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Abstract

Prior work in semantic parsing has shown that
conventional seq2seq models fail at composi-
tional generalization tasks. This limitation led
to a resurgence of methods that model align-
ments between sentences and their correspond-
ing meaning representations, either implicitly
through latent variables or explicitly by tak-
ing advantage of alignment annotations. We
take the second direction and propose TPOL, a
two-step approach that first translates input sen-
tences monotonically and then reorders them
to obtain the correct output. This is achieved
with a modular framework comprising a Trans-
lator and a Reorderer component. We test
our approach on two popular semantic pars-
ing datasets. Our experiments show that by
means of the monotonic translations, TPOL
can learn reliable lexico-logical patterns from
aligned data, significantly improving composi-
tional generalization both over conventional
seq2seq models, as well as over other ap-
proaches that exploit gold alignments. Our
code is publicly available at https://github.
com/interact-erc/TPol.git

1 Introduction

The goal of a semantic parser is to map natural
language sentences (NLs) into meaning represen-
tations (MRs). Most current semantic parsers are
based on deep sequence-to-sequence (seq2seq) ap-
proaches and presume that it is unnecessary to
model token alignments between NLs and MRs
because the attention mechanism can automatically
learn the correspondences (Dong and Lapata, 2016;
Jia and Liang, 2016). However, recent work has
shown that such seq2seq models find compositional
generalization challenging, i.e., they struggle to pre-
dict unseen structures made up of components ob-
served at training (Lake and Baroni, 2018; Finegan-
Dollak et al., 2018).
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Figure 1: Examples from the GEOALIGNED dataset. (a)
is a monotonic alignment, (b) is non-monotonic.

This limitation motivated the resurgence of ap-
proaches that model alignments between NL sen-
tences and their corresponding MRs more simi-
larly to classical grammar and translation-based
parsers (Herzig and Berant, 2021). Alignments can
be modeled either implicitly through latent vari-
ables (Wang et al., 2021), or explicitly by leverag-
ing gold alignment annotations (Shi et al., 2020;
Liu et al., 2021a). We take the second direction
and exploit a recently released multilingual dataset
for semantic parsing annotated with word align-
ments: GEOALIGNED (Locatelli and Quattoni,
2022), which augments the popular GEO bench-
mark (Zelle and Mooney, 1996).

Figure 1 shows some examples of the annota-
tions provided. One key observation is that a signif-
icant percentage of the alignments are monotonic,
i.e., they require no reordering of the target MR
(Figure 1a), as opposed to non-monotonic align-
ments (Figure 1b). This suggests that learning reli-
able lexico-logical translation patterns from aligned
data should be possible. If there are simple patterns,
shouldn’t an ideal model be able to exploit them?

With this in mind, we propose TPOL, a Two-
step Parsing approach that leverages monotonic
translations. TPOL introduces a modular frame-
work with two components: a Monotonic Trans-
lator and a Reorderer. The Translator is trained
from pairs of NLs and MRs, where the MRs have
been permuted to be monotonically aligned. Hence,
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the Translator’s output will be an MR whose order
might not correspond to that of the gold truth. For
this reason, the Reorderer is trained to restore the
correct order of the original MR.

Our experiments on GEOALIGNED demonstrate
that compared to a multilingual BART model (Liu
et al., 2020), TPOL achieves similar performance
on the random test split but significantly outper-
forms on the compositional split across all lan-
guages. For example, on the query split in En-
glish, mBART obtains 69.4% in exact-match ac-
curacy and TPOL obtains 87.8%. This result also
improves on the 74.6% obtained by SPANBASED
(Herzig and Berant, 2021), another approach that
leverages alignment annotations.

Because most semantic parsing datasets do not
contain alignment information, we experiment with
alignments generated automatically. On GEO,
TPOL trained with automatic alignments still out-
performs mBART, and in particular on the English
query split it improves by almost 10 points. Further-
more, we show competitive results on the popular
SCAN dataset (Lake and Baroni, 2018).

In summary, the main contributions of this paper
are:

1. We propose TPOL, a modular two-step ap-
proach for semantic parsing which explicitly
leverages monotonic alignments;

2. Our experiments show that TPOL improves
compositional generalization without compro-
mising overall performance;

3. We show that even without gold alignments
TPOL can achieve competitive results.

2 Related Work

Recently, the semantic parsing community has
raised the question of whether current models can
generalize compositionally, along with an effort to
test for it (Lake and Baroni, 2018; Finegan-Dollak
et al., 2018; Kim and Linzen, 2020). The consen-
sus is that conventional seq2seq models struggle
to generalize compositionally (Loula et al., 2018;
Keysers et al., 2020). Moreover, large pre-trained
language models have been shown not to improve
compositional generalization (Oren et al., 2020;
Qiu et al., 2022b). This has prompted the com-
munity to realize that parsers should be designed
intentionally with compositionality in mind (Lake,
2019; Gordon et al., 2020; Weillenhorn et al., 2022).

It has also been pointed out that compositional ar-
chitectures are often designed for synthetic datasets
and that compositionality on non-synthetic data is
under-tested (Shaw et al., 2021).

Data augmentation techniques have been pro-
posed to improve compositional generalization
(Andreas, 2020; Yang et al., 2022; Qiu et al.,
2022a). Another strategy is to exploit some level of
word alignments. In general, there has been a resur-
gent interest in alignments as it has been shown that
they can be beneficial to neural models (Shi et al.,
2020). It has also been conjectured that the lack of
alignment information might hamper progress in
semantic parsing (Zhang et al., 2019). As a result,
the field has seen some annotation efforts in this
regard (Shi et al., 2020; Herzig and Berant, 2021;
Locatelli and Quattoni, 2022).

Alignments have been modeled implicitly: Wang
et al. (2021) treat alignments as discrete structured
latent variables within a neural seq2seq model, em-
ploying a framework that first reorders the NL and
then decodes the MR. Explicit use of alignment
information has also been explored: Herzig and Be-
rant (2021) use alignments and predict a span tree
over the NL. Sun et al. (2022) recently proposed
an approach to data augmentation via sub-tree sub-
stitutions. In text-to-SQL, attention-based models
that try to capture alignments have been proposed
(Lei et al., 2020; Liu et al., 2021b), as well as at-
tempts that try to leverage them directly (Sun et al.,
2022).

Our two-step approach resembles statistical ma-
chine translation, which decomposes the translation
task into lexical translation and reordering (Chang
et al., 2022). Machine translation techniques have
previously been applied to semantic parsing. The
first attempt was by Wong and Mooney (2006),
who argued that a parsing model can be viewed as
a syntax-based translation model and used a statis-
tical word alignment algorithm. Later a machine
translation approach was used on the GEO dataset,
obtaining what was at the time state-of-the-art re-
sults (Andreas et al., 2013). More recently, Agar-
wal et al. (2020) employed machine translation to
aid semantic parsing.

3 Preliminaries: Word Alignments

This section briefly explains word alignments,
showing the difference between monotonic and
non-monotonic alignments, and illustrates the no-
tion of monotonic translations.
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Assume that we have a pair of sequences
X = x1,...,¢n, and y = y1,...,Ym, Where n
and m are the respective sequence lengths. A
bi-sequence is defined as the tuple (x,y). In
our application, x is a NL sentence, and y is its
corresponding MR. For example:

x = which city has the highest population density?
y = answer(largest(density(city(all))))

A word alignment is a set of bi-symbols A4,
where each bi-symbol defines an alignment from a
token in the NL to a token in the MR. For instance,
the bi-symbol (x;,y;) aligns token z; to token y;.
In our example, the tokens "which" and "answer"
could be paired by a bi-symbol (which, answer).

If a token x; does not align to anything in y,
an ¢ is introduced in y: the resulting bi-symbol
(x4, ) corresponds to a deletion. In our example,
the token "has" in the NL can be deleted with a
bi-symbol (has, €). Similarly, if a token y; is not
aligned to a token in x, an ¢ is introduced in x:
(€,y;) is an insertion. In our example, the token
"all" in the MR is inserted with bi-symbol (e, all).

The bi-symbols in A are all one-to-one. Hence,
to map a single token to a phrase, i.e., to multi-
ple tokens, it is necessary to choose a head token
in the phrase, while the remaining tokens require
insertion or deletion. In our example, the token
"density" in the MR corresponds to "population
density" in the NL, and, if "density" is chosen as
the head token in the NL, "population” needs a dele-
tion: the alignment will be given by the bi-symbols
(population, ¢) and (density, density).! Following
this strategy, this notation can account for one-to-
many and many-to-one alignments with deletion
and insertion operations.

Figure 2a shows a possible bi-sequence word
alignment for the aforementioned example. Each
bi-symbol is conveniently represented by a hori-
zontal line connecting the tokens it aligns.

Alignments can be monotonic or non-monotonic.
An alignment is monotonic if it does not involve
any crossing, i.e., a mapping that does not require
reordering tokens. In our example, the alignment
is non-monotonic because the bi-symbol (city,city)
crosses over others. By permuting the MR, we can
obtain a monotonic translation of the NL: Figure

"Locatelli and Quattoni (2022) showed that annotators are
consistent in the way they pick head-tokens, and reported high
inter-annotator agreement scores on GEOALIGNED.

which answer which —— answer
C|ty : city —— city
//‘é € has —— ¢
/ largest the —— ¢
hlghest Y ! highest —— largest
population / density : population — ¢
density / city density — density
all e — — all
(a) (b)

Figure 2: (a) A possible alignment for an NL-MR pair.
(b) The corresponding monotonic translation. For sim-
plicity, we removed the brackets and question mark.

2b shows such permutation. The next section illus-
trates how TPOL can leverage these translations.

4 Translate First Reorder Later

We propose TPOL, a two-step parsing approach
with a modular framework made up of two com-
ponents: a Monotonic Translator and a Reorderer.
Figure 3 shows how our semantic parser takes an
input sentence x and predicts the corresponding
MR y. In the first step, x is fed to the Translator,
which outputs a monotonic translation z. In other
words, z is the target MR that has been permuted so
that it aligns monotonically to the input NL. Then,
in a second step, z is fed to the Reorderer, which is
trained to place the MR tokens back into the correct
order to produce the final prediction y.

The main idea behind TPOL is decomposing the
task into lexical translation and reordering, to learn
more reliable translation patterns. We purport that
modeling monotonic alignments eases the learning
of novel pattern combinations of seen structures,
improving compositional generalization.

An alternative approach would be to permute the
NL inputs rather than the MRs monotonically. We
do not follow this direction due to the observation
that in semantic parsing, multiple NLs can map to
the same MR. In other words, the NL domain is
larger than that of the MRs, and thus we believe
that learning to reorder the MRs is more feasible.

4.1 Monotonic Translator

The Monotonic Translator is responsible for mak-
ing an initial prediction of the MR sequence, which
will contain the correct tokens in monotonic or-
der. To create the training bi-sequences, we use
alignment information and permute the gold MR
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Figure 3: The TPOL parsing approach. An input sentence x is fed to the Monotonic Translator that predicts an
intermediate monotonic MR z. This is in turn fed to the Reorderer, which outputs the final prediction y.

sequences to obtain a monotonic mapping with
the NL. As a concrete example, consider the non-
monotonic alignment in Figure 2a, and its mono-
tonic translation in Figure 2b.

The translation task can be formulated in various
ways. In our implementation, we work with two
alternative approaches: a seq2seq Translator, and
a tagger Translator. In the seq2seq formulation, x
is fed into an encoder network, which produces a
hidden vector. The hidden vector is fed to a de-
coder network which produces the output z, i.e.,
the monotonically aligned MR. This can be imple-
mented, for example, with a BART model (Lewis
et al., 2020), which uses a bidirectional encoder
and a left-to-right decoder. In our experiments, we
use the multilingual version of BART (Liu et al.,
2020). In the tagging formulation, the Translator
assigns an MR token to each token in x, obtaining
the monotonic translation z by explicitly aligning
in a token-by-token fashion. We implement this
with a BERT model (Devlin et al., 2019) and we
use its classification head as the tagger.

A crucial difference between the seq2seq and
the tagger Translator is that the latter needs x and
z to be the same length. The seq2seq Translator
can learn to perform deletion operations from the
raw NL, without needing epsilons in the input to
perform insertions. By contrast, the tagger Trans-
lator needs insertions to be performed on x before
predicting z. In general, NL sequences are signif-
icantly longer than the MR sequences, i.e., most
epsilons are in the MR sequence. In other words,
deletions are more frequent than insertions.

However, for some datasets, some alignments
contain epsilons in the NL sequence: at prediction
time, we will not know where insertions might
occur, and thus we need a way to predict them.
For this purpose, for every token followed by an
epsilon in the train split, we add an epsilon after it

at test time. We saw that this strategy was sufficient
in our experiments. Alternatively, this step could
be done by a trained model or with a rule-based
system similar to Ribeiro et al. (2018).

4.2 Reorderer

The Reorderer module is responsible for taking
the monotonic predictions of the Translator and
putting them back into the correct order to obtain
the final prediction. This model is trained from
pairs of MR sequences (z,y) where the input z is a
monotonically permuted MR and the output y is the
target MR in its correct order. These training pairs
can be generated from the alignment annotations.

Similarly to the Translator module, the Re-
orderer can be implemented both as a seq2seq
model and as a tagger. We use mBART in the
seq2seq formulation and BERT as a tagger in our
experiments. Note that we do not enforce the out-
put to be a permutation of the input.

5 Experiments

5.1 Datasets

We test TPOL on two semantic parsing datasets,
training with gold and automatically generated
alignments in multiple languages, on standard IID
partitions and the more challenging compositional
ones.

5.1.1 GEOALIGNED

GEOALIGNED (Locatelli and Quattoni, 2022) aug-
ments the popular GEO semantic parsing bench-
mark (Zelle and Mooney, 1996) with token align-
ment annotations. The dataset contains questions
about US geography and corresponding meaning
representation using the FunQL formalism (Kate
et al., 2005). In total, there are 880 examples, all
annotated with token alignments. We evaluate on
three partitions: question (?), query (Q) and length
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(LEN). The question partition is a standard IID
split where test and train are sampled from the
same distribution. The query partition, introduced
by Finegan-Dollak et al. (2018), is designed to be
compositional by ensuring that the templates of the
MRs in the test set are never seen during training.
The length partition, introduced by Herzig and Be-
rant (2021), assigns the longest sequences to the
test.

The dataset comes in English, Italian and Ger-
man: in this way we can test our approach across
different languages. In our experiments, we do
not anonymize constants: in other words, we keep
the original NL and MR sequences which include
names of cities, states, etc. We follow Wang et al.
(2021) in removing brackets.

5.1.2 SCANSP

SCANSP (Herzig and Berant, 2021) is a set of nav-
igational commands presented in natural language
paired with action sequences. It is based on the
SCAN dataset by Lake and Baroni (2018), which
does not contain program MRs. Herzig and Berant
(2021) translated the sequences into programs to
obtain a semantic parsing version of the dataset.
Besides the IID split, we test on the compositional
partitions based on the "right" (RX) and "around
right" (ARX) primitives from Loula et al. (2018).
SCANSP has 20,910 commands distributed roughly
as 12,000 train, 3,000 validation, and 4,000 test ex-
amples.

The SCANSP dataset does not come with align-
ments. Therefore we employ the IBM models
(Brown et al., 1993) to generate them automatically
using the GIZA++ toolkit (Och and Ney, 2003). We
also do this for GEO to compare the performance
of TPOL when trained with gold and automatic
alignment annotations.

5.2 Models for comparisons

We compare with competitive baselines and
state-of-the-art models that do not leverage
alignments and competing models that do.

* LSTM: a standard seq2seq model with a bi-
directional LSTM encoder and an LSTM decoder
with attention (Bahdanau et al., 2015). We use
pre-trained GloVe embeddings for the three lan-
guages: English (Pennington et al., 2014), Italian
and German (Ferreira et al., 2016).

* mBART (Liu et al., 2020): a multilingual ver-
sion of BART (Lewis et al., 2020), a pre-trained

Transformer-based seq2seq model that has been
successfully applied to parsing (Bevilacqua et al.,
2021).

*mTS5 (Xue et al., 2021): a multilingual version
of TS (Raffel et al., 2020), pre-trained on the mC4
dataset (Xue et al., 2021).

* SPANBASED (Herzig and Berant, 2021): a se-
mantic parser that predicts a span tree over an input
utterance trained with gold alignment trees. The
authors provided annotations for the English ver-
sion of GEO and SCANSP. For the other languages
of GEO we train without gold alignments. We use
their model without the lexicon, as that would be
unfair with respect to the other models.

* LEAR (Liu et al., 2021a): a model that learns
to recombine structures recursively by predicting
a latent syntax tree and assigning semantic opera-
tions to non-terminal nodes. LEAR explicitly uses
alignments using a phrase table.

* REMOTO (Wang et al., 2021): a model that
first reorders the tokens in the NL and then pre-
dicts the MR. REMOTO is not trained with gold
alignments.?

5.3 Evaluation metric

We follow the standard practice of using exact-
match accuracy for evaluation: the predicted MR
is correct only if it is the same as the gold.

5.4 Main Results

We report the results of our experiments in Table 1.
For TPOL, the choice of the modules’ architecture
is validated on the development set, and we report
a performance breakdown in Section 7.

We first consider the results of TPOL trained
with gold alignments. On the GEO dataset, the
LSTM and mTS5 achieve the lowest performance
in all the partitions. Looking at the question par-
tition (?), the models show similar performance
to mBART and SPANBASED, which is not sur-
prising as the test split does not require composi-
tional generalization. On the query partition (Q),
designed to test for compositional generalization,
TPoL shows significant improvements over all the
other models across all languages. In English it
obtains 87.3% outperforming mBART (69.4%),
SPANBASED (74.6%) and LEAR (84.1%). In Ital-
ian and German, it obtains 81.6% and 69.4% re-
spectively, while mBART 67.4% and 56.3%. On

“For LEAR and REMOTO, we report results directly from
the respective papers, noting that in their setting constants,
such as names of states, cities, and so on, are anonymized.
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GEO

Model EN IT DE SCANSP
? Q LEN ? Q LEN ? Q LEN IID RX ARX

LSTM 529 249 50 464 181 43 429 176 32 100 244 1.1
mT5 80.0 60.0 193 732 449 204 682 478 18.6 100 41.2 99.8
mBART 875 694 275 86.6 764 233 755 563 182 100 994 100
LEAR - 84.1 - - - - - - - - - -
SPANBASED 87.7 74.6 55.0 - - - - - - 100 100 100

-gold 664 518 246 496 373 104 404 214 50 100 100 100
REMoTO 752 432 232 - - - 55.6 223 16.6 100 - -
TPoL 873 878 419 859 81.6 313 733 694 229 - - -

-gold 858 79.0 356 836 751 202 738 607 175 100 994 100

Table 1: Exact-match accuracy of all models on GEOALIGNED and SCANSP datasets. ? stands for question, Q
for query and LEN for the length partition. RX stands for right and ARX for around right partitions. LEAR and
REMOTO both anonymize constants in GEO, and the results are taken directly from the respective papers.

the length partition (LEN), TPOL does better than
all the baselines across all languages, except for
SPANBASED, which fares better on LEN(English).
This is only the case, however, when gold align-
ments are provided.

Looking at the results obtained without gold
alignments, TPOL shows considerable improve-
ments over REMOTO and SPANBASED. In particu-
lar, it improves on the English query partition ob-
taining 79% against 43.2% and 51.8%, respectively.
Furthermore, the accuracy does not drop signifi-
cantly compared to TPOL trained with gold align-
ments. We tested using automatic alignments from
IBM models 3, 4, and 5 and picked the best out
of the three. In general, all lead TPOL to achieve
similar performance.

Finally, looking at SCANSP, as expected, the
models designed for compositional generalization
achieve perfect performance on the dataset. What is
surprising is that also mBART can do so, contrary
to other deep models. With some internal testing,
we have seen that this is not the case for English
BART, as opposed to the multilingual version. We
hypothesize that model size and pre-training might
be a factor of success for mBART.

6 Error Analysis

Table 3 shows a breakdown of performance of
TPOL on the English version of GEOALIGNED.
The results indicate the exact-match accuracy
achieved by the two modules: we can check
whether the model struggles more with the trans-

lation or reordering step. To analyze the Trans-
lator’s performance, we regard the monotonically
aligned MRs as the gold truth. For the Reorderer,
we provide it with the monotonically aligned MRs
in input. In other words, the evaluation of the Re-
orderer assumes that the Translator makes a correct
prediction.

The performance of the two modules is fairly
similar, and, by comparing these results with Table
1, we see that the accuracy of each component is not
much higher than the overall accuracy, suggesting
that neither component is hampering performance
more than the other. The only exception seems to
be in the length partition, where the Reorderer does
considerably better than the Translator.

Table 2 shows the breakdown of the performance
over monotonically and non-monotonically aligned
MRs. We can observe that, compared to SPAN-
BASED, TPOL generally presents smaller drops
in performance over the non-monotonic sequences.
For instance, in the question partition, SPANBASED
drops from 94.7% over the monotonic examples
to 73.7% over the non-monotonic, while TPOL
drops from 89.9% to 81.4%. When we look at the
query partition, we see that for both of these mod-
els, the drop is much higher than the one on the
question partition: SPANBASED goes from 89.6%
to 39.8%, while TPOL drops from 93.7% to 69.9%.
In other words, both models struggle more with
non-monotonic examples when compositional gen-
eralization is required. TPOL, however, still per-
forms significantly better.
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GEO EN

Model ? Q LEN
MN NMN MN NMN MN NMN
mBART 904 81.0 67.1 765 292 25.1
SPANBASED 947 737 89.6 398 68.1 359
TPoL 89.9 814 937 699 555 232

Table 2: Performance breakdown of TPOL over monotonic (MN) and non-monotonic (NMN) sequences in
GEOALIGNED English. In Appendix B we report the number of MN and NMN examples.

GEO EN
Module ? Q LEN
Translator 86.1 86.2 42.5
Reorderer 87.6 87.3 57.1

Table 3: Performance breakdown of TPOL modules.

Surprisingly, mBART shows the opposite trend
on the query partition, with the non-monotonic ac-
curacy being higher than the monotonic one. By
contrast, most of TPOL’s improved performance
comes from better modeling of the monotonic se-
quences (67.1% — 93.7%). TPOL’s results sug-
gest that regular patterns in the non-monotonic se-
quences can be learned. Its generalization problems
can be attributed to the difficulty of learning the
more challenging non-regular patterns in a small
dataset. On the other hand, mBART appears to
have the capacity to model these challenging re-
orderings better. Still, this comes at the cost of
failing on the regular monotonic ones, leading to a
lower performance overall.

Interestingly, the SPANBASED approach shows
a similar improvement on monotonic sequences
compared to mBART (67.1% — 89.6%). This
suggests that exploiting lexico-logical alignments
allows models to capture the simpler patterns that
mBART fails to learn. Most of TPOL’s gains
over SPANBASED come from better modeling the
non-monotonic examples in the query partition
(39.8% — 69.9%). This shows that the two-step
approach offers the best of both worlds: it can cap-
ture the simple monotonic patterns while maintain-
ing reasonable performance over the more complex
alignments on which SPANBASED fails.

Figure 4 shows the average drop in performance
of the different models trained with automatic IBM
alignments compared to the same model trained

M Alignment Error
24 | mPerformance-Drop
22 - i
20
18 - i
14 - ]
mnl B

IBM-3 IBM-4 IBM-5

Figure 4: Average error of IBM alignment models over
all partitions and languages on GEOALIGNED. We also
plot the average drop in performance for each TPOL
model trained with IBM alignments with respect to the
corresponding one trained with gold alignments.

with gold alignments. We also report the corre-
sponding alignment error, calculated as the percent-
age of bi-symbols that differ from the gold anno-
tations from GEOALIGNED. We observe that, in
general, higher alignment error is associated with a
higher drop in performance. This validates the im-
portance of the alignment information and points
to improving the unsupervised alignment algorithm
as a natural line of future work. We believe that one
possible reason for the drop in performance when
training with IBM alignments might be because
the GEO dataset is of relatively small size, and the
IBM models might have difficulty learning good
alignments. That would explain why in contrast to
GEO, the performance over SCAN is not affected
by automatic alignments since SCAN is a much
larger dataset.
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GEO

Model EN IT DE

? Q LEN ? Q LEN ? Q LEN
BERT2BERT 749 84.6 419 740 742 313 625 675 229
BERT2mBART 82.1 87.8 364 769 81.6 275 632 689 20.0
BERT2mBART SILVER 82.5 87.0 346 76.6 81.1 270 654 694 199
mBART2BERT 745 70.7 245 777 76.1 242 657 56.1 175
mBART2mBART 873 722 252 857 763 23.1 733 592 163
mBART2mBART SILVER 864 715 249 859 758 20.0 732 595 170

Table 4: Performance breakdown of TPOL for different module architectures on GEOALIGNED.

7 Architecture study

We emphasize here that our approach is an abstract,
high-level methodology and does not place any
constraint on the underlying architectures of the
two components. We believe that different architec-
tures, particularly specialized ones for each module,
could be beneficial for parsing performance. We
encourage further work to be carried out in this
regard. To this purpose, we present some archi-
tectural studies using BERT (Devlin et al., 2019)
and mBART (Liu et al., 2020) as components. We
employ them as both Translator and Reorderer, ex-
amining all possible combinations. As explained in
Section 4.1, mBART is used as a standard seq2seq
model, and BERT is employed with a classification
head to function as a tagger for every input token.

Additionally, when mBART is used as a Re-
orderer, we introduce a silver training setting. In
the normal setting, the Reorderer is trained by tak-
ing the gold alignment annotations and outputting
the meaning representation. In the silver setting,
we use the predictions of the Translator model as
training input. By doing so, the Reorderer trains
on inputs that mimic more closely what it will ac-
tually receive at test time: this is done straightfor-
wardly for a seq2seq model like mBART, while for
our BERT tagger, every token in input needs to be
aligned with a token in output, and when the input
is corrupt it is not possible to achieve the same
training technique.

In Table 4, we present the results for our different
architectural components. To distinguish among
the different model combinations, we use a [Trans-
lator]2[Reorderer] naming convention, meaning
that mBART2BERT uses mBART as the Translator
and BERT as the Reorderer. We observe that our
two-step approach seems to be robust overall.

We can discern trends in different architecture
combinations, which can be helpful when choos-
ing an architecture for a specific task. One impor-
tant observation is that the architectures that use
BERT as a Translator are consistently better than
the ones using mBART over the compositional par-
titions. We hypothesize that the BERT Translator
can achieve higher compositional generalization
because it can better leverage alignment informa-
tion to predict unseen combinations of observed
training patterns. We believe this is because a tag-
ger’s predictions can be more naturally broken into
parts that can be recombined. In contrast, encoder-
decoder architectures fare better on the IID parti-
tion but struggle to generalize to unseen patterns.
One possible reason is that these models have a
harder time inducing local patterns that can be re-
combined since they encode and decode complete
structures all at once.

8 Conclusion

Seq2seq models have become increasingly popu-
lar in semantic parsing. However, they are limited
in their abilities to generalize to unobserved struc-
tures. Here, we proposed TPOL: a two-step parsing
approach that leverages alignment annotations with
a modular framework composed of a Translator
and a Reorderer.

We showed that TPOL improves compositional
generalization over conventional seq2seq models
and over competing models that also leverage align-
ment information. Our results also showed that our
approach is robust when trained with automatically
generated alignments, demonstrating competitive
results on two semantic parsing datasets.

We have experimented with two possibilities
for the Translator and Reorderer, but we believe
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that different architectural components could fur-
ther improve performance. The divide-and-conquer
strategy of breaking the problem into two simpler
sub-tasks is designed to enable further component
specialization.

9 Limitations

Regarding the limitations of our approach, our ex-
periments used the standard FunQL meaning rep-
resentation. Transitioning to a different meaning
representation might need some adaptation of the
framework. In particular, the alignments between
NL and MRs for other meaning representations
might require more insertion and deletion opera-
tions. We might also expect that other MRs might
require more reordering.

A second limitation of our work is training with
gold alignments. We partially address this by train-
ing TPOL with automatic alignments obtained with
the IBM models. Still, we believe there is room
for more work to be done so that this approach can
be more easily scaled to datasets that do not have
alignment annotations.

Despite TPOL’s partial improvements on the
length test splits, this type of partition remains chal-
lenging for all models. Here, models are required
to generate predictions of greater length than what
they have seen during training. This requires com-
plex compositional productivity skills, i.e., recom-
bining known constituents into larger structures.
Further work is needed to address the limitation of
the current state-of-the-art on compositional pro-
ductivity benchmarks.
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A Experimental details

For our experiments with TPOL we report the aver-
age of three runs for every result. We select the hy-
perparameters with grid search on the development
set performance stopping when there is no more
improvement. We choose the learning rate among
le™*, 1e7® and 1e~% and the batch size between
the bounds of 4 and 32. Usually the best perform-
ing models choose a learning rate of 1¢~° and batch
size of 8. An experiment takes about 20 minutes
on a single Nvidia V100 GPU. Our BERT (110M
parameters) and mBART (680M parameters) im-
plementations are taken from the transformers li-
brary (Wolf et al., 2020). We use for English bert-
base-uncased, for Italian dbmdz/bert-base-italian-
uncased and for German dbmdz/bert-base-german-
uncased. For mBART we use facebook/mbart-
large-50. For mT5 we use the google/mt5-small
pre-trained checkpoint from the Transformers li-
brary.

B GEOALIGNED statistics

Table 5 provides statistics from the English version
of GEOALIGNED (Locatelli and Quattoni, 2022).
In particular, we report the number of examples
that fall in the monotonic (MN) and non-monotonic
(NMN) categories.

GEO EN
Category ? Q LEN
MN 194 154 162
NMN 8 51 118

Table 5: Number of examples that belong to the mono-
tonic (MN) and non-monotonic (NMN) categories in
GEOALIGNED English.
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