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Abstract

Detecting adversarial samples that are carefully
crafted to fool the model is a critical step to
socially-secure applications. However, existing
adversarial detection methods require access
to sufficient training data, which brings note-
worthy concerns regarding privacy leakage and
generalizability. In this work, we validate that
the adversarial sample generated by attack al-
gorithms is strongly related to a specific vector
in the high-dimensional inputs. Such vectors,
namely UAPs (Universal Adversarial Perturba-
tions), can be calculated without original train-
ing data. Based on this discovery, we propose a
data-agnostic adversarial detection framework,
which induces different responses between nor-
mal and adversarial samples to UAPs. Experi-
mental results show that our method achieves
competitive detection performance on various
text classification tasks, and maintains an equiv-
alent time consumption to normal inference.

1 Introduction

Despite remarkable performance on various NLP
tasks, pre-trained language models (PrLMs), like
BERT (Devlin et al., 2018), are highly vulnerable to
adversarial samples (Zhang et al., 2020; Zeng et al.,
2021). Through intentionally designed perturba-
tions, attackers can modify the model predictions to
a specified output while maintaining syntactic and
grammatical consistency (Jin et al., 2020; Li et al.,
2020b). Such sensitivity and vulnerability induce
persistent concerns about the security of NLP sys-
tems (Zhang et al., 2021c). Compared to deploying
robust new models, it would be more applicable to
production scenarios by distinguishing adversarial
examples from normal inputs and discarding them
before the inference phase (Shafahi et al., 2019).
Such detection-discard strategy helps to reduce the
effectiveness of adversarial samples and can be
combined with existing defence methods (Mozes
etal., 2021).
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Figure 1: Illustration of our UAPAD framework. The
solid and hollow markers represent samples before and
after the universal perturbation. The adversarial sam-
ples are embedded closer to the decision boundary to
maintain similarity with the original samples, resulting
in differential resistance to universal adversarial pertur-
bations (UAPs) with clean samples. We construct our
detection framework based on this observation.

However, existing adversarial detection methods
depend heavily on the statistical characteristics of
the training data manifolds, such as density estima-
tion (Yoo et al., 2022) and local intrinsic dimen-
sionality (Liu et al., 2022). Some other researches
focus on identifying high-frequency words in the
training data and replacing or masking them in the
prediction phase to observe the change in logits
score (Mozes et al., 2021; Mosca et al., 2022). We
propose a summary of existing works in Table 1.
All these detection methods assume that training
data is available, which suffers from the following
two problems: (1) Some companies only provide
model checkpoints without customer data due to
privacy and security issues. (2) Some datasets can
be large so it is not practical or convenient to save
and process them on different platforms.

In this work, we propose UAPAD, a novel frame-
work to detect adversarial samples without expo-
sure to training data and maintain a time consump-
tion consistent with normal inference. We visualize
our detection framework in Figure 1. Universal
adversarial perturbations (UAPs) is an intriguing
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Method Summary

Require Require Require
Clean Data Adv. Data Extra Model

MLE (Lee et al., 2018)
DISP (Zhou et al., 2019)
FGWS (Mozes et al., 2021)
ADFAR (Bao et al., 2021)
RDE (Yoo et al., 2022)
UAPAD (Ours)

Gaussian discriminant analysis
Token-level detection model
Frequency-based word substitution
Sentence-level detection model
Feature-based density estimation
Universal adversarial perturbation

X SNXKXKX
XX XN X
XXX xS\

Table 1: Summary of previous detection methods in NLP system. Requiring clean/adv. data indicates what data is
needed for the training and validation process. Requiring extra models indicates whether a separate new model
needs to be trained for adversarial detection. Our approach is data-agnostic and can be easily integrated into the

inference phase.

phenomenon on neural models, i.e. a single per-
turbation that is capable to fool a DNN for most
natural samples (Zhang et al., 2021b), and can be
calculated without the original training data (Mop-
uri et al., 2018; Zhang et al., 2021a). We explore
the utilization of UAPs to detect adversarial attacks,
where adversarial and clean samples exhibit differ-
ential resistance to pre-trained perturbations on a
sensitive feature subspace.

Experimental results demonstrate that our
training-data-agnostic method achieves promising
detection accuracy with BERT on multiple adver-
sarial detection tasks without using training or ad-
versarial data, consuming additional inference time,
or conducting overly extensive searches for hyper-
parameters. Our main contributions are as follows:

* We analyze and verify the association between
adversarial samples and an intrinsic property
of the model, namely UAPs, to provide a new
perspective on the effects of adversarial sam-
ples on language models.

* We propose a novel framework (UAPAD),
which efficiently discriminates adversarial
samples without access to training data, and
maintains an equivalent time consumption to
normal inference. Our codes' are publicly
available.

2 Related Work

2.1 Universal adversarial perturbation

The existence of UAPs has first been demonstrated
by (Moosavi-Dezfooli et al., 2017), that a single
perturbation can fool deep models when added to
most natural samples. Such phenomena have been

"https://github.com/SleepThroughDifficulties/
UAPAD.git
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Figure 2: Illustration of the different resistance to uni-
versal perturbations in adv and clean data. Predictions
for adversarial samples are inverted by a small perturba-
tion intensity while clean samples maintain the original
results.

extensively verified in image (Khrulkov and Os-
eledets, 2018), text (Song et al., 2021), and audio
models (Li et al., 2020a). Some works attribute the
existence of UAPs to a specific low-dimensional
subspace, which is perpendicular to the decision
boundary for most of the data. The attention on
UAPs mainly focused on their construction, de-
tection and defence (Zhang et al., 2021b), and ne-
glected to explore the relationship between adver-
sarial samples and UAPs. Our experimental results
in Figure 2 demonstrate the tight connection be-
tween these two phenomena.

2.2 Adversarial detection in NLP

Adversarial detection is an emerging area of re-
search on language model security. A series of
works analyze the frequency characteristics of
word substitutions in pre-collected adversarial sen-
tences and replace (Zhou et al., 2019; Mozes et al.,
2021) or mask (Mosca et al., 2022) them to ob-
serve model reactions. These methods rely on em-
pirically designed word-level perturbations, which
limit their generalizability across different attacks.
Ma et al. (2018) first proposed to train additional
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discriminative models to decide whether an input
sentence has suffered from word-level adversarial
substitution. This idea was generalized by Liu et al.
(2022) and Yoo et al. (2022), which determine the
likelihood of a sentence has been perturbed. How-
ever, they still require the statistical characteristics
of the training data. In this paper, we for the first
time propose to construct data-agnostic models and
achieve remarkable detection results.

3 Method

This section shows how to calculate the UAPs for a
specific text model without obtaining training data.
And subsequently, how to detect adversarial data
by pre-trained UAPs.

Data-free UAPs We compute UAPs for a fine-
tuned model by perturbing the substitute inputs,
based on the fact that UAPs are generalized proper-
ties for a given model. We start with a parameter-
frozen target network f and a random perturbation
0. The optimal situation is we can obtain some
data that are involved in the training procedure.
However, there are situations that we cannot ac-
cess to training samples or it is unclear whether
the accessible data is within the training set. To
demonstrate the effectiveness of UAPAD under
the data-agnostic scenario. We initialize the input
embedding by randomly selecting data from an un-
related substitute dataset (e.g., the MNLI dataset in
our experiments). It is a reasonable assumption that
a defender can access a moderate amount of sub-
stitute data. These embeddings are subsequently
updated to ensure the model’s confidence score is
above the threshold on them. In our framework, we
only retain samples with model confidence above
85% to calculate UAPs. We then optimize the per-
turbation ¢ by gradient-ascending the overall loss
when added to all the inputs and project it to a nor-
malized sphere of fixed radius to constrain its norm.
We obtain a reasonable UAP when most predictions
are induced to a fixed result under perturbation.

Adversarial Detection with UAPs In Figure
2, we illustrate the different resistance to UAPs
between clean and adversarial samples. We uti-
lize this property to conduct adversarial detection.
Given an input z, we perform one inference on
model f to obtain the normal output y = f(z) and
perform another one when z is perturbed by a cal-
culated UAP 0, thatis ' = f(x + w * §), where w
is a hyperparameter controlling the perturbation’s

intensity. We detect the input as an adversarial sam-
ple when y # 3. Noting that these two inferences
can be computed in parallel, our approach does not
introduce growth in inference time.

4 Experimental Setup

We experimentally validate our method on three
well-accepted benchmarks: SST-2 (Socher et al.,
2013), IMDB (Maas et al., 2011), and AGNews
(Zhang et al., 2015). The statistics of involved
benchmark datasets are summarised in Appendix A.
We use the BERT-base (Devlin et al., 2018) as the
target model and pre-generate adversarial samples
for the detection task with three attack methods:
TextFooler (Jin et al., 2020), PWWS (Ren et al.,
2019), and BERTAttack (Li et al., 2020b).

4.1 Detecting Scenarios

Adversarial detection task requires a dataset D, con-
taining both clean samples D, and adversarial
samples D,q,. In the previous works, there ex-
ist two different strategies to construct adversarial
datasets. Scenario 1 (easy): The adversarial dataset
consists of only successful attack samples. Sce-
nario 2 (hard): The adversarial dataset contains
both successful and unsuccessful attack samples.
Scenario 2 presents more challenging requirements
for detection methods and is closer to real-world
settings. We conduct experiments in both scenarios
to fully illustrate the performance of UAPAD.

4.2 Implementation Details

We fine-tuned BERT using consistent settings with
(Devlin et al., 2018). For all three datasets, we
took 1500 training samples and saved their attack
results under different attack algorithms as adver-
sarial samples. UAPAD has a single hyperparam-
eter w (strength of universal perturbation), which
we set to 0.5 for all our detection experiments. Al-
though we believe that a better weight exists and
can boost the detection performance, we refuse to
extend hyper-parameter searching which is against
our original purpose. More implementation details
and hyperparameters can be found in Appendix B.

Evaluation Metrics We use two metrics to mea-
sure our experimental results. Detection accuracy
(ACC) measures the accuracy of classification re-
sults on all samples, and F1-score (F1) measures
the harmonic mean of precision and recall scores.
Similar to DISP, our method provides a direct dis-
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Datasets Methods TextFooler PWWS BERT-ATTACK Datasets Methods TextFooler PWWS BERT-ATTACK
Acc Fl1 Acc  Fl Acc F1 Acc Fl1 Acc Fl1 Acc F1
MLE 796 77.0 | 775 772|703 637 MLE 767 752|712 719 | 824 830
DISP 712 660 | 744 709 | 708 654 DISP 712 649 | 744 688 | 707  64.9
ST FGWS 702 63.5 | 825 813|703 637 I FGWS 657 556|693 617|646 535
RDE 780 734 | 795 77.6|834 813 RDE 774 732|786 777|829 810
UAP (Ours) | 837 83.1 | 82.5 809 | 874 876 UAP (Ours) 807 80.9 78.8 78.1 | 849  85.1
MLE 837 818 |8L5 794|837 823 MLE 740 824 | 745 762 | 744 7189
DISP 68.8 70.6 | 66.8 682|673 688 DISP 64.1 537|624 519|632 526
IMDE FGWS 747 697 | 775 740 | 744 693 MDE FGWS 62.1 474|635 498|586  39.6
RDE 832 756 | 820 744|835 766 RDE 774 732|786 777|829 813
UAP (Ours) | 84.1 726 | 812 733 | 838 784 UAP (Ours) 783 768 77.5 768 | 793 780
MLE 799 796 | 773 769 | 827 786 MLE 779 770 | 732 715|792 789
DISP 867 864 | 869 86.6|83.5 826 DISP 86.1 84.5|854 810|831 815
AGNEWS | ¢ pE 850 867 | 858 814|882 880 AGNEWS | o pE 85.1 844|770 785|866 857
UAP (Ours) | 95.8 956 | 944 931|949 949 UAP (Ours) 88.6 88.1 863 814|920 919

Table 2: Adversarial detection results on easy scenario.

criminant rather than a score and therefore does not
apply to the AUC metric.

Baselines We compare our proposed methods
with four strong baselines. Details are summarized
in Appendix C.

e MLE (Lee et al., 2018) proposes to train
detection models based on Mahalanobis dis-
tance.

¢ DISP (Zhou et al., 2019) verifies the likeli-
hood that a token has been perturbed.

* FGWS (Mozes et al., 2021) substitutes low-
frequency words in the sentence to detect
Word-level attacks.

* RDE (Yoo et al., 2022) models the probability
density of inputs and generates the likelihood
of a sentence being perturbed.

S Experiment Results and Discussions

In this section, we show the experimental perfor-
mance of our proposed method under the two sce-
narios in Section 4.1, and investigate different de-
fence methods on the inference time consumption.

5.1 Main Results

Table 2 and 3 show the detect results on three
datasets and three attacks. The highest means are
marked in bold. Out of the 18 combinations of
dataset-attack-scenario, UAPAD achieves the best
performance on 15 of them on ACC and 12 of them
on F1 metric, which demonstrates the competitive-
ness of our data-agnostic approach. UAPAD guar-
antees remarkable detection performance on the
SST-2 and AGNews datasets and suffers from a
small degradation on the IMDB dataset. We argue
that the average length of sentences is greater on

Table 3: Adversarial detection results on hard scenario.

IMDB, resulting in stronger dissimilarity between
the adversarial sample generation by attack algo-
rithms and the original sentence. On the AGNews
dataset, UAPAD provided a 3-11% increase in de-
tection accuracy relative to the baseline approach.
We attribute this impressive improvement to more
categories on this task, which improved the accu-
racy of estimation on the model’s UAPs.

5.2 Time Consumption

To further reveal the strength of UAPAD besides its
detection performance, we compare its GPU train-
ing time consumption with other baseline methods.
As is demonstrated in Table 4, The time consump-
tion of UAPAD is superior to all the comparison
methods. Only FGWS (Mozes et al., 2021) ex-
hibits similar efficiency to ours (with about 20%
time growth on SST-2 and IMDB). FGWS neither
contains a backpropagation process in the infer-
ence phase, but still requires searching the pre-built
word list for substitution.

Methods SST-2 | IMDB
finetune 3.42 4.33
UAP (Ours) | 3.58 4.61
DISP 19.2 24.6
FGWS 4.17 5.58
RDE 76.8 102.3

Table 4: GPU time consumption (seconds) of detection
1500 samples. UAPAD costs nearly the same as normal
predictions.

6 Conclusion

In this paper, we propose that adversarial samples
and clean samples exhibit different resistance to
UAPs, a model-related vector that can be calcu-
lated without accessing any training data. Based
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on this discovery, we propose UAPAD as an ef-
ficient and application-friendly algorithm to over-
come the drawbacks of previous adversarial detec-
tion methods in terms of slow inference and the
requirement of training samples. UAPAD acts by
observing the feedback of inputs when perturbed
by pre-computed UAPs. Our approach achieves
impressive detection performance against different
textual adversarial attacks in various NLP tasks.
We call for further exploration of the connection
between adversarial samples and UAPs.
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7 Limitations

This section discusses the potential limitations of
our work. This paper’s analysis of model effects
mainly focuses on common benchmarks for adver-
sarial detection, which may introduce confounding
factors that affect the stability of our framework.
Our model’s performance on more tasks and more
attack algorithms is worth further exploring. Our
detection framework exploits the special properties
exhibited by the adversarial sample under universal
perturbation. We expect a more profound explo-
ration of improving the connection between UAPs
and adversarial samples. In Figure 2, we note that a
small number (about 3%) of clean and adversarial
samples do not suffer from UAP interference. It
is worth conducting an analysis of them to further
explore the robustness properties of the language
models. We leave these problems to further work.
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A Dataset Statistics

Dataset Train/Test Classes #Words

SST-2 67k/1.8k 2 19

IMDB 25k/25k 2 268
AGNews 120k/7.6k 4 40

Table 5: Statistics of datasets. In our experiments, we
partition an additional 10 percent of the training set as
the validation set to calculate the DSRM of the model.

B Experimental Details

In this appendix, we show the hyper-parameters
used for our proposed method. We fine-tune the
BERT-base model by the official default settings.
For SST-2, we use the official validation set, while
for IMDB and AGNews, we use 10% of the data
in the training set as the validation set. The vali-
dation set and the adversarial samples generated
using the validation set are used to select hyper-
parameters. All three attacks are implemented us-
ing TextAttack? with the default parameter settings.
Following Zhou et al. (2019), for SST-2, IMDB
and AGNews, we build a balanced set consisting
of 1500 clean test samples and 1500 adversarial
samples to evaluate our proposed methods and all
the baselines in this paper. We train our models
on NVIDIA RTX 3090 GPUs (four for RDE and
one for other methods). All experiments are run on
three different seeds and report the mean result.

C Baseline Details

We compare our proposed detectors with three
strong baselines in adversarial example detection.

MLE (Lee et al., 2018): A simple yet effective
method for detecting OOD and adversarial exam-
ples in the image processing domain. The main
idea is to induce a generative classifier under Gaus-
sian discriminant analysis, resulting in a detection
score based on Mahalanobis distance.

DISP (Zhou et al., 2019): A novel BERT-based
framework can identify perturbations and correct
malicious perturbations. it contains two indepen-
dent components, a perturbation discriminator and
an estimator for token recovery. To detect adversar-
ial attacks, the discriminator verifies the likelihood
that a token in the sample has been perturbed.

Zhttps://github.com/QData/TextAttack

FGWS (Mozes et al., 2021) leverages the fre-
quency properties of adversarial word substitution
for the detection of adversarial samples. Briefly,
FGWS replaces the low-frequency words with their
most frequent synonyms in the dictionary to detect
the perturbation.

RDE (Yoo et al., 2022) proposes a competitive
adversarial detector based on density estimation.
RDE models the probability density of the entire
text and generates the likelihood of a text being
perturbed.
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