0.5k 10 6

Table 1: Summary of data statistics. lq,4: Sentence
average length.

S Experiments

This section presents the experimental results of
the calibration methods. We describe experimen-
tal datasets and settings (Section 5.1 and 5.2), fol-
lowed by empirical results for the low-resource
regime (Section 5.3), overall calibration result (Sec-
tion 5.4), and detailed analysis (Section 5.5). We
then introduce the training procedure of CALL in
Section 6. In our experiments, we set ROBERTa
trained with CE as a baseline. Unless otherwise
specified, ensemble and augmentation methods are
applied to the baseline.

5.1 Datasets and Metrics

Dataset. Following Zhou et al. (2021), we use the
following three text classification datasets. Data
statistics are described in Table 1.
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SST2

20NG

91.23/7.42/43.08
91.04/6.62/38.77
91.16/6.03 /30.26
89.48/7.15/736.02
90.32/5.68/29.61
91.15/5.56/29.37

76.58 /11.37/90.40
76.79 /11.21/90.32
76.39/11.36/90.90
75.74/7.21786.02
76.13/6.62/86.11
75.83/6.57/86.31

90.54 /7.22/38.03
91.45/6.69/37.67
91.56/5.01/29.86
90.86/6.46/31.89

76.45/10.54/ 87.64
76.41/11.49/91.21
76.01/10.52/88.89
76.74 /11.22/90.65

Acc?/ECE| /NLL| TREC

RoBERTa (baseline) | 94.04/4.08 /24.86
CE+ERL 93.72/4.05 / 24.20
CE+LS 93.84/3.37/23.71
BL 93.24/2.69/26.55
BL+ERL 93.84 /2.48 / 24.78
BL+LS 93.52/2.32/25.16
SR 94.24/3.37/22.24
AEDA 93.76 / 4.68 / 28.36
EDA 93.40/2.83 /23.46
MixUp 9476/ 2.23/ 22.02
MCDrop 94.20/4.16/ 24.45
MIMO 94.88 /3.13 /20.38
DE 95.03 /2.89 /19.02

91.04/6.84 /39.55
91.26/6.21/32.78
91.44/4.88/29.51

76.63/10.18/87.52
76.25/5.61/81.43
78.09/7.51/78.96

Table 2: Results for the low-resource regime. For each dataset, all methods are trained with 10% of training
samples. The best results in each category are indicated in underline and the best results among all methods are
indicated in bold. Accuracy is a percentile. We report ECE and NLL multiplied by 102.

e Stanford Sentiment Treebank (SST2; Socher
et al., 2013) is a sentiment analysis dataset that
consists of sentences from movie reviews.

* 20 Newsgroups (20NG; Lang, 1995) is a topic
categorization dataset which contains news arti-
cles with 20 categories.

* TREC (Voorhees and Tice, 2000) is a dataset
for question classification, and we use its coarse
version with six classes.

To evaluate the effectiveness for calibration meth-
ods in the data scarcity setting, we use 10% of the
training set.

Metrics. We measure ECE and NLL for each cali-
bration method. For ECE, we bin the predictions
into T = 15 equidistant intervals. We report ECE
and NLL multiplied by 10? in all experimental re-
sults for the convenience.

5.2 Training Configurations

We implement our framework upon Huggingface’s
Transformers (Wolf et al., 2020) and build the text
classifiers based on RoOBERTa (roberta-base) in
the main experiment. All models are optimized
with Adam optimizer (Kingma and Ba, 2017) with
a weight decay rate of 0.01, warmup proportion
of 0.1, batch size of 16, a dropout rate of 0.1,
and an initial learning rate of le-5. We fine-tune
the RoBERTa for 10 epochs. For each calibra-
tion method, hyper-parameters are tuned according
to the classification performance, and the detailed
hyper-parameter setting is described in Appendix
B. We also provide empirical results for BERT

(bert-base-cased) in Appendix C. We report the
averaged performance over 5 runs using different
random seeds and implementation results are avail-
able at https://github.com/kimjeyoung/PLM_
CALL.

5.3 Result for Low-resource Regime

Table 2 represents the classification accuracy and
calibration performances for each dataset in the
low-resource regimes. Most calibration strategies
perform better than the baseline, even in cases
where the baseline calibration results were already
good, e.g., TREC. These results demonstrate that
the existing methods can enhance PLM’s calibra-
tion ability when the annotation budget is small, as
in many real-world settings.

Interestingly, augmentation methods except for
AEDA also result in the calibration benefit. For
example, MixUp and EDA show improved calibra-
tion performances for all datasets compared to the
baseline.

Among confidence penalty losses, BL signifi-
cantly reduces ECE for the three datasets. More-
over, the calibration performance is further im-
proved when BL is combined with an additional
regularization method (i.e., BL+ERL and BL+LS).
However, BL+LS and BL+ERL underperform the
baseline with respect to accuracy, and this perfor-
mance drop is also observed when applied to BERT
(Appendix C).

DE not only shows the most remarkable improve-
ment of NLL but also improves accuracy for all
datasets. MIMO also consistently outperforms the
baseline for ECE. In summary, DE and MIMO are
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SST2

20NG

94.35/4.13/26.36
94.05/4.05/26.94
94.21/3.75/20.17
94.48 /2.95/17.25
94.97/3.21/17.31
94.34/2.78/17.74

86.00/9.51/68.26
86.13/9.41/70.18
86.14/9.81/70.16
86.06/7.06/58.37
85.77/6.75 / 58.02
86.15/6.76/58.17

94.31/3.48/20.81
94.45/3.70/23.27
94.21/2.95/19.27
94.57/3.61/19.04

85.97/9.31/64.84
85.89/9.85/69.41
85.74 / 8.69 / 60.90
86.21/8.72/64.48

Acc? /ECE] /NLLJ TREC

RoBERTa (baseline) | 97.40/2.41/15.24
CE+ERL 97.24/2.44/14.64
CE+LS 97.28/2.06/13.11
BL 97.04/1.80/12.23
BL+ERL 97.28/1.35/12.09
BL+LS 96.92/1.41/12.54
SR 97.04/2.19/12.18
AEDA 97.24/2.35/12.99
EDA 97.16/1.87/11.54
MixUp 97.20/1.55/11.58
MCDrop 97.56/2.37/13.84
MIMO 97.32/2.30/12.86
DE 97.32/2.09/12.83

94.01/3.64/24.02
94.32/2.68/17.51
94.64/3.10/ 19.15

85.97/8.61/64.49
85.80/8.68 / 60.92
86.81/7.90/62.31

Table 3: Overall calibration results for calibration techniques. For each dataset, all methods are trained with 100%

of training samples.

more effective than the other calibration methods
when considering both accuracy and calibration in
the low-resource regime.

5.4 Overall Result

Overall performance result is reported in Table 3.
Similar to the results in Table 2, most of calibra-
tion methods show better calibration performance
compared to the baseline. In this setting, ROBERTa
trained with BL+ERL works best. For example,
BL+ERL shows NLL results of 17.31 and 58.02 in
SST2 and 20NG, respectively, but DE obtain 19.15
and 62.31. In the data augmentation category, EDA
and MixUp improve ECE and NLL compared to
SR. AEDA underperforms the baseline for 20NG.

5.5 Analysis

Our empirical results raise the following questions:
(1) Why do EDA and MixUp show better calibra-
tion performance than SR or AEDA? (2) How can
we improve the accuracy of BL+ERL? (3) Why are
ensemble methods more efficient than regulariza-
tion methods in the low-resource setting, whereas
BLA+ERL is most effective for the full-data avail-
able setting? We further conduct a detailed analysis
focusing on the above questions.

Role of Data Augmentation. Although the PLM
trained on the proper scoring rule reduce calibration
error for the training dataset, minimizing calibra-
tion errors for all unseen ID samples is challenging
because we use finite training data (Liu et al., 2020).
As an alternative, if models trained with augmented
samples learn diverse representations, we expect
to match the distribution of training data with the
distribution of unseen ID data.

Distance TREC SST2 20NG
SR 11.56/17.44 7.12/12.01 15.54/23.02
AEDA | 11.57/1695 6.87/12.09 16.37/22.36
EDA 14.16/17.08 8.09/10.99 17.27/22.24
MixUp | 14.52/15.44 7.69/11.18 16.65/21.62

Table 4: (Left) Distance between original and aug-
mented sentences for the training samples. Higher is
better. (Right) Distance between augmented training
sentences and original test samples. Lower is better.
The distance are computed at the last attention layer of
RoBERTa.

Acc/ECE ‘ TREC SST2 20NG
BL+ERL | 93.84/2.48 90.32/5.68 76.13/6.62
+SR 92.60/2.93 91.75/4.57 76.40/5.49
+AEDA | 93.84/2.84 91.32/521 75.83/6.14
+EDA 93.40/2.83 90.76/4.97 176.45/5.18
+MixUp | 94.76 /2.23 90.89/4.52 76.25/6.39

Table 5: Comparison result for augmentation methods.
Each method is trained with 10% of training data.

We analyze the distance between unseen and
training data distribution, assuming that the aug-
mentation scheme that pulls the distribution of
training data towards the unseen data distribution
will be effective for calibration.

To measure the distance between the two dis-
tributions, we use Hausdorff-Euclidean distance.
In Table 4, RoBERTa trained with MixUp shows
the closest distance between training data and test
data, followed by EDA. In addition, the augmented
data generated by MixUp and EDA are far away
from the training data. It can be interpreted that
EDA and MixUp generate more diverse patterns of
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Figure 2: The plot of the NLL (Top) and the norm of weights (Bottom) while training RoOBERTa on TREC (Left),
SST2 (Middle), and 20NG (Right), respectively. The weights are extracted from the penultimate layer of ROBERTa

and we use 10% of samples for training.

representations. Hence, matching the distribution
of observed data with the distribution of unseen
data by adopting a proper augmentation method
that generates diverse patterns may help the model
produces calibrated predictions.

On the other hand, since data augmentation gen-

erally helps to improve accuracy, we investigate
whether augmentation methods improve the accu-
racy of BL+ERL. In Table 5, MixUp improves
not only classification accuracy but also calibration
performance on all datasets compared to the naive
BL+ERL.
Role of Regularization. A crucial empirical ob-
servation by Guo et al. (2017) is that overfitting the
NLL during training appears to be associated with
the miscalibration of DNNs.

To better understand the role of strong regulariza-
tion, we visualize the NLL during the training pro-
cess of PLM. In Figure 2, training and test NLL are
reduced at the beginning of training regardless of
regularization methods. However, as training pro-
gresses, the test NLL of RoOBERTa trained with CE
increases'. On the other hand, other regularization
methods show an inhibitive effect on overfitting
compared to CE.

A DNN can produce over-confident predictions
if the network increases the norm of its weights,
which results in the high magnitudes of the logits

"Note that we use weight decay and dropout for training
in order to alleviate overfitting.

(Mukhoti et al., 2020). Figure 2 (Bottom) shows
that the RoBERTa trained with CE also has a larger
norm than the regularized models.
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Figure 3: The test NLL for DE. Each arrow denotes the
point at which the validation accuracy is the maximum.

Diversity Analysis in Ensembles. Diversity of
predictions in ensemble is one of the key factor of
determining calibration performances (Havasi et al.,
2021). However, in the presence of overfitting, the
diversity of predictions between ensemble mem-
bers may decrease because the trained individual
members would produce similar predictions that
are overfitted to the same training data distribution
(Shin et al., 2021).

We hypothesize ensemble members of DE ap-
plied to PLMs may also suffer from overfitting.
Thus, we investigate whether the ensemble mem-
bers are overfitted to NLL. In Figure 3, DE trained
with 10% of the training data shows a different test
NLL for each ensemble member, while DE trained
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Acct/ECE] /NLL] TREC SST2 20NG

Train samples 100 %

RoBERTa (baseline) 97.40/2.41/1524 94.35/4.13/2636 86.00/9.51/68.26
DE (ensemble baseline) 97.32/2.09/12.83 94.64/3.10/19.15 86.81/7.90/62.31

BL + ERL 97.28/1.35/12.09 94.97/3.21/17.31 85.77/6.75/58.02
BL + ERL + MixUp 97.28/1.95/12.22 94.76/2.12/16.31 86.07/5.13/56.32
BL + ERL + MixUp + MCDrop | 97.32/2.76/12.13 94.66/2.15/15.37 86.12/4.73/55.61

BL + ERL + MixUp + MIMO | 97.36/2.04/12.04 95.01/2.12/16.82 85.93/4.69/56.22
BL + ERL + MixUp + DE 97.44/2.78/11.45 95.31/1.56/14.24 86.67 /3.67/53.21
Train samples 10 %

RoBERTa (baseline) 94.04/4.08/24.86 91.23/7.42/43.08 76.58/11.37/90.40
DE (ensemble baseline) 95.03/2.89/19.02 91.44/4.88/29.51 78.09/7.51/78.96
BL + ERL 93.84/2.48/24.78 90.32/5.68/29.61 76.13/6.62/86.11

BL + ERL + MixUp 94.76/2.23/22.02 90.89/4.52/26.59 76.25/6.39/84.20
BL + ERL + MixUp + MCDrop | 94.68/2.41/21.92 90.93/4.26/26.16 76.16/4.69 /82.54
BL + ERL + MixUp + MIMO | 94.68/1.96/20.65 91.75/3.13/23.96 76.89/2.94/80.65

BL + ERL + MixUp + DE 94.88/3.24/18.76 91.76/2.36/22.23 78.12/2.00/74.93

Table 6: CALLyivo: BL+ERL+MixUp+MIMO. CALLpg:
results are indicated in bold and underline, respectively.

with 100% of the training data results in a closer
NLL for the ensemble members as the training pro-
gresses.

According to our experimental result, members
within the ensemble often fail to produce different
predictions due to the overfitting, indicating that
additional effective regularization schemes can be
adopted to prevent overfitting when applying the
ensemble to the PLM. This finding also explains
why ensemble techniques shows sub-par calibra-
tion performance compared to the regularization
methods in the setting where full-data available.
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Figure 4: The diversity of predictions in ensemble with
respect to the regularization methods. Blue: DE;

: DE+MixUp; Green: DE+BL+ERL. Results for
MIMO and MCDrop are reported in Appendix D. A
higher disagreement means that the models within the
ensemble make different predictions.

We investigate whether BL+ERL and MixUp
methods can compensate for the aforementioned

BL+ERL+MixUp+DE. The best and second best

limitation of the ensemble method. We measure
disagreement score (see Havasi et al., 2021) to an-
alyze the degree of diversity for predictions. As
shown in Figure 4, DE shows a high disagreement
score in the low-resource regime. When full-data
are available, the disagreement score of DE is con-
sistently the lowest for all datasets. However, we
observe that MixUp and BL+ERL significantly mit-
igate the reduction of predictive diversity for DE.

6 Calibrated PLMs

Through extensive analyses, we find that (1)
MixUP that generate more diverse patterns helps
improve the accuracy of BL+ERL, and (2) the re-
duced predictive diversity in the ensemble can be
mitigated by BL+ERL and MixUp.

To this end, we report the calibration perfor-
mance incrementally applying BL+ERL, MixUp,
and ensemble techniques to the naive RoOBERTa.
Specifically, we denote BL+ERL+MixUP+DE,
and BL+ERL+MixUP+MIMO by CALLpg, and
CALLwmo, respectively.

In Table 6, overall, CALLpg achieves remark-
able performance compared to DE on SST2 and
20NG datasets. CALLyvo shows competitive per-
formance with DE with respect to ECE and NLL.
This experiment shows that the calibration perfor-
mance can be improved by the combinations using
the ensemble, data augmentation, and confidence
penalty losses in NLP tasks based on PLM, and
each calibration method complements each other
to further improve calibration performance without
compromising accuracy.
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7 Conclusion

In this work, we investigate the calibration effect
of PLMs with various calibration methods applied.
As a result of a comprehensive analysis of how
calibration methods work in PLMs, we find that
(1) the confidence penalty losses have a trade-off
between accuracy and calibration, and (2) ensem-
ble techniques lose predictive diversity as training
progresses, resulting in reduced calibration effec-
tiveness. To address these findings, we propose
CALL, a combination of BL, ERL, MixUp, and
ensemble learning. CALL reduces the risk of accu-
racy reduction through its data augmentation and
ensemble techniques, and enhances the predictive
diversity of ensemble methods by incorporating
strong regularization and data augmentation. On
multiple text classification datasets, CALL outper-
forms established baselines, making it a promising
candidate as a strong baseline for calibration in text
classification tasks.

Limitations

Although the proposed framework achieves signifi-
cantly improved calibration performance compared
to the baselines, CALL still has room for perfor-
mance improvement and may require more diverse
approaches (Zadrozny and Elkan, 2001; Hinton
et al., 2014; Mukhoti et al., 2020; Liu et al., 2020).
Another limitation is that we only address the ID
calibration issue for PLMs. Therefore, whether
CALL could work well for out-of-distribution de-
tection and generalization tasks is unclear. We
leave these questions for future research.

Ethics Statement

The reliability of deep-learning models is crucial
to the stable deployment of real-world NLP appli-
cations. For example, the computer-aided resume
recommendation system and neural conversational
Al system should produce trustworthy predictions,
because they are intimately related to the issue of
trust in new technologies. In this paper, through
extensive empirical analysis, we address diverse
calibration techniques and provide a detailed exper-
imental guideline. We hope our work will provide
researchers with a new methodological perspective.
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A Computational Cost for Ensemble

Methods
Latency | (s)

(Train / Test) TREC SST2 20NG
RoBERTa 725.9/3.0 1031.9/8.2  1494.7/29.5
MCDrop M=2) | 7259/5.8 1031.9/15.6 1494.7/58.8
MIMO (M=2) 840.7/3.5 1178.3/9.1 1720.0/34.0
DE (M=2) 1438.2/5.8 2060.7/15.6 3026.8/58.8
CALLymvo 841.9/3.5 1180.2/9.1 1721.5/34.0
CALLpg 1440.3/5.8 2062.1/15.61 3028.4/58.8

We choose input repetition parameter p €
{0.1,0.2,0.3,0.4,0.5} when the validation accu-
racy is best in each experiment. Overall, p = 0.2
is best.

DE. Full-data setting: M € {2,3,4,5}. Data
scarcity setting: M € {2,3,4,5}.

C Empirical Result for BERT

We report empirical results for BERT in Table 8
and Table 9.

Table 7: Comparison of training/test time for ensemble
approaches. We measure the computational time on an
NVIDIA-V100 single GPU.

Table 7 includes computational costs for en-
semble methods on a single GPU. CALLpg
(RoBERTa+BL+ERL+MixUP+DE) is almost the
same as DE since only the regularization term
in the loss function and data augmentation pro-
cess are added. Similarly, the computation cost
of CALLMmo 1s almost the same as MIMO, and
CALLMmvo achieves a significant speedup in train-
ing/test time compared to DE.

B Hyperparameter Setting

Selected hyperparameters are highlighted in bold.
ERL. Strength of the confidence penalty 5 &
{0.001,0.005,0.01,0.1}.  Empirically, PLMs
trained with high beta (e.g., 0.1) showed sub-par
classification accuracy. We set the low beta as 0.001
for all experiments.

LS. e-smoothing parameter ¢ € {0.01,0.05,0.1}.

EDA. We follow the parameters recommended by
the authors. Full-data setting: o« = 0.1. Data
scarcity setting: o = 0.05. « is a parameter that
indicates the percent of the words in a sentence that
are changed.

AEDA. For each input sentence, p = {5,10, 15}
percentage of the words are changed for low-
resource regime, otherwise p = {5,10, 15} words
are changed.

SR. p = {5,10,15} percentage of the words are
changed for low-resource regime, otherwise p =
{5,10, 15} words are changed.

MixUp. o € {0.1,0.5,1.0} (strength of interpola-
tion).

MCDrop. p € {0.01,0.02,0.03,0.04,0.05,0.1}
is the Dropout rate. M € {2,3,4,5}. We choose
the hyperparameters when the validation accuracy
is best in each experiment.

MIMO. M € {2,3,4,5}. Validation accu-
racy tends to decrease when M is increased.
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Figure 5: Effect of regularization with respect to diver-
sity of predictions in ensemble. Blue: MCDrop;
: MCDrop+MixUp; Green: MCDrop+BL+ERL.
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sity of predictions in ensemble. Blue: MIMO;
MIMO+MixUp; Green: MIMO+BL+ERL.

D Analysis Diversity

We report diversity measure for MCDrop and
MIMO in Figure 5 and Figure 6, respectively.
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Acct/ECE| /NLL] TREC SST2 20NG

BERT (baseline) 97.24/2.44/1320 91.26/5.19/33.77 85.45/9.98/70.33
CE+ERL 97.24/2.43/13.18 91.23/5.15/33.66 85.45/10.26/71.58
CE+LS 97.11/2.08/12.22 91.50/5.09/26.80 85.39/6.42/60.39
BL 97.64/1.29/10.38 91.33/5.18/28.01 85.28/7.25/60.46
BL+ERL 96.76 /1.42/12.17 91.29/4.99/26.66 85.36/6.58/59.25
BL+LS 97.13/1.48/12.09 91.07/4.85/27.02 85.20/6.99/60.14
SR 97.48/1.96/10.37 91.83/5.11/29.53 85.50/9.60/68.14
AEDA 97.60/1.60/10.57 91.54/7.23/43.63 85.49/9.76/68.87
EDA 97.56/1.59/10.58 91.63/3.44/23.63 85.47/9.23/65.66
MixUp 97.40/1.30/11.12 91.66/5.89/28.78 85.63/8.92/66.20
MCDrop 97.32/2.08/12.97 91.52/5.89/31.28 85.35/9.90/68.56
MIMO 97.44/1.63/10.68 91.40/6.25/32.14 85.37/8.68/62.82
DE 97.32/1.98/11.26 91.92/4.14/27.27 85.86/7.99/62.81
BL+ERL+MixUp+MCDrop 97.34/2.01/12.37 91.59/3.61/28.54 85.37/5.62/60.18
BL+ERL+MixUp+MIMO (CALLMmmo) | 97.56/1.52/10.40 91.37/5.03/25.96 85.33/4.87/58.06
BL+ERL+MixUp+DE (CALLpE) 97.79/2.82/10.18 91.82/2.58/22.19 86.05/3.62/54.03

Table 8: Result for BERT with diverse calibration techniques. The best results are indicated in bold.

Acct/ECE} /NLL/} TREC SST2 20NG
BERT (baseline) 93.40/4.43/25.16 87.47/9.49/52.36 73.79/10.90/96.02
CE+ERL 93.40/4.40/25.13 87.48/9.50/51.66 73.77/10.84/95.96
CE+LS 93.28/3.87/24.13 87.44/7.99/37.05 73.57/8.07/94.78
BL 93.60/2.33/21.54 87.26/7.25/38.74 73.96/6.63/91.02
BL+ERL 93.25/2.38/21.95 87.56/6.83/36.96 74.21/5.63/90.94
BL+LS 93.14/2.41/22.03 87.78/6.01/36.76 73.91/5.89/92.37
SR 92.52/4.67/2837 87.74/8.62/46.59 74.00/10.93795.34
AEDA 93.44/4.36/24.48 87.71/9.03/48.55 73.65/11.52/97.43
EDA 91.88/4.30/28.30 87.44/8.93/44.94 74.04/10.33/94.26
MixUp 93.88/2.76/20.47 87.65/7.20/37.47 74.01/9.04/95.31
MCDrop 93.56/3.53/24.89 87.43/8.87/50.13 73.81/10.24/94.77
MIMO 93.88/2.62/21.53 87.55/6.09/34.82 73.80/7.25/88.65
DE 93.68/2.91/21.13 87.92/6.76/38.44 75.19/7.52/85.81
BL+ERL+MixUp+MCDrop 93.45/351/2377 87.58/542/3431 73.80/7.35/90.69
BL+ERL+MixUp+MIMO (CALLyivo) | 93.56/2.91/21.20 87.70/5.85/34.35  74.11/5.21/89.93
BL+ERL+MixUp+DE (CALLpg) 94.24/3.41/19.79 88.25/2.48/28.65 75.68/2.20/82.90

Table 9: Result for BERT with diverse calibration techniques on the low-resource regime. The best results are
indicated in bold.
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