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Abstract

Machine Translation operates on the premise
of an interlingua which abstracts away from
the surface form while preserving the mean-
ing. A decade ago, the idea of using round-trip
MT to guide Grammatical Error Correction was
proposed as a way to abstract away from po-
tential errors in surface forms (Madnani et al.,
2012). At the time, it did not pan out due to
the low quality of MT systems of the day. To-
day much stronger MT systems are available so
we re-evaluate this idea across five languages
and models of various sizes. We find that for
extra large models input augmentation through
round-trip MT has little to no effect. For more
‘workable’ model sizes, however, it yields con-
sistent improvements, sometimes bringing the
performance of a base or large model up to
that of a large or xl model, respectively. The
round-trip translation comes at a computational
cost though, so one would have to determine
whether to opt for a larger model or for input
augmentation on a case-by-case basis.

1 Introduction

Grammatical Error Correction (GEC) is the task
of detecting and correcting errors in text. It finds
application in both assisted writing and second lan-
guage learning. As training data for the task is
scarce, efforts in this space largely focus on trans-
fer learning and data augmentation. In this work,
we revisit the use of round-trip Machine Transla-
tion in Grammatical Error Correction, as originally
proposed in Madnani et al. (2012).

Machine Translation (MT) aims to preserve the
meaning of text while mapping its surface form
from one language into another. The ideal MT sys-
tem would be robust to minor perturbations in the
input text like a typo or a grammatical error, produc-
ing a well-formed translation true to the intended
meaning. If the translated text is then backtrans-
lated into the source language, we can expect to
see the original content, now free from errors. This

Figure 1: Our approach. The input to the model is a
concatenation of the original text and the round-trip
translation. Here, English is used as target language and
Romanian as pivot language for illustrative purposes; in
actual experiments English is the pivot language.

was the premise of the work carried out by Mad-
nani et al. (2012). The statistical phrase-based MT
systems of a decade ago, however, were not even
close to the ideal, so the authors observed mixed re-
sults in their experiments and upon further analysis
concluded that the round-trip translation itself intro-
duced too many new errors in the form of both un-
grammaticality and loss of meaning. Modern neu-
ral network-based MT systems are much stronger
than their statistical predecessors. Consider the
leap in BLEU score (Papineni et al., 2002) on the
widely used WMT2014 English-German data set
(Bojar et al., 2014), from 20.7 with phrase-based
MT (Wu et al., 2016) to 35.0 with neural MT aug-
mented with noisy backtranslation (Edunov et al.,
2018). With a conditional neural language model
as a decoder (Schwenk, 2007), modern systems
generate highly fluent (i.e. grammatical) outputs.

We explore the impact of this strong MT per-
formance on GEC by augmenting the input to a
GEC system through round-trip translation, such
that each input sentence is concatenated with a
round-trip translation of itself (see Figure 1). We
evaluate the effect of this procedure on five lan-
guages: German, Russian, Spanish, Czech, and
Romanian (DE, RU, ES, CS, RO). In our experi-
ments, we fine-tune the multilingual pre-trained

2208



language model mT5 (Xue et al., 2021), which is
available in a range of sizes. The XXL variant is
currently the state-of-the-art on DE, RU, and CS

(Rothe et al., 2021). However, mT5-XXL, with its
13B parameters, is out-of-scope for most academic
research and impractical for deployment in many
application. Therefore, we experiment only with
the three smaller variants, BASE, LARGE and XL.

We find that round-trip translation successfully
guides the correction of grammatical errors in BASE

models for all languages, with improvements of up
to 4.1 points on the F-score (for RU). For LARGE

models, it still benefits three out of five languages,
leaving scores on the other two unchanged. For XL

models, it has a negligible effect in either direction,
showing that these models are sufficiently strong
by themselves and subsume the knowledge an MT
model can provide. For some BASE and LARGE

configurations, the round-trip translation augmen-
tation closes the gap between a model of a given
size, e.g. LARGE-RO, and its larger counterpart,
e.g. XL-RO. Since round-trip translation has an
added computational cost itself, one would have to
weight the costs and benefits on a per-case base to
determine whether a larger model with bare input
or a smaller model with augmented input is more
suitable for a given application.

2 Background

Machine Translation makes various appearances
across research in Grammatical Error Correction.
Modeling approaches and training tricks originally
developed in the context of MT have been suc-
cessfully adapted to GEC (Yuan and Felice, 2013;
Junczys-Dowmunt et al., 2018; Rozovskaya and
Roth, 2016; Yuan and Briscoe, 2016). The concept
of backtranslation has been used to generate syn-
thetic data for GEC (Kiyono et al., 2019; Koyama
et al., 2021). In all of these works, MT research
provides the methods but there is no actual cross-
lingual translation happening. The ‘translation’ in
this case is from ungrammatical text to grammatical
text in the same language. Zhou et al. (2020) per-
form actual translation of Chinese text into English
using MT systems of varying quality as a way to
generate ungrammatical English data, which they
then pair with gold standard targets to obtain a syn-
thetic training corpus. In contrast to such works,
our work explores the potential of round-trip trans-
lation as an intermediate step in the process of
GEC, active both during fine-tuning and inference.

The goal here is to make use of the knowledge one
can extract from parallel MT data, generally much
more abundant than GEC data.

Most similar to our work is that of Madnani et al.
(2012), who perform round-trip translation of an in-
put in eight pivot languages with Google Translate
and use a lattice to combine all hypotheses into a
final output. The motivation behind using multiple
pivot languages is to ensure meaning preservation
on one hand, and to increase the chance of all errors
being corrected on the other. The authors observe
some successes but also numerous failures in the
predictions of their model, attributing the latter to
new errors of disfluency and loss of meaning intro-
duced by Google Translate, which at the time was
based on statistical MT. In the decade since that
work was published, MT has undergone a paradigm
shift from statistical to neural network-based meth-
ods, marked by large improvements in performance
(Edunov et al., 2018). It is therefore time to revisit
the potential gains from round-trip MT for GEC.

As we recognize that GEC aims for minimal and
necessary revisions of the input whereas round-trip
translation can result in valid but unnecessary lexi-
cal and syntactic changes, we condition the genera-
tion of the final output on both the input sentence
and the round-trip translation, in an approach akin
to multi-source automatic post-editing (Knight and
Chander, 1994; Chatterjee et al., 2015).

3 Method

In general terms, our approach is one of sequence-
to-sequence text generation with input augmenta-
tion: for a given input sentence, we obtain a round-
trip translation and feed a string concatenation of
the original sentence and the round-trip transla-
tion, separated by the symbol sequence ‘=>’, to a
sequence-to-sequence model.

3.1 Model

Recently, Rothe et al. (2021) set a new state-of-the-
art in GEC using an XXL-sized mT5 model. mT5
is a multilingual seq-to-seq bitransformer model,
pre-trained on 101 languages (Xue et al., 2021).
They pre-trained a single model on a vast amount
of synthetic GEC data for four languages, English,
Czech, Russian and German, and fine-tuned indi-
vidual models for each language. They showed
that a BASE-sized model often lagged behind ear-
lier state-of-the-art results, whereas an XXL-sized
model outperformed them often with a consider-
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Lang Data Size

DE Falko-Merlin (Boyd et al., 2014) 19K
RU RULEC-GEC (Rozovskaya and Roth, 2019) 5K
ES COWS-L2H (Davidson et al., 2020) 10K
RO RoGEC (Cotet et al., 2020) 7K
CS AKCES-GEC (Náplava and Straka, 2019) 42K

Table 1: Datasets used for finetuning and their train size.

able margin.1 Due to computational constraints,
we carry out experiments with model sizes up to
and including XL.

3.2 Data

We use data in five languages: DE, RU, ES, CS

and RO.2 We carry out continued pre-training of
mT5 for GEC on real data where available, and on
synthetic data otherwise. For DE and RU we use
cLang-8 data (Rothe et al., 2021). For ES, we use
Lang-8 (Koyama et al., 2020), which we manually
clean up (see more details in Appendix A). For
RO we sample 100k sentences from the synthetic
dataset of Cotet et al. (2020) and for CS we generate
100k sentences using the method of Náplava and
Straka (2019) based on text from the WMT News
Crawl (Barrault et al., 2019). We randomly split all
data 90:10 for training and validation. Continued
pre-training is done with the same objective as used
for fine-tuning—we feed ungrammatical text (op-
tionally concatenated with a round-trip translation)
and predict grammatical text. Following this step,
we do fine-tuning on the datasets listed in Table 1.

All data that does not come pre-tokenized is tok-
enized using spaCy (Honnibal and Montani, 2017)
except CS, which is not covered by spaCy so for
this language we use Stanza (Qi et al., 2020).

3.3 Round-trip translation

In contrast to Madnani et al. (2012), we stick
to a single round-trip translation, recognizing
the computational cost of this added step. We
experiment with English as a fixed pivot lan-
guage for all target languages. We translate pre-
training data using models available in the Hug-
gingFace library (Wolf et al., 2020), chosen for
their strong performance: for RU and DE we use
facebook/wmt19 models, and for the rest we
use Helsinki-NLP/opus-mt. For fine-tuning

1Model sizes in between were not explored.
2See App. C for other languages we considered.

data we use Google Translate3, assuming that it is
the best translator available.

Training details can be found in Appendix B.

4 Results

The main results of our work are reported in Table 2.
We report precision (P), recall (R) and F0.5 score
(F), as measured using the M2 package (Dahlmeier
and Ng, 2012). We see that guidance from round-
trip translation leads to consistent improvements
for models based on mT5-BASE, most notably im-
proving the F-score for RU by 4.1 points. Among
LARGE models, consistent performance improve-
ments are observed for RU and CS, for RO the per-
formance gain is reduced but still considerable,
whereas for DE and ES the input augmentation has
no effect at all (so we do not consider these two lan-
guages in experiments with an XL model). Among
the three XL models, variable results are observed
with either a small increase or a small decrease in
performance (of 0.5 points at most). From these
observation, we can conclude that the round-trip
translation benefits smaller models, whereas larger
ones subsume the knowledge this input augmenta-
tion technique provides.

The blue boxes in the table mark cases where the
round-trip translation brings the performance of a
smaller model up to or above that of a larger one.
In these cases, one has the choice to use a larger
model without input augmentation or a smaller one
with input augmentation. The factors that would
determine this choice are compute availability, ac-
cess to cloud platforms, and speed requirements,
among others. If one has limited GPU memory to
work with, but has access to a high-quality transla-
tion cloud service, the choice of a smaller model
with input augmentation may be more appropriate.

4.1 Round-trip translation
Although round-trip translation is expected to cor-
rect errors while preserving meaning, we cannot
rely on it alone as a method for grammatical er-
ror correction, due to potential lexical and syn-
tactic substitutions. This becomes apparent when
we treat the output of the round-trip translation
as GEC predictions and evaluate them against the
gold-standard targets. The results, shown in the
last row of Table 2 (MT), are considerably lower

3https://cloud.google.com/translate; We
were able to carry out all translation at no cost, taking advan-
tage of a promotion available at the time of writing, wherein
new users get $300 in free credits.
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DE RU ES CS RO

P R F P R F P R F P R F P R F

BASE 74.9 58.0 70.8 59.5 15.5 38.0 57.9 35.8 51.5 78.9 60.5 74.4 68.9 46.5 62.9
BASE + MT 76.0 61.5 72.6 60.9 18.8 42.1 58.5 39.4 53.4 79.4 65.0 76.0 70.1 55.0 66.5

L 77. 62.7 73.6 60.4 22.8 45.4 61.5 39.1 55.2 80.9 65.6 77.3 72.2 50.7 66.5
L + MT 76.4 64.3 73.6 63.6 25.8 49.2 60.4 41.0 55.2 81.9 70.5 79.3 71.7 58.3 68.6

XL 64.5 25.6 49.5 81.7 69.9 79.0 72.3 56.9 68.6
XL + MT 61.8 28.1 49.9 82.0 70.8 79.5 70.3 60.5 68.1

SOTA - - 76. - - 51.6 - - 57.3 - - 83. 2 - - 53.8

MT 38.9 50.9 40.8 20.6 48.1 23.3 27.7 39.1 29.4 19.8 33.2 21.5 40.9 51.4 42.7

BASE+ 68.7 57.3 66.1 45.0 19.0 35.3 51.2 37.8 47.8 71.8 60.5 69.2 59.2 49.2 56.9

Table 2: Main results. SOTA refers to results from Rothe et al. (2021) for DE, RU and CS, results from Flachs et al.
(2021) for ES and Cotet et al. (2020) for RO. Experiments with XL models were not performed for DE and ES since
for these languages even in the LARGE configuration, the round-trip translation does not help. Blue boxes mark
instances where an augmented smaller model performs comparably to a larger model.

DE RU

F-MT P R F F-MT P R F

BASE - 74.9 58.0 70.8 - 59.5 15.5 38.0
GT 40.8 76.0 61.5 72.6 23.3 60.9 18.8. 42.1
FB 35.6 74.7 62.8 72.0 17.9 58.5 16.9 39.2

Table 3: Comparison of MT systems. GT: Google Trans-
late, FB: facebook/wmt19. F-MT refers to the F-
score of the round-trip translation as prediction.

than the full system results in upper rows, even in
comparison to the BASE setting.

4.2 Alternative MT systems
To determine the importance of a high-quality MT
system for the success of our method, we carry
out experiments with an alternative translation sys-
tem, facebook/wmt19, used to obtain round-
trip translations for the fine-tuning data in RU

and DE. The results from training a BASE-size
model on this data are shown in Table 3 along-
side the main results with this model size. Al-
though facebook/wmt19 scores substantially
lower than Google Translate when the round-trip
translation alone is compared to the gold standard
(F-MT), clear gains from using the round-trip trans-
lations for input augmentation can be observed.

4.3 Input augmentation v. Data augmentation
To determine the role of input augmentation as com-
pared to the more common method of data augmen-
tation, we train BASE models with the round-trip
translations as additional data, i.e. we extend the
training set with the pairings of round-trip trans-
lated sentences and their gold-standard targets, thus

doubling its size. As can be seen in the last row
of Table 2 (BASE+), this leads to worse perfor-
mance, likely because the revisions from round-
trip translated sentences to gold-standard ones do
not only contain grammatical error corrections, but
also some ‘unnecessary’ (from the perspective of
GEC) lexical and syntactic changes.

4.4 Overall performance

The results we obtain fall short of the state-of-the-
art on four out of five languages. For DE, RU and CS

this is no surprise considering the size of the model
used by Rothe et al. (2021), which renders their
achieved improvements irrelevant in most practical
contexts. We did not experiment with the data
augmentation strategy used in Flachs et al. (2021)—
this would have likely lead to a higher baseline
performance in our setup as well. For RO, on the
other hand, we see a large improvement over the
work of Cotet et al. (2020) even with a BASE model,
and an almost 15 point improvement overall.

5 Conclusion

The goal of this study was to measure the benefits
of round-trip machine translation for the task of
grammatical error correction. Transferring knowl-
edge from an MT model to a GEC model through
input augmentation proved effective for smaller
models, sometimes bringing their performance up
to that of their larger counterparts. In this work,
we chose English as a pivot language due the abun-
dance of MT work on this language. Future work
could explore alternative pivot languages, option-
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ally ones that are related to the language of the
GEC data, as this may results in higher lexical and
syntactic consistency between inputs and round-
trip translations and thus better guidance for the
correction of grammatical errors.

6 Limitations

The computational cost of the method proposed
here cannot be measured in a universal sense, since
(a) we have no way of determining the computa-
tional requirements for a call to the Google Trans-
late API, (b) while one could run translation locally,
given a good enough translation system, the exact
computational costs of that process would also de-
pend on the size of the local translation model,
with trends in MT also shifting towards models
of growing size. It is therefore only on a case-by-
case basis that one can determine whether in their
specific case it is more efficient to perform GEC
with a larger model or to use a smaller model in
combination with performing round-trip MT.
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A Spanish data for continued
pre-training

Lang8 data can be noisy, due to people adding meta-
comments to the text they post (often in their native
language) or the edits they propose. Many of these
instances can be detected based on length mismatch
or foreign scripts. So we remove any data points
where the number of space-separated tokens on one
side mismatches the other by more than three and
any lines that contain non-Latin characters. This
leaves us with 182,039 data points for continued
pretraining.

B Training

We use identical training settings for BASE and
LARGE models. In bare-input experiments (origi-
nal input only) we set the maximum input length
to 256 and in experiments with augmented input,
to 512. The maximum output length is always
256. For continued pre-training, we use a learning
rate of 0.001, following Rothe et al. (2021). For
fine-tuning, we experiment with 0.001, 0.0005, and
0.0001, choosing the best one per language based
on the validation loss in BASE experiments and
reusing it for LARGE experiments.4 For XL models,

4We note that learning rate has a considerable impact on
the results of up to 5 F0.5 points for different configurations.

P R F

SOTA 73.3 63.2 71.1 *
BASE 81.4 64.7 77.4
LARGE 81.6 71.6 79.4

Table 4: Baseline results for Arabic. * computed by
us from the global recall and precision scores, as the
authors report F1 rather than F0.5

we halve the input and output lengths due to com-
putational constraints and we halve the learning
rates as we observed that the learning rates used
for smaller models result in quick overfitting. We
follow Rothe et al. (2021) in setting the batch size
to 1,048,576 tokens per batch, which for bare-input
experiments amounts to an effective batch size of
2048 and for experiments with augmented input,
to 1365.5 In all experiments, we use the Adafactor
optimizer (Shazeer and Stern, 2018) and train until
the validation loss stops improving.

C Other languages

Arabic In the course of this work, we considered
experimenting with the QLAB dataset (Mohit et al.,
2014) for grammatical error correction in Arabic.
We later determined that the cost of the round-trip
translation of this data exceeds our resources: due
to the non-UTF script used by Arabic, the 19,411
training data points in QLAB amount to almost
10M characters and Google Cloud API charges by
the character. Since we did train baseline models
on this data, however, we report the results here
(see Table 4), for future reference.

Data for continued pretraining in the amount of
100k sentences was generated with the method of
Rothe et al. (2021) as applied to a sample of 100k
sentences again from the WMT News Crawl. The
data was tokenized using NLTK (Bird et al., 2009).

Ukrainian We considered experimenting with
the newly introduced Ukrainian dataset UA-GEC
(Syvokon and Nahorna, 2021) as well but faced
challenges in the segmentation of the data—in
contains entire documents, often longer than the
maximum sequence length of standard transformer-
based models. We considered splitting those into
paragraphs on new line symbols, but that produced

5These batch sizes are achieved with gradient accumula-
tion, with an actual batch size of 4 for BASE models, 2 for
LARGE models and 1 for XL models. We train the former two
on RTX GPU cards (24 GB) and the latter on A100 (40 GB).
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many nonsense data points such as section head-
ings and some stand-alone meta-text strings.
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