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Abstract

Existing models for named entity recognition
(NER) are mainly based on large-scale labeled
datasets, which always obtain using crowd-
sourcing. However, it is hard to obtain a uni-
fied and correct label via majority voting from
multiple annotators for NER due to the large
labeling space and complexity of this task. To
address this problem, we aim to utilize the
original multi-annotator labels directly. Par-
ticularly, we propose a Confidence-based Par-
tial Label Learning (CPLL) method to integrate
the prior confidence (given by annotators) and
posterior confidences (learned by models) for
crowd-annotated NER. This model learns a
token- and content-dependent confidence via
an Expectation—-Maximization (EM) algorithm
by minimizing empirical risk. The true pos-
terior estimator and confidence estimator per-
form iteratively to update the true posterior and
confidence respectively. We conduct extensive
experimental results on both real-world and
synthetic datasets, which show that our model
can improve performance effectively compared
with strong baselines.

1 Introduction

Named entity recognition (NER) plays a funda-
mental role in many downstream natural language
processing (NLP) tasks, such as relation extrac-
tion (Bach and Badaskar, 2007), event extraction
(Wadden et al., 2019; Zhou et al., 2022). Re-
cently, by leveraging deep learning models, exist-
ing NER systems have witnessed superior perfor-
mances on NER datasets. However, these models
typically require a massive amount of labeled train-
ing data, such as MSRA (Levow, 2006), Ontonotes
4.0 (Weischedel et al., 2011), and Resume (Zhang
and Yang, 2018). In real applications, we often
need to consider new types of entities in new do-
mains where we do not have existing annotated.
The majority way to label the data at a lower cost

* Corresponding author, jie_zhou@fudan.edu.cn.

is crowdsourcing (Peng and Dredze, 2015), which
labels the data using multiple annotators.

The crowd-annotated datasets are always low
quality for the following two reasons. First, as
an exchange, crowd annotations are always nonex-
perts. Various annotators may have different inter-
pretations of labeling guidelines. Moreover, they
may make mistakes in the labeling process. It is
hard to require a number of annotations to reach an
agreement. For example, annotator 1 labels “David
and Jack" as a PER entity, while the correct label
is “David" and “Jack" under our guidelines (Table
1). Also we should label the continuous time and
place as one entity (e.g, “tomorrow at 10:00 a.m."
and “company ( room 1003 )"). Second, due to the
ambiguous word boundaries and complex compo-
sition, the NER task is more challenging compared
with the text classification tasks. Annotator 3 ig-
nores the token “a.m." for the time entity and adds
“the" as part of the place entity falsely. Also, he/she
misses the person entities in the text. In this paper,
we focus on building a powerful NER system based
on crowd-annotated data, which is of low quality.

There are two main ways to utilize crowd-
annotated data. One simple and important way
to obtain high-quality annotations for each input
instance is majority voting. As shown in Table
1, the majority voting method can not obtain the
correct answers from these three annotations well.
The right labels (e.g., “David", “Jack", “tomorrow
at 10:00 a.m.", and “company ( room 1003 )") are
only annotated by annotators 1 and 2 once. Another
majority of work models the differences among
annotators by finding the trustworthy annotators
(Rodrigues et al., 2014; Nguyen et al., 2017; Yang
et al., 2018). From Table 1, we can find that none
of the three annotators labels the entities absolutely
right. Thus, these two kinds of methods are a waste
of human labor.

To address this problem, we translated this task
into a partial label learning (PLL) problem, which
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PER X TIME PLACE

——t—

Annotator 1  David and Jack will hold a meeting ' tomorrow at 10:00 a.m. in the company ( room 1003 ) .
PER PER TIME X TIME X PLACE X PLACE X
— — ————

Annotator 2 David and Jack will hold a meeting  tomorrow at 10:00 a.m. in the company ( room 1003 ).

TIME X PLACE X
——

Annotator 3

David and Jack will hold a meeting  tomorrow at 10:00 a.m. in the company ( room 1003 ).

Table 1: The spans marked with blue , green, and red are time (TIME), person (PER), and place (PLACE)

entities labeled by three annotators.

trains the model based on the dataset where each
sample is assigned with a set of candidate labels
(Cour et al., 2011; Wen et al., 2021). Thus, it is nat-
ural to utilize all human labor via PLL, which can
be divided into two types: 1) average-based meth-
ods which consider each candidate class equally
(Hillermeier and Beringer, 2006; Zhang and Yu,
2015); 2) identification-based methods which pre-
dict the ground-truth label as a latent variable via
a translation matrix to describe the scores of each
candidate label (Feng and An, 2019; Yan and Guo,
2020; Feng et al., 2020). Despite extensive studies
on PLL methods, there are still two challenges in
our condition. One challenge (C1) is that these
methods are criticized when the same candidate
label occurs more than once. The general PLL is
under the assumption that each candidate label is
only been assigned once, while each sample may
be assigned the same classes multiple times by the
different annotators in our situation. Another chal-
lenge (C2) is that most of the existing studies about
PLL focus on image or text classification tasks,
while we focus on a more complex task, sequence
labeling, where each token is asserted with a la-
bel. Thus, the token itself and its content should be
considered in this task.

In this paper, we propose a Confidence-based
Partial Label Learning (CPLL) model for crowd-
annotated NER. For C1, we treat the classes’ la-
beled number for each sample as prior confidence
provided by the annotators. Also, we learn the con-
fidence scores via an Expectation—-Maximization
(EM) algorithm (Dempster et al., 1977). We es-
timate the real conditional probability P(Y =
y|T = t,X = x) via a true posterior estima-
tor based on the confidence that consists of the
prior and posterior confidences. For C2, we learn a
token- and content-dependent confidence via a con-
fidence estimator to consider both the token ¢ and
sequence input x, because the candidate labels are
always token-dependent and content-dependent. In

fact, our model can be applied to all the sequence la-
beling tasks, such as word segment, part of speech,
etc. We conduct a series of experiments on one
real-world dataset and four synthetic datasets. The
empirical results show that our model can make use
of the crowd-annotated data effectively. We also
explore the influence of annotation inconsistency
and balance of prior and posterior confidences.

The main contributions of this work are listed as
follows.

* To better utilize the crowd-annotated data, we
propose a CPLL algorithm to incorporate the prior
and posterior confidences for sequence labeling
task (i.e., NER).

* To take the confidence scores into account, we
design a true posterior estimator and confidence
estimator to update the probability distribution of
ground truth and token- and content-dependent
confidence iteratively via the EM algorithm.

» Extensive experiments on both real-world and
synthetic datasets show that our CPLL model out-
performs the state-of-the-art baselines, which in-
dicates that our model disambiguates the noise
labels effectively.

2 Our Approach

In this section, we first give the formal definition
of our task. Then, we provide an overview of our
proposed CPLL model. Finally, we introduce the
main components contained in our model.

2.1 Formal Definition

Given a training corpus D = {x;, (YZ,AZ)}Bl

where x = {t1,t2, .., tix}s (?,A) =
{(y1,a1), (¥2,82) s (Fx) Apx)) }- Here,
y = {yl,yg,....,ym} is the candidate label

set of the token ¢ and a = [a1,az,...,apy(] is
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Figure 1: The framework of our CPLL model, which consists of a true posterior estimator and confidence estimator.
The true posterior estimator is used to predict the true posterior P(Y = y|T = t, X = x) based on the confidence
score learned by the confidence estimator. The confidence estimator learns the confidence based on the prior
confidence obtained from annotators and the posterior confidence learned by the model.

labeled times obtained from annotations. Specifi-
cally, a is the labeled times of candidate label y
for token t. y € {2Y\@\)} where ) is the label
space and 2 means the power set. For the rest
of this paper, y denotes the true label of token ¢
in text x unless otherwise specified. The goal of
this task is to predict the truth posterior probability
P(Y =y|T =t,X = x) of token ¢ in text x.

2.2 Overview

In this paper, we propose a CONfidence-based
partial Label Learning (CPLL) model for crowd-
annotated NER (Figure 1). Particularly, we learn
the true posterior P(Y = y|T = ¢, X = x) viaa
true posterior estimator f and a confidence score
9(y; Y, t, x) by minimizing the following risk.

tex y

Confidence True posterior

where the classifier f(y;¢,x) is used to predict
P(Y =y|T =t,X = x) and L is the loss. Partic-
ularly, we rely on the Expectation-Maximization
algorithm (Dempster et al., 1977) to find the maxi-
mum likelihood parameters of CPLL by regarding
the ground truth as a latent variable. In the M-step,
we train a naive classifier f to predict the true pos-
terior P(Y = y|T = t, X = x) via a true posterior
estimator (Section 2.3). In the E-step, we update

the confidence score via a confidence estimator
(Section 2.4), which consists of the prior confi-
dences (calculated from annotations) and posterior
confidences (learned by model).

2.3 True Posterior Estimator

First, we train a naive classifier as our true poste-
rior estimator f to infer the true posterior P(Y =
y|T = t, X = x). To model the sequence, we
adopt a pre-trained language model (BERT (Ken-
ton and Toutanova, 2019)) M to learn a content-
aware token representation. Specifically, we input
the sequence x = {t1, %2, ..., t|x| } into M to obtain
the sequence representations,

H = M(x,0m) 2)

where 6, is the parameters of M, H =
[h1, ha, ..., hyx|]. h is token ¢’s content-aware rep-
resentation.

Then, we utilize a fully connected layer (FC) to
predict the probability distribution,

fly;t,x) = o(W «h +b) (3)

where o is a sigmoid function, pc = {W, b} is
the learnable parameters of FC. We regard 6§ =
{0, 0pc} as a parameter set of true posterior es-
timator f. Negative learning (Kim et al., 2019)
is adopted, which not only considers “the token
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belongs to positive label (candidate label y € y)"
but also “the token does not belong to negative la-

bel (its complementary label y ¢ ¥y)". The loss
function is computed,
. _ | —log(f(y:t, x)), yey
ettt = { TRV, Ve @

Finally, we optimize the empirical risk by inte-
grating confidence ¢(y;y, t, x) with the loss func-
tion (Equation 1). We will introduce the confidence
9(y; ¥, t,x) in detail below.

2.4 Confidence Estimator
The confidence estimator is used to learn the con-
fidence scores g(y;y,t,x), which represents the
confidence of label y given the token ¢, text se-
quence x, and partial label y.

93 6%x) =as e+ (1—a)=cl . (5

where the confidence score c%}x
model and cy tx 1 given by annotators. « is a
hyper—parameter used to balance these two terms.
The annotators will affect the quality of the datasets
and we can calculate the prior confidence based on
the labeled times of each class. However, prior con-
fidence is biased since the annotators we selected
have biases. To address this problem, we also let
the model learn the posterior confidence to reduce
the biases in prior confidence.

is learned by

Posterior Confidence We update posterior con-
fidence cy +x based on true posterior distribution
P(Y = y]T = t, X = x) estimated by true poste-
rior estimator f(y;t,x).

eap(P(Y =y|T=t,X=x)) -

M _ 2igey exp(P(Y=9|T=t,X=x))’ yey
Cyitx = exp(P(Y=y|T=t,X=x)) ¢y
Soey cxp(PY=IT=tX=x))> Y ¥

(6)

We calculate the confidence score for positive
and negative labels independently.

Prior Confidence We translate the labeled times
a obtained from annotation into prior confidence

A
Cyst,x-

exp(a) 5
A =] Teeaem@ YEY 7
yit,x A
0, ye¢y
Note that both cy tx and cy ¢x are token and

content dependent. The annotations are always af-
fected by both the token self and the content of

#Sample #TIME #PLACE #PERSON

Training 1000 6934 958 3518
Dev 440 955 147 351
Test 441 1015 171 356

Table 2: The statistical information of real-world dataset.
#Sample means the number of samples in the corre-
sponding dataset. #TIME, #PLACE and #PERSON
represent the number of time, place, and person entities.

the token. Thus, we model the confidence by con-
sidering both the token and content. Finally, we
compute the final confidence score g(y;y, t, X) via
Equation 5, which considers both biases from an-
notators and models.

We update the parameters ¢ and confidence score
in the M step and E step of the EM algorithm.
Specifically, we perform the true posterior esti-
mator and confidence estimator iteratively. The
initialization of cé”t 5l | for y € y and
fory¢y.

Iyl v

3 Experimental Setups

In this section, we first introduce one real-world
and four synthetic datasets we adopted to evaluate
the performance (Section 3.1). Then, we list the
selected popular baselines to investigate the valid-
ity of our CPLL model (Section 3.2). Finally, we
present the implementation details and metrics to
replicate the experiment easily (Section 3.3).

3.1 Datasets

Real-World Dataset. To build the real-world
dataset, we ask the annotators to label the person,
place, and time in the text independently. Each
sample is assigned to three annotators with guide-
lines and several examples. To be specific, we ask
three students to label 1000 samples as the training
set. The average Kappa value among the annota-
tors is 0.215, indicating that the crowd annotators
have low agreement on identifying entities in this
data. In order to evaluate the system performances,
we create a set of the corpus with gold annotations.
Concretely, we randomly select 881 sentences from
the raw dataset and let two experts generate the
gold annotations. Among them, we use 440 sen-
tences as the development set and the remaining
441 as the test set. Table 2 shows the statistical
information of this dataset.

Synthetic Datasets. Inspired by (Rodrigues
et al., 2014), we build synthetic datasets by adding
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#Original r #Error

BI C Percent

5% 35 134 34%

. 10% 143 546  13.9%
Weibo 51 909 494 1706 44.4%
25% 615 2411 61.0%

5% 244 2011 28%

10% 920 7361  10.4%

Resume 79014 »o0. 2979 25408  35.9%
25% 4145 37585 52.8%

5% 295 1246 3.%

10% 978 4368  12.9%

Ontonotes 41203 »0 3151 14849  43.6%
25% 4420 20542 60.5%

5% 1439 6869  34%

10% 5115 26343  13.0%

MSRA 241809 540, 16720 86549  42.0%

25% 23163 120707 59.4%

Table 3: The statistical information of synthetic datasets.
#Original means the number of the tokens labeled as
an entity (not O) in the original dataset. BI/C means
the number of tokens that have a wrong BI/Category
label but the right Category/BI label. Percent =
(BI+C)/#Original.

noise on four typical NER datasets: MSRA (Levow,
2006), Weibo (Peng and Dredze, 2015), Ontonotes
4.0 (Weischedel et al., 2011) and Resume (Zhang
and Yang, 2018). To simulate a real noise situation,
we add noise to the original datasets using four
rules: 1) BE (Bound Error) that adds or deletes
some tokens of the entity to destroy the bound
(change “room 1003" to “(room 1003"); 2) ME
(Missing Error) that removes the entity from the
label (“David" is not labeled); 3) CE (Category Er-
ror) that changes the category of the entity (change
“Location" to “Organization"); 4) SE (Segmenta-
tion Error) that splits the entity into two entities
(change “tomorrow at 10:00 am" to “tomorrow"
and “at 10:00 am"). We run each rule randomly
with a perturbation rate , which is set as 10%
in the experiments. Additionally, we explore the
influence of annotation inconsistency with differ-
ent rates. Table 3 shows statistical information of
these datasets based on token-level majority vot-
ing. We can find that a large number of entities are
perturbed by our rules. For example, more than
40% tokens labeled as entities are perturbed with a
perturbation rate r of 20%.

3.2 Baselines

To verify the effectiveness of our CPLL model, we
compare it with several strong and typical baselines,
which can be categorized into three groups: voting-
based models, partial label learning-based models,

and annotator-based models.

* Voting-based models. We select two voting-
based models, entity-level and token-level voting
models. The entity-level voting model obtains
the ground truth by voting at the entity level. The
token-level voting model calculates the ground
truth by voting at the token level. A BERT-based
sequence labeling model (Kenton and Toutanova,
2019) is trained based on the ground truth calcu-
lated by voting.

e Partial label learning-based models. We
adopt two classic PLL baselines to utilize the
crowd-annotated data with multiple candidate
labels. PRODEN-mlp (Lv et al., 2020) adopts
a classifier-consistent risk estimator with a pro-
gressive identification method for PLL. Wen et al.
(2021) propose a Leveraged Weighted (LW) loss
for PLL to take the partial and non-partial labels
into account, which is proved to be risk consis-
tency. It achieved state-of-the-art results on vari-
ous computer version tasks. We implement the
models by translating the official codes to our
NER task.

* Annotator-based models. After seeing
researchers achieve great success in fully-
supervised learning, we are easily going to think
about how to gain fully-supervised data from
crowd-annotated data when we use crowdsourc-
ing. Seqcrowd (Nguyen et al., 2017) uses a crowd
component, a Hidden Markov Model (HMM)
learned by the Expectation-Maximization algo-
rithm, to transform crowd-annotated data into
fully-supervised data instead of simply voting
at token-level or entity-level. When we get the
ground truth calculated by this crowd component,
we can adopt some efficient fully-supervised
learning method to finish the corresponding task.

3.3 Implementation Details and Metrics

We adopt a PyTorch (Paszke et al., 2019) frame-
work Transformers to implement our model based
on GPU GTX TITAN X. Chinese-roberta-wwm-ext
model (Cui et al., 2019) ! is used for our true poste-
rior estimator. We utilize Adam optimizer (Kingma
and Ba, 2014) to update our model and set different
learning rates for the BERT module (0.00002) and
the rest module (0.002). The max sequence length

"https://huggingface.co/hfl/chinese-roberta-wwm-
ext/tree/main
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Real-World Ontonotes Weibo Resume MSRA

Dev Test Dev Test Dev Test Dev Test Test

Ours CPLL 90.37 90.60 79.39 81.47 69.72 68.23 96.57 96.07 95.42
Voting Tok.en—level 89.45 9040 78.17 80.12 67.79 63.81 9581 9539 94.68
Entity-level 89.79 90.04 78.02 79.30 6559 5934 9564 94.88 94.78

PLL PRODEN-mlp 87.39 87.90 73.04 7536 6637 61.85 9390 9490 92.46
LW loss 88.80 89.83 79.07 80.45 69.63 6426 96.37 95.64 95.35

Annotator Seqcrowd - - 62.80 6534 4756 4149 9273 9330 91.90
Upper Bound Clean data - - 79.74 81.47 70.83 68.87 96.64 96.31 95.53

Table 4: The performance of our model and baselines in terms of F1. For real-world dataset, we do not report the
results on clean data and Seqcrowd since we do not have ground truth for the training set.

Real-World Ontonotes Weibo Resume MSRA

Dev Test Dev Test Dev Test Dev Test Test
CPLL 90.37 90.60 79.39 81.47 69.72 68.23 96.57 96.07 9542
w/o Posterior Confidence 89.51 90.08 79.11 80.42 68.83 65.84 9574 9538 94.79
w/o Prior Confidence 90.60 90.94 79.68 80.87 70.57 6490 96.21 9570 95.20
w/o Both 86.73 86.32 78.66 8022 67.33 6159 95.72 9523 94.61

Table 5: The performance of ablation studies.

is 512, the batch size is 8 and the dropout rate is
0.1. We search the best a from 0.1 to 0.9 with step
0.1 using the development set. All the baselines
use the same settings hyper-parameters mentioned
in their paper. Our source code will be available
soon after this paper is accepted.

To measure the performance of the models, we
adopt Macro-F1 as the metric, which is widely used
for NER (Yadav and Bethard, 2018). In particu-
lar, we evaluate the performance on the span level,
where the answer will be considered correct only
when the entire span is matched.

4 Experimental Results

In this section, we conduct a series of experiments
to investigate the effectiveness of the proposed
CPLL model. Specifically, we compare our model
with three kinds of strong baselines (Section 4.1)
and do ablation studies to explore the influence of
the key parts contained in CPLL (Section 4.2). Also,
we investigate the influence of annotation inconsis-
tency (Section 4.3) and hyper-parameter «, which
controls the balance of posterior confidence and
prior confidence (Section 4.4).

4.1 Main Results

To evaluate the performance of our model, we
present the results of compared baselines and our
CPLL model (See Table 4). First, we can find that
our model outperforms all the baselines on both

the real-world and synthetic datasets. The labels
obtained by voting-based methods (e.g., Token-
level voting and entity-level voting) always contain
much noise because of the large labeling space and
the complexity of this task. For PLL-based mod-
els (e.g., PRODEN-mlp and LW loss), they ignore
the labeled times by the annotators. Furthermore,
annotator-based methods (e.g., Seqcrowd) aim to
find the trustworthy label or annotator. Note that
Seqcrow does not work on Weibo and performs
poorly on Ontonotes. It is because Seqcrow can-
not solve the case of small sizes or large noise of
datasets, which is also verified in Section 2. All
these methods cause information loss which affects
the performance of the models largely. Our CPLL
model makes use of the crowd-annotated data by
translating this task into a PLL task to integrate
confidence. Second, our CPLL model can reduce
the influence of noise effectively. From the results,
we observe that CPLL obtains comparable results
with the model trained on the clean data. Our con-
fidence estimator can learn the bias generated by
annotations effectively via the posterior and prior
confidence.

4.2 Ablation Studies

To evaluate the effectiveness of each part contained
in our model, we do ablation studies (See Table
5). We remove posterior confidence (w/o Posterior
Confidence), prior confidence (w/o Prior Confi-
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Figure 2: The influence of annotation inconsistency.

dence), and both of them (w/o Both) from CPLL
model. For w/o Both, we remove the confidence
estimator by setting the confidences as 1/|y| for
partial labels and O for non-partial labels.

From the results, we find the following obser-
vations. 1) Confidence estimator can learn the an-
notation bias effectively. Removing it (w/o Both)
reduces more than 4 points in terms of F1 on the
test sets over real-world and Weibo datasets. 2)
Both posterior confidence and prior confidence are
useful for this task. Obviously, prior confidence is
vital to leverage the labeled confidence given by an-
notators. However, prior confidence may exist bias
since the annotators are limited. Thus, the posterior
confidence learned by the model is also crucial for
partial label learning to rectify the prediction.

4.3 Influence of Annotation Inconsistency

We also explore the influence of annotation incon-
sistency on synthetic datasets with various pertur-
bation rates. Annotation inconsistency is used to
model the label quality of crowd-sourcing. The
bigger the perturbation rate, the worse the quality
of the annotation. We report the results with a rate
from 5% to 25% with step 5% over Weibo, Resume
,and Ontonotes datasets (Figure 2).

First, our CPLL model outperforms all the base-
lines with different perturbation rates. Moreover,
the higher the annotation inconsistency, the more
our model improves relative to the baselines. Our
model can reduce the influence of annotation incon-
sistency more effectively. Second, several baselines
almost do not work with a large perturbation rate
(e.g., 25%), while our model can handle it effec-
tively. The F1 score of Seqcrowd is only less than
20 when the rate r is larger than 20%. Third, it is
obvious that the annotation quality will affect the
performance of the model largely. The higher the
inconsistency, the worse the quality of the annota-
tion and the worse the performance of the model.

4.4 Influence of Hyper-parameter o

We further investigate the influence of the hyper-
parameter « (in Equation 5), which is used to bal-
ance the posterior and prior confidence (Figure 3).
The prior confidence demonstrates the labeled con-
fidence given by the annotators, which is biased
due to the selection of annotators. To reduce this
bias, we enhance our model to estimate the poste-
rior confidence that is learned by the model.

From the figures, we can observe the following
observations. First, when the noise is high, the
smaller the «, the better the performance. Intu-
itively, the confidence given by annotators is not
reliable when the perturbation rate r is large. Sec-
ond, when the noise is low, the trend that the larger
the «, the better the performance is relatively not
as obvious. The reason is that the model can disam-
biguate the ground truth from the candidates easily
since the data is clear. Most of the labels are correct
and confidence is not important at this time. All the
findings indicate that our confidence estimator can
make use of prior confidence and learn posterior
confidence effectively.

5 Related Work

In this section, we mainly review the most related
works about named entity recognition (Section 5.1)
and partial label learning (Section 5.2).

5.1 Named Entity Recognition

Named Entity Recognition (NER) is a research
hotspot since it can be applied to many downstream
Natural language Processing (NLP) tasks. A well-
trained NER model takes language sequence as
input and marks out all the entities in the sequence
with the correct entity type. NER is widely treated
as a sequence labeling problem, a token-level tag-
ging task (Chiu and Nichols, 2015; Akbik et al.,
2018; Yan et al., 2019). Also, some of the re-
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Figure 3: The influence of hyper-parameter «, which is leveraged to control the balance between the posterior and

prior confidence.

searchers regard NER as a span-level classification
task (Xue et al., 2020; Fu et al., 2021; Alemi et al.,
2023). In these works, NER is a fully-supervised
learning task based on large-scale labeled data,
where each token is asserted with a golden label.

Crowdsourcing platforms (e.g., Amazon Me-
chanical Turk) are a popular way to obtain large
labeled data. Due to the large label space and com-
plexity of NER, the quality of labeled data is low.
The ground truth obtained by simple majority vot-
ing contains a lot of noise, which limits the perfor-
mance of the model largely. There is some litera-
ture that trains the model from multiple annotators
directly (Simpson and Gurevych, 2019; Nguyen
et al., 2017). They mainly focus on modeling the
differences among annotators to find a trustwor-
thy annotator. In fact, a sentence may not be cor-
rectly labeled by all the annotators while they all
may label part of the right entities. To address this
problem, we translate this task into a partial label
learning problem with a prior confidence score.

5.2 Partial Label Learning

Unlike fully-supervised learning, which uses data
with golden label y, Partial Label Learning (PLL)
asserts a candidate set ) for each input x (Zhang
et al., 2016; Wang et al., 2023; Lv et al., 2020).
Despite the fact that we can not ensure golden la-
bel y always in the candidate set )/, most PLL
researchers assume one of the candidate labels is
the golden label for simplicity. The existing stud-
ies about PLL can be categorized into two groups,
average-based methods (Zhang and Yu, 2015) and
identification-based methods (Jin and Ghahramani,
2002; Lyu et al., 2019). Average-based methods
(Zhang and Yu, 2015; Hiillermeier and Beringer,
2006) intuitively treat the candidate labels with

equal importance. The main weakness of these
algorithms is that the false positive may severely
distract the model with wrong label information.
Recently, identification-based methods (Jin and
Ghahramani, 2002; Wang et al., 2023) are proposed
to identify the truth label from the candidates by re-
garding the ground truth as a latent variable. More
and more literature pays attention to representative
methods (Lyu et al., 2019; Nguyen and Caruana,
2008), self-training methods (Wen et al., 2021),
loss function adjustments (Wu and Zhang, 2018).

However, most of the current work focuses on
image classification or text classification tasks,
while how to model the confidence for NER is
not well studied. The sequence labeling task aims
to identify the entities in the sentence with an entity
type in the token level. Thus, how to model the to-
ken self and its content also plays an important role
in this task. To address this problem, we design
a confidence estimator to predict the token- and
content-dependent confidence based on the prior
confidence given by annotators.

6 Conclusion and Future Work

In this paper, we translate crowd-annotated NER
into a PLL problem and propose a CPLL model
based on an EM algorithm. To rectify the model’s
prediction, we design a confidence estimator to
predict token- and content-dependent confidence
by incorporating prior confidence with posterior
confidence. We conduct the experiments on one
real-world dataset and four synthetic datasets to
evaluate the performance of our proposed CPLL
model by comparing it with several state-of-the-
art baselines. Moreover, we do ablation studies to
verify the effectiveness of the key components and
explore the influence of annotation inconsistency.
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In the future, we would like to investigate the per-
formance of our model on other sequence labeling
tasks.

Limitations

Although our work shows that our CPLL model can
learn from crowd-annotated NER data well, there
are at least two limitations. First, we set the hyper-
parameter o manually. It would be better if we
could design a strategy to learn a alpha adaptive
value for each sample atomically. Second, though
we mainly experiment on NER tasks, our model
can be applied to all sequence labeling tasks, such
as part-of-speech tagging (POS), Chinese word seg-
mentation, and so on. We would like to explore it
in further work.
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