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Abstract

Traditional supervised learning mostly works
on individual tasks and requires training on
a large set of task-specific examples. This
paradigm seriously hinders the development
of task generalization since preparing a task-
specific example set is costly. To build a system
that can quickly and easily generalize to new
tasks, textual instructions have been adopted
as an emerging trend of supervision recently.
These instructions give the model the definition
of the task and allow the model to output the
appropriate answer based on the instructions
and inputs. However, task instructions are of-
ten expressed in different forms, which can be
interpreted from two threads (Lou et al., 2023):
firstly, some instructions are short sentences
and are pretrained language model (PLM) ori-
ented, such as prompts, while other instruc-
tions are paragraphs and are human-oriented,
such as those annotation guidelines in Ama-
zon MTurk; secondly, different end-users very
likely explain the same task with instructions of
different textual expressions. A robust system
for task generalization should be able to handle
any new tasks regardless of the variability of
instructions.

However, the system robustness in dealing with
a wide range of instructions is still unexplored.
This work investigates the system robustness
when the instructions of new tasks are (i) manip-
ulated, (ii) paraphrased, or (iii) from different
levels of conciseness. To our knowledge, this
is the first work that systematically studies how
robust a PLM is when it is supervised by in-
structions with different factors of variability.1

1 Introduction

One goal of AI is to achieve cross-task general-
ization, i.e., the model can handle new tasks after
being trained on existing tasks. To solve target
tasks, the system needs task-specific supervision.

1All code and data: https://github.com/jiashenggu/
Tk-Instruct/tree/main

In the conventional machine learning paradigm,
task-specific supervision means a large set of la-
beled examples particularly for this task. Despite
the progress of conventional machine learning, col-
lecting task-specific examples of large volumes is
costly and even infeasible if we want the system
to cope with new tasks immediately. Therefore,
another form of task-specific supervision—task
instructions—is attracting increasing attention in
the community. Task instructions, commonly a
piece of text, describe the task semantics and tell
the model how to approach the expected outputs
for the inputs. A couple of recent studies (Mishra
et al., 2022a; Yin et al., 2022; Wang et al., 2022;
Sanh et al., 2022) have shown promising progress
in cross-task generalization with only instructions
as supervision.

In the real world, task instructions are often pre-
sented in different forms, which can be interpreted
from two dimensions: on the one hand, as Lou et al.
(2023) defined, instructions have different degrees
of conciseness and were created for different audi-
ences—some instructions are short sentences and
are PLM-oriented, such as prompts like “trans-
late from English to French”, while other instruc-
tions are paragraphs and are human-oriented, e.g.,
those annotation guidelines in Amazon MTurk; on
the other hand, the same task is likely to be ex-
plained by different end-users with instructions of
varying textual expressions. For example, “trans-
late from English to French” can also be expressed
as “given an English sentence, translate it into
French”. Therefore, a robust system for task gen-
eralization is expected to handle any new tasks
regardless of the variability of instructions.

However, despite the limited earlier work study-
ing the PLM robustness in terms of prompts (Web-
son and Pavlick, 2022; Khashabi et al., 2022), it
is still unclear how robust a pretrained instruction
learning system can handle broader types of in-
structions, including human-oriented as well as
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PLM-oriented ones, and their cross-type general-
ization. This work focuses on human-oriented
instructions and explores the system robustness
when the instructions of new tasks are (i) manipu-
lated, e.g., words removal, words replacement, sen-
tence shuffle, etc., (ii) paraphrased with dramatic
surface change, or (iii) from different levels of con-
ciseness, e.g., training tasks have human-oriented
instructions while testing tasks are equipped with
PLM-oriented prompts.

To get the answers for the above three threads
of instruction variability, we finetune a T5 (Raf-
fel et al., 2020) model on the train of SUPER-
NATURALINSTRU (Wang et al., 2022), a dataset
with the largest number of NLP tasks and each
task is described by an Amazon-Mturk-style in-
struction, and test it on (i) the test of SUPER-
NATURALINSTRU, where we modify the original
instructions with word-level, sentence-level and
instruction-level perturbations, (ii) a newly crowd-
sourced dataset, Para-Instructions, with 23 un-
seen tasks and each has 4 distinct human-oriented
instructions in the same format as the test of
SUPER-NATURALINSTRU, and (iii) a new dataset
DIVERSEPROMPT (Honovich et al., 2022), in
which each task has prompt-style instructions.

To our knowledge, this is the first work that sys-
tematically studies how robust a PLM is when it is
supervised by instructions with different factors of
variability. Our experiments show that:

• The presence of demonstrations minimizes
the impact of instruction perturbations and
paraphrasing, as they typically have an unpre-
dictable effect on performance. Demonstra-
tions play a crucial role in ensuring system ro-
bustness, even when the instruction provided
is a random text fragment, i.e., “random in-
struction + positive examples” mostly outper-
forms “correct instruction only”;

• When demonstrations are absent, applying a
model that learns from training tasks with
human-oriented instructions to unseen tasks
with PLM-oriented prompts works poorly;

• So far, we still lack a method to effectively
learn instruction to solve tasks in the absence
of demonstration.

2 Related work

Our work is related to prompts (a special case of
instruction learning), cross-task generalization, and

the study of robustness under adversarial attack.

Prompt as instruction. Brown et al. (2020a) at-
tempted to unleash the power of PLMs, such as
GPT-3 (Brown et al., 2020b), through prompts.
Since they discovered prompts, many studies have
followed that direction in various ways, with ro-
bustness being an aspect that cannot be ignored.
Liu et al. (2021) introduced the effectiveness of
prompt learning and the wide application prospects.
Min et al. (2022) explored how the model learns
prompts and what aspects of the prompt con-
tribute to the final task performance. Webson and
Pavlick (2022) tried to figure out whether prompt-
based models truly understand the meaning of their
prompts. Zhao et al. (2021) investigated ways to im-
prove the stability of prompt-based models. Bach
et al. (2022) created a platform for the production,
distribution, and use of natural language prompts.
Despite the large number of papers on prompts,
little attention has been paid to studying the robust-
ness of systems under prompt learning. Our work
has a broader vision that considers the robustness in
terms of PLM-oriented prompts as well as more
natural human-oriented instructions.

Instruction-driven task generalization. Recent
work has worked on using the information in task
instructions to allow PLMs to respond to inputs
that match the task instructions after they have un-
derstood task instructions. Efrat and Levy (2020)
tested GPT-2 (Radford et al., 2019) to understand
real-world MTurk instructions to annotate some
popular datasets, and concluded that GPT-2 works
poorly. Mishra et al. (2022b) collected more than
60 distinct NLP tasks with MTurk instructions con-
sisting of items like title, definition, things
to avoid, etc., and claimed that BART (Lewis
et al., 2020) and GPT-3 benefit from instructions
to generalize across tasks. Wang et al. (2022) fur-
ther extended this dataset to cover over 1.6k cross-
lingual tasks, each with a piece of natural language
instruction. More work in this thread can be found
in (Lou et al., 2023), which provides a comprehen-
sive survey for various instruction learning. The
robustness studied in this work is also based on
instruction-driven task generalization; however, our
emphasis lies on analyzing the variability in sys-
tem performance as opposed to actively enhancing
overall system performance.

Robustness under adversarial attack. There is
a lot of work on adversarial attacks in NLP systems,
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Definition In this task, you will be shown an incorrect English sentence. You need
to generate a corrected form of the input sentence.

Po
si

tiv
e input The car’s wheel are loose.

output The car’s wheel is loose.

explanation The instance of are is replaced by the word is, because the wheel is a
singular word. This makes the sentence grammatically correct.

N
eg

at
iv

e input This way is the way to go.
output This way may be the way to go.

explanation The example does not correct the misuse of the word way. Instead, it
should shorten the sentence to: this is the way to go.

In
st

an
ce

s input For example , nobody is going to ask his personal doctor which he sees
when he has a flue if he can also do a heart surgery or transplant organs .

output For example , nobody is going to ask his personal doctor , which he sees
when he has a flu , if he can also do a heart surgery or transplant organs .

Table 1: A task sample (task1557 jfleg grammar error correction) from SUPER-NATURALINSTRU: each task has a
definition, a couple of positive examples, a couple of negative examples, and a large set of instances.

metric Task Category Abbr.

E
xa

ct
M

at
ch

Textual Entailment TE
Cause Effect Classification CEC
Coreference Resolution CR
Dialogue Act Recognition DAR
Answerability Classification AC
Word Analogy WA

R
O

U
G

E
-L

Overlap Extraction OE
Keyword Tagging KT
Question Rewriting QR
Title Generation TG
Data to Text DTT
Grammar Error Correction GEC

Table 2: 12 task categories in the test of SUPER-
NATURALINSTRU and their official evaluation metrics.

and adversarial attacks are often used as a way to
enhance robustness (Zhang et al., 2020; Goel et al.,
2021; Wang et al., 2020; Morris et al., 2020; Raman
et al., 2023). Adversarial perturbations are consid-
ered to be worst-case scenarios that do not often
occur in the real world and represent a very specific
kind of noise. To generate valid adversarial exam-
ples, most attack methods require access to the
structure, internal weights, and hyperparameters of
the NLP model. In addition, adversarial perturba-
tions should not be perceived by humans. This is
a serious challenge because even small changes in
the text may be easily recognized by the user but
ignored by the machine. In contrast, some minor
changes may cause the machine to react drastically
but are not important to humans. Our investigation
encompasses not only deliberate perturbations, but
also more natural discrepancies that arise between

the training instructions and test instructions.

3 Experiment

This work studies the robustness of learning from
task instructions from three scenarios: (i) the sys-
tem robustness when dealing with instructions that
are deliberately perturbed (Section 3.1); (ii) the
system robustness when a task confronts diverse
instructions that are written by different annotators
(Section 3.2); (iii) the system robustness when it
tests on tasks that have instructions with distinct
abstractiveness (Section 3.3). The following sub-
sections present our experiments about the three
dimensions of robustness study, respectively.

The pretrained instruction learning model. To
test the robustness of a pretrained model that
learned NLP tasks from instructions, we choose
the T5 model (Raffel et al., 2020) with 3B and 11B
parameters finetuned on the training set of SUPER-
NATURALINSTRU (Wang et al., 2022).

SUPER-NATURALINSTRU consists of 1,616
NLP tasks in total and each task is explained by
four items: Definition (a short paragraph describ-
ing the task semantics), Positive Examples (a
couple of examples with inputs, correct outputs,
and explanations), Negative Examples (a couple
of examples with inputs, incorrect outputs, and
explanations), and Instances (a large set of in-
stances with inputs and correct outputs). One sam-
ple is shown in Table 1. As far as we know, SUPER-
NATURALINSTRU is the largest dataset containing
human-oriented task instructions, and T5 denotes
one of the state-of-the-art PLM models (we do not

13937



Original Instruction In this task, you will be shown an incorrect English sentence. You need
to generate a corrected form of the input sentence.

w
or

d-
le

ve
l

Delete words In this /////task, you ////will be ///////shown an incorrect English sentence. You need
to generate a corrected /////form of ////the input sentence.

Delete stopwords //In ////this task, ////you/////will////be shown //an incorrect English sentence. /////You need
//to generate //a corrected form //of/////the input sentence.

Insert words
In this , task, , you will be shown an incorrect ( English input sentence.
You need to generate a corrected form of the English input sentence.

Replace words In this case, you will be shown an incorrect English language. You need
to generate a corrected form of the input sentence.

Shuffle words a You generate English incorrect be need task, In the will this you
sentence. shown to sentence. input an form of corrected

se
nt

-l
ev

el Repeat sentences
In this task, you will be shown an incorrect English sentence. You need
to generate a corrected form of the input sentence. You need to generate
a corrected form of the input sentence.

Shuffle sentences You need to generate a corrected form of the input sentence. In this task,
you will be shown an incorrect English sentence.

instruction-level shuffle In this task, you are given a sentence and a question, you would be asked
to create the answer which is contained in the sentence provided.

Table 3: Examples of original instructions, word-level, sentence-level, and instruction-level perturbations.

consider GPT-3 due to the hardware constraints).
As the data for training the instruction learning
model, the train of SUPER-NATURALINSTRU has
1,462 tasks.

3.1 Robustness when instructions are
perturbed

Dataset. This experiment uses the test of
SUPER-NATURALINSTRU, which has 154 tasks
(119 English tasks and 35 tasks in other languages).
The robustness of the pretrained T5 model on train
is tested on this test where instructions are per-
turbed. All test tasks are clustered into 12 cate-
gories with the official evaluation metrics either
EXACTMATCH or ROUGE-L (Lin, 2004). Table
2 lists all the 12 categories and their respect evalua-
tion metrics.

Note that Wang et al. (2022) concatenated
Task name, Definition, Positive Examples
and Negative Examples in various combinations
as a long instruction, referred to as “Instruction
with Examples” (INSTRU-W-EXAM). This pa-
per uses the definition and two positive exam-
ples as INSTRU-W-EXAM configuration. In order
to study the robustness when those examples are
available or not, we report INSTRU-W-EXAM as
well as INSTRU-WO-EXAM which uses only the
Definition as instructions.

Instruction perturbation. To imitate how in-
structions are perturbed in the real world, we design
various perturbation methods that try to change the

original instruction by its surface form or even se-
mantics. Table 3 summarizes all the perturbation
methods this work uses, including word-level per-
turbations, such as i) delete stop words; ii) ran-
domly delete five to ten words; iii) insert masks
at random positions and replace with words pre-
dicted by pretrained BERT (Devlin et al., 2019);
iv) randomly replace words by the predictions of
pretrained BERT, and v) shuffle the words in the in-
struction, and sentence-level perturbations, such
as i) repeating a random sentence, and ii) shuffle the
sentences in the instruction, and instruction-level
perturbation, where we try to replace the original
task definition with the definition of a randomly
chosen task.

Spacy (Schmitt et al., 2019) is used to remove
stop words from instructions and to split instruc-
tions into separate sentences, and BERT is used to
insert and replace words in instructions.

Results. Each metric was run three times, and the
mean and standard deviation of the three runs were
reported. Tables 4&10 presents the performance
on English and non-English subsets of SUPER-
NATURALINSTRU’s test, respectively. Each table
summarizes the perturbation results by word-level,
sentence-level, and instruction-level for both the
INSTRU-WO-EXAM and INSTRU-W-EXAM setups.
Our goal is to study i) the effects of different levels
of perturbations; ii) the effects of including positive
examples in the instructions; iii) whether there are
any distinct phenomena between English tasks and
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metric AC CEC CR DAR WA TE
E

X
A

C
T

M
A

T
C

H

original instru.
49.8±0.6 50.0±0.8 36.1±0.5 43.2±0.8 19.7±0.7 40.1±0.8
63.6±1.2 48.2±3.0 48.1±0.9 57.0±1.2 51.8±0.4 46.6±0.5

delete stopwords
44.2±0.4 45.0±1.2 32.3±0.7 28.7±0.9 7.60±0.1 31.6±0.5
63.2±0.6 49.0±0.5 49.1±2.2 49.9±1.7 50.5±1.9 44.5±0.6

delete [5,10] words
45.3±3.3 40.8±4.3 32.5±0.4 34.0±2.6 18.6±2.6 34.9±3.1
61.1±2.0 50.7±1.2 49.5±1.3 52.9±4.5 50.8±1.3 44.0±1.4

insert [5,10] words
44.5±1.9 40.3±4.2 34.0±2.0 38.9±1.2 18.5±1.2 35.1±0.4
60.4±1.4 48.7±1.3 47.5±0.9 56.6±0.9 52.5±1.6 44.6±0.5

replace [5,10] words
48.7±1.0 45.9±1.6 31.3±1.9 35.9±1.8 18.2±0.6 33.8±1.7
60.3±0.7 49.2±1.5 47.7±1.0 50.0±0.9 51.6±1.9 43.9±1.6

shuffle words
20.1±2.7 4.20±2.5 18.1±2.0 7.80±1.6 14.2±2.0 8.60±0.5
59.4±1.8 46.5±0.9 46.7±0.8 49.7±2.2 50.5±2.0 41.5±0.4

repeat sentences
51.1±0.8 46.4±1.0 34.8±1.0 37.6±4.0 16.4±2.3 41.3±1.4
61.4±0.5 48.0±0.9 48.4±0.9 53.7±3.3 51.1±1.2 48.5±1.1

shuffle sentences
49.9±1.2 46.6±1.3 34.0±1.0 42.4±0.1 16.4±1.5 40.0±0.9
62.2±1.2 49.6±0.8 48.6±1.4 54.4±0.2 50.1±0.7 45.2±1.7

shuffle instructions
2.40±2.6 3.00±3.9 4.20±2.2 2.70±3.7 1.80±1.3 1.20±1.5
53.3±1.4 45.9±1.1 41.1±1.1 33.8±1.1 38.2±1.0 28.3±1.0
DTT GEC TG KT OE QR

R
O

U
G

E
-L

original instru.
31.6±0.4 83.1±1.4 33.8±0.6 56.3±1.7 24.4±2.8 48.2±0.4
43.3±0.5 85.7±1.1 37.4±0.5 64.8±1.9 32.7±1.4 68.0±0.2

delete stopwords
27.8±0.4 83.3±0.6 31.5±0.3 49.9±1.1 22.6±0.6 37.2±0.2
43.8±0.4 85.2±0.5 37.2±0.3 63.6±0.3 34.2±1.0 68.0±0.3

delete [5,10] words
29.9±1.3 78.2±8.8 31.0±0.8 49.7±4.6 24.0±0.8 41.0±2.3
42.2±0.5 85.0±2.0 36.8±0.2 64.0±1.0 34.4±1.8 67.5±0.0

insert [5,10] words
30.9±0.3 81.2±1.2 33.2±0.7 54.2±1.1 25.3±0.5 46.8±0.4
42.3±0.5 86.6±0.4 37.0±0.2 65.8±1.2 36.7±1.9 67.3±0.3

replace [5,10] words
31.3±0.9 82.6±0.7 30.9±0.7 53.5±2.8 26.9±1.2 42.9±3.6
42.5±0.4 84.0±1.5 36.9±0.4 65.6±1.6 36.0±3.3 68.2±0.5

shuffle words
20.7±2.6 71.1±5.2 21.9±0.5 33.9±2.0 22.9±1.0 24.3±1.3
44.9±0.4 84.6±0.7 36.3±0.4 62.4±0.2 33.8±3.6 67.7±0.1

repeat sentences
33.1±0.5 83.5±0.2 31.6±0.6 52.0±3.1 26.9±0.6 52.0±0.4
42.9±0.4 85.9±0.3 37.4±0.3 64.8±1.6 36.8±2.5 67.3±0.3

shuffle sentences
31.1±0.2 83.6±2.3 33.9±0.5 55.1±1.2 25.8±0.6 44.6±2.3
41.9±0.3 86.4±0.7 37.1±0.9 64.6±1.2 38.2±1.8 67.6±0.4

shuffle instructions
9.90±2.2 7.20±8.4 10.1±1.4 18.8±11.3 15.0±6.0 16.7±5.8
42.0±0.3 87.2±0.6 27.5±0.4 52.2±0.4 31.4±3.0 66.0±0.4

Table 4: The INSTRU-WO-EXAM (in black) and INSTRU-W-EXAM (in gray) results of the T5-3B model on the
119 English test tasks of SUPER-NATURALINSTRU by different levels of perturbations. We use different colors to
denote perturbations in word level, sentence level and instruction level.

non-English tasks or not. From the two tables, we
observe that:

• Effects of different levels of perturbations in
INSTRU-WO-EXAM: i) word-level perturbations
degrade the performance slightly, among which
the “shuffle words” has the worst effect; ii) gen-
erally, sentence-level perturbations have less influ-
ence than the word-level perturbations: we only no-
tice tiny drop compared with “original instructions”

and no clear difference between “repeat sentences”
and “shuffle sentences” is observed; iii) “shuffle
instructions” doesn’t work; this is within expecta-
tion since a random instruction provides no useful
supervision for the target task.

• When the instructions contain examples
(i.e., INSTRU-W-EXAM): i) the system is pretty
robust among all perturbations; ii) “shuffle instruc-
tions” (note that the examples are still specific to

13939



metric AC CEC CR DAR WA TE

E
X

A
C

T
M

A
T

C
H

original instru. 68.00 54.00 57.86 63.14 47.50 64.54
delete stopwords 54.15 53.14 54.93 52.86 43.00 61.79
delete [5,10] words 65.46 54.00 54.29 57.29 46.50 61.33
insert [5,10] words 59.62 54.29 57.29 56.00 47.50 64.12
replace [5,10] words 64.77 54.43 55.57 56.71 47.75 58.67
shuffle words 47.23 53.86 51.07 39.86 41.88 56.12
repeat sentences 67.08 53.86 57.64 64.71 48.88 64.17
shuffle sentences 66.69 54.14 57.43 66.14 47.25 64.08
shuffle instructions 43.69 44.14 49.64 38.00 39.50 48.29

DTT GEC TG KT OE QR

R
O

U
G

E
-L

original instru. 49.17 87.80 39.11 67.78 60.35 66.25
delete stopwords 49.56 87.19 38.21 65.07 54.82 66.46
delete [5,10] words 49.26 87.69 38.15 65.94 58.24 66.19
insert [5,10] words 49.28 87.55 38.62 66.17 57.08 65.98
replace [5,10] words 49.91 88.77 38.32 66.46 57.68 65.42
shuffle words 49.39 87.33 36.90 65.89 52.85 67.77
repeat sentences 49.26 88.81 38.76 67.34 60.19 66.33
shuffle sentences 49.41 87.80 39.05 66.86 59.17 66.17
shuffle instructions 48.93 86.32 31.08 62.11 38.08 64.82

Table 5: The INSTRU-W-EXAM results of the T5-11B model on the 119 English test tasks of SUPER-
NATURALINSTRU by different levels of perturbations. We use different colors to denote perturbations in word level,
sentence level and instruction level.

Original Instruction In this task, you will be shown an incorrect English sentence. You need
to generate a corrected form of the input sentence.

New Instruction 1 Given an incorrect English sentence. Your task is to correct the input
sentence and write out his correct form.

New Instruction 2 You will see an erroneous English sentence in this task. You must create
the input sentence in its corrected form.

New Instruction 3
You are given an English sentence that has some small grammatical
errors. Your task is to output the given sentence and fix all the errors
inside. The output should be a grammatically correct sentence.

Table 6: An example in our constructed dataset where four diverse instructions are prepared for every single task.

the target task) only decreases the performance to
a small extent, which indicates that “correct exam-
ples+incorrect instruction” is better than “correct
instruction without examples”. In other words, pro-
viding a couple of examples in the instruction rather
than merely a short piece of task description is still
the key to instruction-driven learning.

• Does larger models lead to higher robust-
ness? We report INSTRU-W-EXAM results of T5-
11B in Table 5. We only observe occasional per-
formance drops by word-level perturbations in a
few task categories, such as CR, DAR, and OR. In
general, only “shuffle instruction” can lead to clear
deterioration while other perturbations do not have
a noticeable effect.

• Difference between English and non-

English: To save space, we move the results of
non-English test tasks to the Table 10 in Appendix
B. By comparing Table 4 and Table 10, we do
not notice any different phenomena in non-English
tasks.

How to interpret the phenomena caused by in-
struction perturbations? Based on the afore-
mentioned observations, we conclude that pertur-
bations, retaining as much task semantic as the
original instructions, can yield less influence on the
system’s robustness. In other words, two instruc-
tions that are more likely to be paraphrased tend to
have similar performance. We further validate this
argument in the subsequent Section 3.2.

Since INSTRU-W-EXAM generally performs bet-
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T
5-

3B

AC CEC CR DAR WA TE

EM
orig. 69.5 69.2 58.5 48.7 44.5 44.8
reph. 67.3±1.0 69.3±0.2 56.8±1.6 43.3±2.7 43.2±1.9 52.7±5.8

DTT GEC TG KT OE QR

ROUGE-L
orig. 44.7 85.0 25.5 73.2 34.7 81.0
reph. 44.2±0.3 84.3±0.3 24.6±0.2 72.0±0.6 32.7±0.1 81.3±0.2

T
5-

11
B

AC CEC CR DAR WA TE

EM
orig. 63.5 74.0 62.0 51.5 51.5 67.0
reph. 61.8±0.6 74.5±1.1 56.7±5.3 50.3±4.1 50.0±0.4 65.0±2.4

DTT GEC TG KT OE QR

ROUGE-L
orig. 48.8 85.0 26.4 71.5 52.1 75.0
reph. 48.7±0.5 85.4±0.2 26.3±0.2 71.6±0.5 51.6±1.0 76.9±2.1

Table 7: The results of the T5-3B&11B models on our Para-Instructions dataset.

ter than INSTRU-WO-EXAM, hereafter, we report
INSTRU-W-EXAM for the remaining experiments.

3.2 Robustness when instructions are
rephrased

In addition to the instruction perturbation exper-
iments which may lead to grammatically incor-
rect instructions, this subsection studies a scenario
where multiple valid instructions are available for
the same task. This is a real-world challenge since
the end users are free to write any open-form in-
structions to guide the system.

Data construction. Unfortunately, there are no
existing datasets that contain tasks with diverse
human-oriented instructions. To build a dataset,
we randomly choose 2 English2 tasks from
each of the 12 categories in the test of SUPER-
NATURALINSTRU; this results in 23 tasks3 that are
uniformly distributed over those categories. We
hire three graduate students in the NLP area to
construct a dataset of diverse instructions with the
following two steps:

• Writing step: for each task, each annotator is
provided with 10 labeled instances, the task name,
and the original task Definition. Then each an-
notator is required to write a new definition based
on her/his understanding of the task. After this
step, each task will have 3 new versions of raw
instructions.

• Validation step: For each raw instruction, we
forward it to two checkers who judge if it is valid
for the task and if it is different enough from the
original Definition. If any issues are found, the

2We considered English only since it is hard to find anno-
tators who are familiar with many non-English languages.

3The “grammar error correction” has only one task.

original author will be asked to modify the instruc-
tion. This process is repeated until both checkers
are satisfied with the new instruction. After this
step, each task will have 4 versions of high-quality
instructions (one original, three new).

Table 6 lists an example task with 4 instructions
in our constructed data. Compared with the per-
turbed instructions demonstrated in Table 3, it is
clear that the tasks in our new dataset are equipped
with more valid instructions and they are more
like paraphrases of each other while conveyed with
more distinct textual expressions. Our constructed
dataset, “Para-Instructions”, as the first one
that contains multiple human-oriented instruc-
tions for each task, is released to the community.

Results. For all three new instructions, we re-
port their averages and standard deviations. Ta-
ble 7 compares the performance of the original
instruction and the three new instructions by T5-
3B and T5-11B models. We notice that the system
is considerably robust among all four versions of
instructions. It suggests that providing a paraphras-
ing instruction can generally keep the performance
once demonstrations are available.

3.3 Robustness when instructions have
different abstractiveness

Another challenge in instruction-driven task gen-
eralization is to encourage the same system to
work well on datasets that contain instructions
constructed from totally different templates or ab-
stractiveness. This phenomenon often exists be-
tween two different datasets. For example, SUPER-
NATURALINSTRU has instructions that are mostly
a paragraph while DIVERSEPROMPT (Honovich
et al., 2022) contains prompts only—mostly short
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Task T5-3B T5-11B
E

X
A

C
T

M
A

T
C

H
sum 0.00±0.0 11.4±4.2
synonyms 1.00±0.0 2.40±0.9
rhymes 1.00±0.0 0.00±0.0
larger animal 5.00±2.5 45.8±7.6
diff 1.10±0.9 3.30±1.1
first word letter 1.00±0.0 46.0±9.3
second word letter 1.30±0.5 19.9±6.5
singular to plural 0.80±0.4 55.0±1.2
antonyms 13.6±1.6 33.1±0.6
word in context 9.00±12.2 31.7±0.0
letters list 2.00±0.0 1.80±0.6
sentence similarity 0.00±0.0 0.00±0.0
sentiment 34.1±8.9 49.0±2.8
num to verbal 0.00±0.0 0.00±0.0
orthography 1.20±0.4 7.00±2.3

R
O

U
G

E
-L

translation en-es 8.50±0.5 23.3±2.8
translation en-de 9.50±1.0 10.1±5.8
translation en-fr 12.4±0.8 37.0±0.8
informal to formal 30.3±0.4 32.8±2.3
negation 70.7±11.6 71.6±6.1
cause and effect 50.5±15.1 31.8±9.7
taxonomy animal 24.0±3.9 26.6±7.0
common concept 0.00±0.0 1.70±2.2
active to passive 60.3±2.4 94.4±3.5

Table 8: Train T5-3B&11B on SUPER-
NATURALINSTRU and test it on DIVERSE-
PROMPT (Honovich et al., 2022).

and abstractive sentences.

Dataset. To check the robustness of the model
finetuned on SUPER-NATURALINSTRU, we test
it on the DIVERSEPROMPT dataset. DIVERSE-
PROMPT has 24 tasks and each task has an average
of 7.75 prompts. DIVERSEPROMPT was the only
dataset that provides multiple prompts for a task be-
fore we wrote this paper, and the prompts are much
more concise (average word size 10.75) than the
training instructions of SUPER-NATURALINSTRU.

Results. Table 8 presents the results on DI-
VERSEPROMPT by the model finetuned on SUPER-
NATURALINSTRU. For this experiment, we ob-
serve a totally different story:

• First, the pretrained model on SUPER-
NATURALINSTRU does not work well on DI-
VERSEPROMPT. Regardless of the task types
(shown by the evaluation metrics: EXACT-
MATCH or ROUGE-L), most tasks show unsat-
isfactory performance. This can result from two

reasons: on the one hand, the instruction format
(i.e., prompts in DIVERSEPROMPT) is significantly
different from that in SUPER-NATURALINSTRU—
DIVERSEPROMPT has prompts that mostly con-
tain a few words while instructions in SUPER-
NATURALINSTRU are more specific, informative
and are human-oriented; on the other hand, the
tasks in DIVERSEPROMPT are very distinct from
those in SUPER-NATURALINSTRU, such as “sum”,
“diff”, “first word letter”, “common concept”, etc.

• Second, even for some tasks that co-exist in
SUPER-NATURALINSTRU and DIVERSEPROMPT,
e.g., “word in context”, “translation”, “sentiment”,
etc., their performances fall short of expectations.
For example, “Text Generation” (TG) in Table
7 gets consistent performance around 24.6 by
ROUGE-L, whereas the translation tasks in DI-
VERSEPROMPT ranging from 8 to 13.

The preceding two items hint at the fragility of
the model when dealing with unseen tasks and un-
familiar instruction formats, despite its training on
more than 1,000 instruction-laden tasks. So far,
we still lack a method to effectively learn instruc-
tion to solve tasks in the absence of demonstration.
The majority of instruction-tuning datasets com-
monly furnish only a single instruction for each
input-output pair, aiming to enhance the system’s
capacity for instruction following through an in-
creased number of training tasks. However, this
approach may prove suboptimal in supervising a
system that can effectively generalize to unfamiliar
tasks with unfamiliar formats of instructions.

• Third, it is worth mentioning that this DI-
VERSEPROMPT dataset does not provide demon-
strations. In this case, we notice mostly greater
standard deviations in Table 8 than that in Table 7.
This indicates that even paraphrasing prompts can
not guarantee consistent performance if no demon-
strations exist. Then we dive into the performance
per prompt for tasks that have larger standard devi-
ations of ROUGE-L, such as “negation”, “cause
and effect”, “taxonomy animal” and “active to pas-
sive”, in Table 9. We found the following factors
that affect prompt performance in text generation
tasks: (i) it is better to use a verb that clearly has
a single sense. For example, “write” and “extract”
are generally better than “output”, “list”, which
can be verbs or nouns; (ii) explicitly presenting the
action is better than that implicitly. For example,
“· · ·, write the · · ·” is better than a question “which
of the · · · is · · ·?”.
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ROUGE-L prompt

ne
ga

tio
n

63.32 For each input, write a sentence that expresses the exact opposite meaning
of the input.

65.95 Change the fact stated in the sentence to an opposite fact.

66.50 You will be given a sentence that states a fact (that might be true or not).
Try to state the opposite fact.

68.92 Negate the following sentence:
74.05 output the negation of the input
75.39 Negate the given sentence
75.87 write the negation
82.83 Write a negated version of the given sentence

ca
us

e
&

ef
fe

ct

16.26 Which of the two events is the cause?
21.23 Which of the following sentences is the cause?
21.97 Output the cause (other sentence describes what happened as a result)

28.71 Output the sentence describing the cause (the other sentence is what
happened as a result).

32.17 Each input consists of two sentences, where one is the cause and the
other is the outcome. Write the cause sentence

39.03 The input consists of two sentences. One is the cause of the other. Write
the cause sentence

40.30 Find the cause in the following cause and effect pair
41.83 The input is a cause and effect. Write the cause.
44.78 The input is a cause and effect, write the cause

ta
xo

no
m

y
an

im
al

12.06 extract animals
21.46 List which of the following are animals
22.62 Find the animals in the list
24.08 List the animals from the given words
27.86 find the animals in the following list of words
28.25 write all animals from the list of words
33.88 write only the animals from the list of words
33.89 Extract all animals from the list
35.32 Extract all animals from the input list

ac
tiv

e_
to

_p
as

si
ve

88.18 Write the following sentence in passive language
88.63 output the passive form of the input
95.71 For each input, write the passive form of the sentence.
95.87 Rewrite the sentence in passive form
96.08 Change the sentence from active to passive.
96.21 Rewrite the input sentence in passive form
96.92 Change the wording of the following sentence from active to passive.
97.80 turn the sentence from active tense to passive tense.

Table 9: ROUGE-L per prompt for four tasks in DIVERSEPROMPT.

This story shows that there is still a long way
to go for instruction-driven task generalization, es-
pecially when the system deals with less familiar
tasks with abstractiveness-distinct instructions.

4 Conclusion

This paper proposed a new issue, the robustness
of instruction-tuned models. Experiments show
that the instruction-tuned model may not learn the

content of the instructions itself in some tasks, but
rather the pattern of positive examples. The robust-
ness of the instruction-tuned model is very impor-
tant, which determines the stability and reliability
of instruction fine-tuning models in real-world ap-
plications. Using only instructions to tell models
what they should do is a long-term goal of AI, and
we hope that future work will be done to improve
the robustness of the instruction-tuned model.
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Limitations

We summarize the limitations of this work as fol-
lows:

• First, it is still challenging to figure out why a
particular instruction results in better or worse
performance. We tried to explain a part of the
observations, but some of the phenomena are
still mysterious.

• Technically we can create a much larger
Para-Instruction dataset than 23 that pro-
vides diverse instructions for NLP tasks. Due
to the budget limitation, we only collected 23
tasks.

• Some prior work showed that larger PLMs
often bring better performance in dealing with
instruction learning. Due to hardware con-
straints, we are unable to try PLMs that are
larger than T5-11B.
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We do not anticipate any ethical issues particularly
to the topics of this work. Nevertheless, some work
presented here extensively uses large-scale pre-
trained models with self-attention, which may lead
to substantial financial and environmental costs.
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EXACTMATCH ROUGE-L
AC CEC TE TG

original
76.3±3.4 43.1±0.7 19.7±1.4 10.3±2.0
72.0±0.8 54.2±0.6 20.0±1.2 8.80±0.7

delete stopwords
69.0±4.3 20.8±0.6 10.1±0.2 5.70±2.2
69.7±1.9 54.8±0.2 19.0±1.4 6.30±0.8

delete [5,10] words
56.3±2.8 28.9±2.2 11.2±4.9 9.70±1.6
73.0±2.9 54.6±0.6 21.0±1.9 8.40±0.1

insert [5,10] words
72.0±2.2 35.5±1.4 17.6±3.4 9.50±0.6
69.3±4.1 55.7±0.3 19.6±0.6 7.20±1.0

replace [5,10] words
68.3±0.5 39.7±1.5 17.8±3.1 10.5±1.6
67.0±7.9 54.2±0.3 17.4±0.8 6.80±1.9

shuffle words
3.00±1.6 0.20±0.1 1.40±2.0 8.60±2.3
70.0±5.7 53.2±0.1 16.0±2.6 8.30±1.7

repeat sentences
73.3±2.6 32.6±2.7 14.6±3.5 9.20±1.7
74.7±1.2 55.2±0.6 20.9±2.4 9.00±0.7

shuffle sentences
69.7±3.1 34.8±1.7 17.3±0.9 5.80±1.7
67.3±1.2 54.9±0.5 19.1±1.6 7.00±1.8

shuffle instructions
0.00±0.0 14.9±1.7 0.00±0.0 0.60±0.9
40.0±2.9 52.6±0.4 5.30±0.7 1.90±1.5

Table 10: The INSTRU-WO-EXAM (in black) and INSTRU-W-EXAM (in gray) results of the T5-3B model on the 35
non-English test tasks of SUPER-NATURALINSTRU by different levels of perturbations.

EXACTMATCH ROUGE-L
AC CEC TE TG

original 86.00 69.57 32.00 13.27
delete stopwords 78.0 69.17 28.00 14.00
delete [5,10] words 85.0 69.07 28.00 13.00
insert [5,10] words 87.0 69.27 30.00 12.83
replace [5,10] words 85.0 67.47 30.67 13.83
shuffle words 76.0 68.03 29.67 13.17
repeat sentences 87.0 69.53 31.00 13.27
shuffle sentences 85.0 69.97 29.33 13.27
shuffle instructions 60.0 69.07 19.67 4.47

Table 11: The INSTRU-W-EXAM results of the T5-11B model on the 35 non-English test tasks of SUPER-
NATURALINSTRU by different levels of perturbations.

A Finetuning Details

In this work, we finetune T5 using the Hugging-
Face library. We use a scheduler with a constant
learning rate of 5e-05. All models are optimized
by AdamW (Loshchilov and Hutter, 2019) with
a batch size of 8. T5-3B is fine-tuned on one
NVIDIA RTX A5000 GPU and T5-11B on four
NVIDIA A100 GPUs. DeepSpeed4 is used to paral-
lelize the models, and bfloat16 precision is enabled
to save GPU memory.

4https://github.com/microsoft/DeepSpeed

B T5-3B Results on Non-English Tasks

Table 10 presents the INSTRU-WO-EXAM (in
black) and INSTRU-W-EXAM (in gray) results of
the T5-3B model on the 35 non-English test tasks
of SUPER-NATURALINSTRU by different levels of
perturbations.

C T5-11B Results on Non-English Tasks

Table 11 presents the INSTRU-W-EXAM results of
the T5-11B model on the 35 non-English test tasks
of SUPER-NATURALINSTRU by different levels of
perturbations.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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