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Abstract

This paper explores the task of Temporal Video
Grounding (TVG) where, given an untrimmed
video and a natural language sentence query,
the goal is to recognize and determine tempo-
ral boundaries of action instances in the video
described by the query. Recent works tackled
this task by improving query inputs with large
pre-trained language models (PLM) at the cost
of more expensive training. However, the ef-
fects of this integration are unclear, as these
works also propose improvements in the visual
inputs. Therefore, this paper studies the effects
of PLMs in TVG and assesses the applicabil-
ity of parameter-efficient training with NLP
adapters. We couple popular PLMs with a se-
lection of existing approaches and test different
adapters to reduce the impact of the additional
parameters. Our results on three challenging
datasets show that, without changing the visual
inputs, TVG models greatly benefited from the
PLM integration and fine-tuning, stressing the
importance of sentence query representation
in this task. Furthermore, NLP adapters were
an effective alternative to full fine-tuning, even
though they were not tailored to our task, allow-
ing PLM integration in larger TVG models and
delivering results comparable to SOTA models.
Finally, our results shed light on which adapters
work best in different scenarios.

1 Introduction

Temporal Video Grounding (TVG) is a fundamen-
tal task in Computer Vision (CV), where the goal
is to have models recognize and determine tempo-
ral boundaries of action instances in videos (Shou
et al., 2016; Gu et al., 2018; Girdhar et al., 2019) us-
ing queries provided in natural language (Gao et al.,
2017; Hendricks et al., 2017). Over the past few
years, interest in this task has grown substantially
due to its complexity and potential applications,
which has led to the release of several models that
either use propose-and-rank techniques or directly

predict the starting and ending temporal locations
(Ghosh et al., 2019; Rodriguez et al., 2020).

Following trends in other vision-and-language
(V&L) tasks, some of the latest models combine
vision encoders and pre-trained language models
(PLM). We find works that directly encode the
query using PLMs (Nawaz et al., 2022; Wang et al.,
2022), which are later fine-tuned with the rest of
the architecture, or that try to project both the query
and video into the same embedding space using a
Transformer (Zhang et al., 2021a).

Despite the performance improvements, it is dif-
ficult to isolate the effects of the improved language
representations, as these works also propose new
video-language matching approaches or use differ-
ent video encoders. Another drawback is their com-
putational cost for training, as parameter counts
grow substantially once PLMs are incorporated.

To address this problem, several parameter-
efficient training methods have been recently pro-
posed for both Natural Language Processing (NLP)
(Karimi Mahabadi et al., 2021b) and CV models
(Rebuffi et al., 2017). Among these approaches,
adapters (Houlsby et al., 2019; Bapna and Firat,
2019) and their variations have been particularly
effective1, as they lead to performance as high as
fine-tuning while training only a small set of pa-
rameters. Adapters have been successfully com-
bined with vision models for several tasks (Kim
et al., 2021; Zhou et al., 2022), showing that using
a few parameters to learn to fuse vision and lan-
guage representations without losing performance
is possible. However, we note that efforts so far
have focused only on image (Zhang et al., 2021b)
and video (Pan et al., 2022) classification tasks or
on leveraging pre-trained generative models, e.g.,
by re-casting existing vision-and-language tasks as
language generation (Sung et al., 2022). In contrast,

1While the term “adapter" is often used to refer to the
original adapter proposed by Houlsby et al. (2019), we use it
to refer to any efficient fine-tuning method in this work.

13101



as the training signal in TVG comes from the visual
modality, we cannot cast it as language generation.

Therefore, this paper studies the effects of large
PLMs in the TVG task and investigates the applica-
bility of NLP adapters for a parameter-efficient
integration. We couple popular PLM models
with a selection of previous works, allowing us
to isolate and understand their effects on perfor-
mance. Concretely, we analyze ExCL (Ghosh et al.,
2019), TMLGA (Rodriguez et al., 2020) and DORi
(Rodriguez-Opazo et al., 2021), three proposal-free
TVG models with different levels of complexity.
Moreover, we also benchmark several parameter-
efficient training alternatives based on adapters.

We conduct thorough experiments on three chal-
lenging datasets, Charades-STA (Gao et al., 2017),
ActivityNet Captions (Krishna et al., 2017) and
YouCookII (Zhou et al., 2018b,a), covering videos
and queries with varying lengths of different activi-
ties. Concretely, we seek to answer the following
research questions: RQ1: Does incorporating a
PLM improve the performance of existing TVG
models?; RQ2: Are adapters an alternative to full
fine-tuning of the PLM parameters within TVG?;
RQ3: Is there an adapter that works best for TVG?;
RQ4: What is the impact of different PLMs?; RQ5:
How does the combination of existing TVG models
with PLMs trained with adapters perform against
state-of-the-art models?

Our results offer concrete answers to these ques-
tions, helping us clarify the role of PLMs in the
TVG task and quantify how much they can im-
prove the existing model’s grounding capabilities.
They suggest that, by only changing the query sen-
tence representation using PLMs, TVG models
can greatly improve performance, especially when
PLMs are fine-tuned, stressing the importance of
the text query representation in this task.

Our contributions can be summarized as follows:
(1) We quantify the impact of PLMs in TVG mod-
els, (2) We perform the first work on benchmarking
different types of adapters on the TVG task, shed-
ding light on which adapters work best for each
case, and (3) We offer an empirical demonstration
that adapters can reach or surpass the performance
of full fine-tuning while updating only ∼ 10% of
the parameters in our task. The code to repro-
duce our experiments is available at github.com/
ericashimomoto/parameter-efficient-tvg.

2 Related Work

Temporal Video Grounding: Work on this task
can be divided into two main approaches. On the
one hand, we find techniques based on proposal
generation, where the idea is to, given a query, out-
put a set of candidate clips which could later be
ranked (Liu et al., 2018; Ge et al., 2019). Further re-
search has mostly focused on reducing the number
of proposals by producing query-guided or query-
dependent approaches (Chen et al., 2018; Chen
and Jiang, 2019; Xu et al., 2019), or on creating
maps that can cover diverse video moments with
different lengths (Zhang et al., 2021c). Zhang et al.
(2021a) adopted a Transformer-based multi-modal
model (MSAT) which is pre-trained for this set-
ting. More recently, models have incorporated con-
trastive losses to improve performance further. This
is the case of both CPL (Zheng et al., 2022) and
MNM (Wang et al., 2022), which also incorporate
Transformer-based components in their pipelines.

The second line of approaches has instead pro-
posed to directly predict the start and end loca-
tions through the video span (ExCL; Ghosh et al.,
2019). Work on this line of research has focused
on improving the performance by modelling la-
bel uncertainty (TMLGA; Rodriguez et al., 2020),
adding spatial features (DORi; Rodriguez-Opazo
et al., 2021) or improving the text-to-video match-
ing strategies (Mun et al., 2020; Zeng et al., 2020).
For example, CPN (Zhao et al., 2021) adopted an
ad-hoc graph-based technique. Other approaches
have focused on exploiting local and global features
for better performance like Mun et al. (2020). CP-
Net (Li et al., 2021) recently proposed a pyramid-
like approach where the model progressively re-
plenishes the temporal contexts and refines the
location of the queried activity by enlarging the
temporal receptive fields. Finally, two recent ap-
proaches, VSLNet (Zhang et al., 2020) and BCPN,
(Nawaz et al., 2022) have proposed to cast the task
as visual question answering.

On top of these lines, recently, an effort has been
made to solve a variant of the task named spatio-
temporal video grounding. In this case, besides
predicting when the moment starts and ends, the
model should also identify where the action de-
scribed by the textual query occurs in the frames.
Works on this task heavily rely on the transformers
architecture (Yang et al., 2022a), with significant
effort in eliminating the need for any pre-trained
object detectors (Su et al., 2021; Jin et al., 2022).
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Figure 1: Illustration of the traditional bottleneck
adapter proposed by Houlsby et al. (2019). The adapter
layers are introduced after the multi-head attention and
feed-forward layers. Orange color refers to trainable
parameters, and blue color refers to frozen ones.

While closely related to our task, due to the addi-
tion of the spatial dimension, this task naturally
emphasizes the role of the visual modality in the
grounding, further deviating from our language-
driven approach. Therefore, our study does not
consider models tailored for this task.
Parameter-efficient model training: As ma-
chine learning models continue to grow, updat-
ing their parameters efficiently is becoming in-
creasingly important. One key idea has been to
only update newly-added parameters (Rebuffi et al.,
2017, 2018). With the advent of large pre-trained
Transformer-based models in NLP, this idea has
led to the development of adapters (Houlsby et al.,
2019): sub-networks with few parameters that
are inserted after every attention and feed-forward
layer in a given model, as illustrated in Figure 1.
We also find a variety of prompt-based approaches,
which add trainable parameters into the model
inputs (Li and Liang, 2021; Lester et al., 2021;
Gu et al., 2022). Alternative techniques, such as
sparsely updating a small number of parameters
of the model (Ben Zaken et al., 2022; Guo et al.,
2021; Sung et al., 2021), or low-rank factorization
for the weights to be updated (Mahabadi et al.,
2021; Karimi Mahabadi et al., 2021a; Hu et al.,
2022) have also been proposed recently. Finally,
He et al. (2022a); Mao et al. (2022) combined some
of these techniques to propose a unified parameter-
efficient training framework. Though we focus on
NLP adapters, we deviate from previous work as
our approach incorporates the visual modality.

Only updating newly-added parameters has also
been proposed in CV, with some work predating
the advent of Transformers (Rebuffi et al., 2017,
2018). More recently, we find works combining
pre-trained language models with multi-modal in-
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Figure 2: Illustration of our proposed approach to in-
corporate pre-trained language encoders and adapters
into existing Temporal Video Grounding pipelines. Or-
ange color refers to trainable parameters, and blue color
refers to frozen ones.

puts. For example, Tsimpoukelli et al. (2021)
trained a vision encoder to represent each image
as a sequence of continuous embeddings, such that
a frozen language model prompted with this pre-
fix generates the appropriate image caption. Yang
et al. (2022b) showed that it is possible to per-
form zero-shot video question answering by lever-
aging frozen bidirectional language models. More
recently, Sung et al. (2022) cast multiple V&L
tasks as text generation, combining NLP adapters
with pre-trained encoder-decoders, such as BART
(Lewis et al., 2020), with existing image encoders,
such as CLIP (Radford et al., 2021). The latter has
also lately been the target of several studies that
extend parameter-efficient techniques for CV (Kim
et al., 2021; Zhang et al., 2021b; Zhou et al., 2022).

Though our approach follows a similar trend, our
interest lies in a grounding task where the training
signal comes from the visual modality, which keeps
us from casting our task as language generation.

3 Proposed Approach

Consider a video V ∈ V , represented as a sequence
of frames such that V = {vt} with t = 1, . . . , l.
Each video in V is annotated with a natural lan-
guage passage S ∈ S , where S is a sequence of
words S = {sj} with j = 1, . . . ,m, which de-
scribes what is happening at a certain period of
time in the video. This interval is formally defined
by ts and te, the starting and ending points of the
annotations in time, respectively. The goal of the
temporal video grounding task is to predict ts and
te given the video V and the text query S.
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3.1 Temporal Video Grounding Models

For this study, we focused on proposal-free mod-
els, which generally offer better performance, and
we were careful only to consider works that used
word embeddings. Furthermore, we only consid-
ered models which have their implementation avail-
able. Concretely, we selected ExCL, TMLGA, and
DORi. ExCL was the first proposal-free model for
TVG; TMLGA improved on it by handling video
annotation uncertainty, and later DORi incorpo-
rated spatial features.

As shown in Figure 2 (a), these models can be
summarized into three main parts: a sentence en-
coder, a video encoder, and a localization module,
which combines information from both modalities
and predicts the start and end points of the seg-
ment in the video described by the query. While
these models heavily explore information from the
video input, they make relatively simple use of
the sentence query, mainly processing pre-trained
word embeddings, such as GloVe (Pennington et al.,
2014), through a recurrent neural network.

To better understand the role of improved lan-
guage representations on the performance in the
TVG task, we study the effects of PLMs by in-
corporating them as-is into a selection of existing
models from the literature, therefore effectively
isolating their impact on the performance across
a range of settings. We tested several ways to in-
corporate PLMs, such as entirely replacing the text
encoder block with the PLM, where most failed to
deliver any performance improvement, and, there-
fore, decided to replace only the word embeddings,
as shown in Figure 2 (b).

3.2 Adapters

A concern when integrating large PLMs with exist-
ing TVG models is the alarming number of param-
eters added. While some TVG models are pretty
small, recent models are exponentially increasing
in size. For example, DORi has about 10M param-
eters, more than double than TMLGA (about 4M).
Combining these models even with reasonably-
sized PLMs, such as BERT (Devlin et al., 2019),
increases the number of trainable parameters to
over 120M. Also, the more sophisticated visual fea-
tures are used, the larger the training data becomes.
For example, the visual features for TMLGA are
about 2.1MB per video in the ActivityNet dataset,
while for DORi, they are about 82MB.

To alleviate this issue, we also investigate sev-

eral parameter-efficient training alternatives based
on adapters to incorporate these PLMs into the ex-
isting model pipelines with reduced computational
cost, as shown in Figure 2 (c).

For our experiments, we adopt a large selec-
tion of adapters following previous work (Sung
et al., 2022), including bottleneck adapters, such
as the ones proposed by Houlsby et al. (2019)
(HOULSBY), Pfeiffer et al. (2020b) (PFEIFFER),
and He et al. (2022a) (PARALLEL); Invertible
adapters (INVERSE) (Pfeiffer et al., 2020b), Prefix
Tuning (PREFIX) (Li and Liang, 2021), Compacter
(COMPACTER) (Karimi Mahabadi et al., 2021a),
and LoRA (LORA) (Hu et al., 2022).

We note that some of the adapters we consider
in our study were designed for specific purposes in
NLP. Our decision to still include such adapters in
our experimental framework is motivated by their
relative success in other vision-and-language tasks
(He et al., 2022c; Kim et al., 2021; Sung et al.,
2022). Moreover, as our approach differs from
existing work in this context, we were interested in
offering empirical evidence to further understand
these adapters’ role in multi-modal scenarios.

4 Experimental Framework

4.1 Datasets

Charades-STA: Built upon the Charades dataset
(Sigurdsson et al., 2016), it provides time-based an-
notations using a pre-defined set of activity classes
and general video descriptions. We use the pre-
defined train and test sets containing 12,408 and
3,720 moment-query pairs, respectively. Videos
are 31s long on average and have a maximum du-
ration of 194s, with 2.4 moments on average, each
being 8.2s long on average and described using 7.2
words on average.

ActivityNet Captions: Introduced by Krishna
et al. (2017) and initially constructed for dense
video captioning, it consists of 20k YouTube videos
with an average length of 120s and a maximum du-
ration of 755s. The videos contain 3.65 temporally
localized time intervals and sentence descriptions
on average, where descriptions have on average
13.48 words. Following previous works, we report
the performance on the combined validation sets.

YouCookII: It consists of 2,000 long untrimmed
videos from 89 cooking recipes obtained from
YouTube by Zhou et al. (2018b,a). Each step for
cooking these dishes was annotated with tempo-
ral boundaries and aligned with the corresponding
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section of the recipe. The average video length is
316s and a maximum duration of 755s. Regarding
relevant moment segments, each video has 7.73 mo-
ments on average, with each segment being 19.63s
long and described using 8.7 words on average.

4.2 Implementation Details

Temporal Video Grounding Models: Our imple-
mentation for TMLGA and DORi is built on top of
the original code released by the authors, while we
use our own implementation of ExCL. To represent
the video input, we follow the original implementa-
tions as close as possible. For TMLGA and DORi,
we use the I3D features released with the respective
papers. For ExCL, we use the features released by
the DORi paper, extracted at 25 fps instead of the
original 5 fps2. Specifically for DORi, we also use
the spatial features released with the paper.

Pre-trained Language Models: We com-
bine our selected models with pre-trained BERT,
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2022b), with the implementations provided
by the HuggingFace library (Wolf et al., 2020). Fur-
thermore, we used “bert-base-uncased", “roberta-
base", and “deberta-base" pre-trained models.

Adapters: We use the implementation provided
by the adapter-transformers library (Pfeiffer et al.,
2020a), with default configurations. In particu-
lar, for the Invertible adapters (INVERSE), we only
tested the “PfeifferInvConfig", the original configu-
ration proposed in the paper (Pfeiffer et al., 2020b).

Training: Our experiments were performed on a
40-GB NVIDIA A100 GPU. Models were trained
using ADAM (Kingma and Ba, 2020) with a step-
based learning rate scheduler. When fine-tuning the
PLMs, we used a scheduler with linear warmup for
the PLM parameters, while keeping the learning
rate fixed for the rest of the parameters. For more
details on hyper-parameters, we refer the readers
to the Appendices A and B. The evaluation follows
previous work, based on two widely used metrics
(Gao et al., 2017), namely the Recall at various
thresholds of the temporal Intersection over Union
(tIoU or R@α) measuring the percentage of predic-
tions that have tIoU with ground truth larger than
certain α, and the mean averaged tIoU (mIoU). We
use α threshold values of 0.3, 0.5 and 0.7.

Query: He stands up and yells at the man tattooing.

GT

Adapter

Finetuning

Frozen

TMLGA

Query: Then, people drive snow bikes on the mountains 
covered with snow.

GT

Adapter

Finetuning

Frozen

TMLGA

Figure 3: Examples of success (top) and failure (bottom)
of TMLGA with BERT on ActivityNet.

5 Results and Discussion

RQ1: Effect of adding BERT to existing mod-
els To investigate this matter, we replace the non-
contextualized word embeddings in our selected
TVG models with BERT, which can be regarded
as the current most widely-studied PLM (Rogers
et al., 2020; Yang et al., 2020; Chen et al., 2020; Li
et al., 2020). We compare the original model per-
formance with the performance when fine-tuning
the PLM along with the TVG model training (fine-
tuning), and when freezing the PLM (`), training
only the parameters of the TVG model. To ensure
our implementations were correct, we also tested
the original models (ours), achieving performance
close to the reported in their respective papers.

Table 1 shows the results of this combination.
When introducing BERT to the models, we can see
that full model fine-tuning leads to an average im-
provement of 1.38% and 1.24% in mIoU for ExCL
and TMLGA, respectively. This result shows that
the chosen TVG models can benefit from using
PLMs. However, BERT adds over 100M parame-
ters to be tuned. Such an increase is troublesome
as we ran out of memory when trying to fine-tune

2In practice, this difference in fps is not an issue, as
Rodriguez-Opazo et al. (2021) has shown that extraction at
25fps leads to better performance
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Method Params. Charades-STA ActivityNet YouCookII

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

ExCL† (orig.) 6.9M 65.10 44.10 22.60 - - - - - 44.20 28.00 14.60 -
ExCL (ours) 6.9M 62.28 39.74 22.53 42.28 55.49 39.33 23.04 40.32 26.58 15.72 8.19 18.99
+ BERT` 6.9M 62.93 38.44 22.23 42.38 57.21 39.66 23.79 41.45 26.63 16.15 8.51 18.87
+ Adapter 7.2M-16.8M 61.59 37.15 21.51 41.06 59.35 41.27 24.86 42.83 28.47 17.75 9.02 19.89
+ Fine-tuning 116M 61.75 38.36 23.44 42.00 59.10 41.83 25.42 42.36 28.18 16.84 9.02 20.08

TMLGA (orig.) 4.7M 67.53 52.02 33.74 48.22 51.28 33.04 19.26 37.78 33.48 20.65 10.94 23.07
TMLGA (ours) 4.7M 69.49 49.97 32.72 48.29 50.84 31.13 17.86 36.90 34.42 21.99 10.94 23.63
+ BERT` 4.7M 70.08 49.92 31.42 48.34 52.10 32.57 18.64 37.63 34.77 23.05 12.49 24.42
+ Adapter 5.6M - 14.6M 71.40 52.53 33.82 49.57 53.98 35.20 20.43 38.88 36.08 22.77 12.49 25.19
+ Fine-tuning 114M 71.02 52.53 33.52 49.80 53.59 34.05 19.51 37.92 35.34 21.85 11.63 24.82

DORi (orig.) 10.4M 72.72 59.65 40.56 53.28 57.89 41.49 26.41 42.78 43.36 30.47 18.24 30.46
DORi (ours.) 10.4M 72.26 57.18 40.62 53.01 57.38 40.00 24.84 41.97 43.33 29.15 17.61 30.17
+ BERT` 10.4M 71.83 57.15 39.22 52.49 58.86 40.86 25.50 42.97 42.27 29.90 18.38 29.92
+ Adapter 11.6M - 20.3M 72.50 58.63 40.97 53.29 60.81 43.49 27.86 44.55 46.79 32.56 19.87 32.48

Table 1: Overview of our results combining BERT and adapters with our selected prior work. Underlined results
indicate the best performance within the method and dataset combination, while results in bold indicate the best
performance within the dataset.

BERT along with DORi.
One alternative to save on this computational

cost is to freeze the PLM when training the TVG
model. We can see that this strategy leads to an
overall improvement in mIoU of 0.40%, 0.52%,
and 0.08% for ExCL, TMLGA, and DORi, respec-
tively, when compared to the original model perfor-
mance. This improvement is substantially smaller
than when fine-tuning the PLM, with cases where
using the frozen BERT leads to worse results than
when using GloVe, such as with ExCL and DORi
on YouCookII. Furthermore, we can see that the
models benefited the least from the frozen PLM
when tested on the Charades-STA dataset. This re-
sult could be due to queries in Charades-STA being
less complex, so the word embeddings could al-
ready be enough to perform well. Nevertheless, the
overall results indicate that fine-tuning is essential
to getting the full potential of the PLM in our task.

RQ2: Adapters as an alternative to PLM fine-
tuning To the best of our knowledge, there is no
evidence to suggest whether adapters could bring
benefits to the TVG task similar to what has been
shown in other NLP tasks. Therefore, we seek to
investigate if using adapters can be an effective
alternative to full fine-tuning of the PLM models
in TVG. We tested the adapters mentioned in Sec-
tion 3.2 for all three TVG models with BERT.

Our best results are shown in Table 1 (Adapter).
For ExCL, the best adapters were PFEIFFER, PFEIF-
FER, and LORA, for Charades-STA, ActivityNet

and YouCookII, respectively; For TMLGA, the
best were PREFIX, PFEIFFER, and HOULSBY; and
for DORi, INVERSE, PREFIX, and HOULSBY. Fur-
ther results can be found in Appendix A. We also
provide the visualization of success and failure ex-
amples in Figure 3 for the combination of TMLGA
with BERT on ActivityNet, and refer the readers to
the Appendix C for more visualizations.

Our results show that using adapters led to an
overall improvement in mIoU of 0.70%, 1.71% and
1.72% for ExCL, TMLGA, and DORi, respectively,
over the models’ original performance. While the
improvement from the adapters for ExCL is smaller
than when doing full fine-tuning, adapters led to
better performance with TMLGA. More impor-
tantly, adapters allowed a significant performance
improvement for DORi, as training with them re-
quires updating only 16% of the parameters re-
quired for full fine-tuning. Furthermore, we can
see that in some cases, using adapters leads to bet-
ter performance than full fine-tuning, such as with
ExCL and TMLGA on ActivityNet Captions.

In summary, these results indicate that despite
not being tailored for the task of TVG, the adapters
covered in this work can be an efficient alternative
to the full fine-tuning of PLM models.

RQ3: Choice of adapter for TVG We were then
naturally interested in studying whether there is a
specific type of adapter that works best to solve
our task. Therefore, we ranked the performance
of each adapter for each dataset and model, focus-
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Figure 4: Best and worst performing adapters with BERT. The y-axis represents the performance in terms of mIoU.
The circles, triangles and squares indicate the performance with frozen BERT, while the horizontal ticks show the
performance of the models with the corresponding adapter. The * indicates cases where the models could not learn
properly with the adapter.

ing on cases that deliver the best and the worst
performance.

The results of our analysis are summarized in
Figure 4. We can see that no single adapter can
consistently offer the best performance. However,
it is possible to see that the bottleneck adapters,
such as HOULSBY, PFEIFFER, and INVERSE, can
deliver an overall better performance.

When controlling our results for each dataset, it
is possible to see that the PREFIX and the INVERSE

adapters worked well on Charades-STA, while the
PFEIFFER and HOULSBY adapters worked best
for ActivityNet and YouCookII, respectively. We
surmise this indicates that the adapter choice is
likely more related to the training data than to the
choice of the model itself. Controlling by model
also shows interesting, distinctive patterns. For ex-
ample, while the PREFIX adapter worked well for
TMLGA on Charades-STA and DORi on Activi-
tyNet, it performed poorly with ExCL on Activi-
tyNet and YouCookII.

Another general pattern we could identify is that
both the COMPACTER and the PARALLEL adapters
did not work well overall, with the latter strug-
gling to deliver good performance in all cases. We
think the number of additional parameters may
play a role in this matter, as COMPACTER is the
adapter with the smallest number of added parame-
ters (0.06M) and it might be that too small to learn
useful information for TVG.

Furthermore, the hyper-parameter search with
the PREFIX and the PARALLEL adapters was sub-
stantially more challenging. In particular, with the
PARALLEL adapter, we faced gradient explosions
in many instances, as with DORi on Charades-STA,
or the model converged to poor performance, as
with all three models on YouCookII.

Model Charades-STA ActivityNet

R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

TMLGA (ours) 49.97 32.72 48.29 31.13 17.86 36.90

+ BERT` 49.92 31.42 48.34 32.57 18.64 37.63
+ PFEIFFER 51.59 33.41 49.50 35.20 20.43 38.88
+ INVERSE 52.77 34.49 49.33 33.76 19.93 37.93
+ Fine-tuning 52.53 33.52 49.80 34.05 19.51 37.92

+ RoBERTa` 51.34 33.49 48.91 33.80 19.62 37.89
+ PFEIFFER 53.84 34.78 49.91 35.27 20.26 38.77
+ INVERSE 52.69 33.98 49.50 34.85 20.46 39.35
+ Fine-tuning 53.15 33.33 49.77 33.21 19.69 38.47

+ DeBERTa` 52.53 33.49 49.32 33.94 20.22 38.72
+ PFEIFFER 53.49 34.65 49.78 34.70 20.49 39.30
+ INVERSE 52.58 33.95 49.66 35.45 20.66 39.71
+ Fine-tuning 53.44 33.44 49.63 33.78 20.12 38.92

Table 2: Detailed results combining the TMLGA model
with our three PLMs and adapters, tested on Charades-
STA and ActivityNet Captions. Underlined results indi-
cate the best performance within the model and dataset
combination, while the results in bold indicate the best
performance within the dataset.

Finally, we believe another factor is the loca-
tion where each adapter is inserted in the PLM
architecture. All of the methods tested adapt to
specific parts of the transformer layer, except for
the PARALLEL adapter, which adapts the whole
transformer layer. Its consistent poor performance
might indicate that adapting specific parts of the
transformer layer is more beneficial for our task.

RQ4: Impact of different PLMs After the re-
lease of BERT, several pre-trained language en-
coder variations have been proposed. When tested
on extensive NLP benchmarks, some of these mod-
els have proven to be able to consistently improve
performance. In this context, we are interested in
studying if such performance improvements also
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translate to better performance in our task.
Thus, we study the performance of BERT,

RoBERTa, and DeBERTa on two datasets,
Charades-STA and ActivityNet, using TMLGA
as a pivot. Our choice of TVG model is guided
by our experiments with BERT, where TMLGA
offered a good compromise in terms of perfor-
mance improvements versus computational cost.
Furthermore, our dataset selection is motivated
by Charades-STA and ActivityNet having simi-
lar video contents but with different complexity
queries, i.e., queries in Charades-STA are much
simpler than in ActivityNet. We can verify this
difference by observing the vocabulary size (748
vs. 9,744 tokens) and length of the queries (7.2 vs.
13.48 tokens per query).

The results are summarized in Table 2. For better
readability, we only included two α bands. Further
results can be seen in Appendix B. We can first
see that for all three PLMs, using adapters led to
an overall performance improvement compared to
the frozen PLM. Moreover, we noticed that PFEIF-
FER and the INVERSE adapters seem to provide the
best results in both datasets and all PLMs.

Moreover, while DeBERTa performed the best
for ActivityNet, as expected from its performance
in NLP downstream tasks, its best performance was
similar to BERT for Charades-STA. We believe this
result could be due to the simplicity of the queries
in Charades-STA, which might not require all the
additional information DeBERTa encodes. In ad-
dition, these results were obtained using the first
version of DeBERTa, which uses the same type
of tokenizer as BERT. We also tested the newer
version of DeBERTa, which uses a sentencepiece-
based tokenizer and incorporates other model im-
provements. However, this model performed much
worse than the first version on our task showing that
using sophisticated tokenizers does not necessarily
improve results with simple sentence queries.

On the other hand, ActivityNet has longer and
more complex queries and our results indicate that
in such cases, our task might benefit from using
better PLMs. Nevertheless, the best results were
achieved when using adapters.

RQ5: Comparison against state-of-the-art
We finally compare our best-performing models
against a selection of approaches from previous
work. We achieved our best performance for the
Charades-STA dataset by using DORi with De-
BERTa+PFEIFFER; and for the ActivityNet dataset,

Model Charades-STA ActivityNet

R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

Proposal-free

DORi (ours) 57.18 40.62 53.01 40.00 24.84 41.97
+ DeBERTa` 58.17 40.94 52.73 41.65 25.82 43.64
+ Adapter 58.39 41.61 53.34 45.63 28.74 45.70

VSLNet 54.19 35.22 50.02 43.22 26.16 43.19
CPNet 60.27 38.74 52.00 40.56 21.63 40.65
CPN 59.77 36.67 53.14 45.10 28.10 45.70
BCPN 61.77 43.91 - 44.53 30.11 -

Proposal-based

MS-2D-TAN 60.08 37.39 - 45.50 28.28 -
MSAT - - - 48.02 31.78 -
CPL 49.24 22.39 - 55.73 31.37 -
MNM 47.31 27.28 - 48.59 29.26 -

Table 3: Comparison between the best performing TVG
model with DeBERTa and current state-of-the-art meth-
ods in TVG. Results for all compared methods were
taken from their respective papers. The best results for
each combination of method type (i.e., proposal-free or
proposal-based) and dataset are indicated in bold, while
the second-best results are underlined.

DORi with DeBERTa+INVERSE. Since the mod-
els used in this study are proposal-free, we mainly
compare to proposal-free methods, i.e., VSLNet,
CPN, CPNet and BCPN. Nevertheless, we are also
interested in observing how our modifications per-
form against proposal-based methods, such as MS-
2D-TAN (Zhang et al., 2021c), MSAT, CPL, and
MNM. We note that out of the proposal-free meth-
ods, only BCPN uses a PLM (BERT). As for the
proposal-based methods, only MS-2D-TAN does
not use any form of Transformers in its architecture,
while MNM is the only one to use a fine-tuned PLM
(DistilBERT). Finally, while MSAT and CPL use
Transformers in their architecture to encode visual
and textual information, they do not use PLMs.

The performance summary is shown in Table 3.
For this analysis, we only consider two α bands for
the thresholds as most proposal-based models do
not report results at the α 0.3.

First, we can see that the best-performing meth-
ods are proposal-free, with BCPN achieving the
best performance in most of the considered metrics.
Furthermore, looking at the mean tIoU, we can see
that DORi already performs well against the other
methods. Replacing GloVe embeddings with De-
BERTa and using adapters for training provides a
significant performance boost, delivering results
equivalent to state-of-the-art models.

Moreover, it is interesting to see that while
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proposal-based methods such as CPL and MNM
performed well against all methods on ActivityNet,
they could not outperform methods without Trans-
formers on the Charades-STA dataset. In contrast,
DORi with DeBERTa and adapters achieved a more
balanced performance among both datasets, show-
ing a clear advantage against these methods on the
Charades-STA dataset.

Therefore, our results show how TVG models
can greatly benefit from adequately incorporating
PLMs and making use of parameter-efficient tech-
niques, performing well on datasets with different
complexity levels in terms of queries, and achiev-
ing results comparable to state-of-the-art methods.

6 Conclusions

This paper studied the effects of PLMs in the
TVG task and assessed the applicability of NLP
parameter-efficient training alternatives based on
adapters. We coupled BERT, RoBERTa, and De-
BERTa, with a selection of previous TVG works,
i.e., ExCL, TMLGA, and DORi, and tested differ-
ent adapters to reduce the impact of the additional
parameters. Our results showed that, by only chang-
ing the query representation using PLMs, TVG
models can greatly benefit from such integration,
especially when PLMs are fine-tuned, highlighting
the importance of the query representation in this
task. Moreover, we verified that adapters are an
effective alternative to full fine-tuning, even though
they were not tailored for our task. They saved
on computational cost, allowing improvements for
larger TVG models, such as DORi, and also deliv-
ered results comparable to SOTA models. Finally,
we observed that while PARALLEL adapters strug-
gled to learn in this task, bottleneck adapters such
as HOULSBY and PFEIFFER performed across all
tested TVG models and datasets.

Limitations

In this work, we studied the effects of large pre-
trained models in the temporal video ground-
ing task and investigated the applicability of
NLP adapters for a parameter-efficient integration.
While we believe our results show the efficacy of in-
corporating better language models in TVG models,
it is important to note that we primarily focused
on proposal-free TVG models and thus have no
evidence to suggest such improvement would be
observed in proposal-based models.

Furthermore, as our main goal was to investi-
gate how the chosen models’ performance varied
when only changing the text encoding models, we
compared state-of-the-art models using different
visual features. While it would be interesting and
insightful to check their performance when using
the same features as our chosen models (i.e., I3D),
such experiments are out of the scope of this study.

Moreover, although language adapters can be
stacked before a task adapter for training on the
task in a new language, we have only experimented
with queries in English. It would be interesting to
investigate if language adapters could be applied to
TVG in different languages.

Finally, as for hardware requirements, our exper-
iments were performed on a single 40-GB NVIDIA
A100 GPU from a large cluster, and we spent about
400 USD on our experimental setup. While ex-
periments with ExCL and TMLGA can be run on
smaller GPUs with no significant increase in train-
ing time (i.e., we tested with a 16-GB NVIDIA
V100 GPU), for DORi, due to the size of the in-
put features and number of training parameters, we
recommend using a GPU with at least 32GB of
memory.
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A Detailed Results with BERT

We report the detailed results with BERT for ExCL,
TMLGA, and DORi in Tables 4, 5 and 6, re-
spectively. We also report the average runtime for
training and inference of each TVG model when
combined with BERT and the selected adapters in
Table 7. However, we note that these values also in-
clude the loading time of the samples, which varied
accordind to the usage of the cluster during each
experiment.

A.1 Hyper-parameters
To reproduce the results of the original models, we
started by using the hyper-parameters reported in
the respective papers, achieving close to reported
performance for ExCL and TMLGA. Reproducing
DORi results was slightly more challenging, where
we had to experiment with different weight decays,
batch sizes and steps for the learning scheduler.

When adding the PLMs and the adapters, we
first started with the same set of hyper-parameters
of the original model. In general, it was neces-
sary to slightly change them for the model to prop-
erly learn. The hyper-parameters used to train
ExCL are specified in Table 8 , Table 9, and Ta-
ble 10 for Charades-STA, ActivityNet Captions and
YouCookII datasets, respectively; to train TMLGA,
in Table 11, Table 12, and Table 13, respectively;
and to train DORi, in Table 14, Table 15, and Ta-
ble 16, respectively.

A.2 Notes on training
Specifically for the fine-tuning of BERT with
TMLGA on the Charades-STA dataset, we report
the results obtained by applying the linear warm-
up to all parameters, including non-BERT ones,
as this strategy led to the best results. Moreover,
when training DORi with BERT and the PARALLEL

adapter on the Charades-STA dataset, we tested dif-
ferent weight decays, but the gradient exploded
in all cases. The reported results were obtained
with a weight decay of 1e − 5, the best result be-
fore the gradient exploded. Finally, we could not
find a proper hyper-parameter combination so that
the models could learn on the YouCookII with the
PARALLEL adapter.

B Detailed Results with RoBERTa and
DeBERTa

Detailed results with RoBERTa and DeBERTa with
TMLGA on the Charades-STA and ActivityNet

Captions datasets can be found on table 17. This ta-
bles is an expansion of the results shown in table 2
in the main text. We did not include results with
PREFIX adapters on DeBERTa due to an implemen-
tation error on the adapter-transformers library3.
Furthermore, we also note that in our experiments
with the PARALLEL adapter, all the models satu-
rated and reached the same performance on Activi-
tyNet, without properly learning.

B.1 Hyper-parameters
We report the hyper-parameters used to train
TMLGA with RoBERTa on Charades-STA and Ac-
tivityNet Captions on Table 18 and Table 19, re-
spectively. We also report the hyper-parameters
used to train TMLGA with DeBERTa on both
datasets on Table 20 and Table 21.

B.2 Hyper-parameters for best result
Our best results on the Charades-STA dataset was
achieved by training DORi with DeBerta, using
the PFEIFFER adapter, while the best results on
the ActivityNet Captions was achieved by training
DORi with DeBERTa, using the INVERSE adapter.
The hyper-parameters used to achieve these results
can be found in Table 22.

C Qualitative Results

Finally, we provide a few examples of failure and
success of each analyzed TVG model along with
BERT. Figure 5 shows examples for DORi and
Figure 6 shows examples for ExCL.

3Version 3.1.0a0 of the adapter-transformers library.
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Query: she holds up the product and grabs the horses tail.

GT

Adapter

Frozen

DORi

Query: The room turns dark and the two put the pumpkin over a candle 
and the pumpkin lights up with a carved pumpkin face with a hat.

GT

Adapter

Frozen

DORi

Figure 5: Examples showing the effects of BERT and
adapters with DORi on the ActivityNet. The top image
shows an example of a significant performance improve-
ment only when using adapters. On the other hand, the
bottom image shows an example where the frozen PLM
was sufficient to correctly identify the video segment
represented by the query.

Query: We see the man talk and the screen fades to black.

GT

Adapter

Finetuning

Frozen

ExCL

Query: A lemonade drink is displayed on a counter.

GT

Adapter

Finetuning

Frozen

ExCL

Figure 6: Examples showing the effects of BERT and
adapters with ExCL on the ActivityNet. Both im-
ages show the significant impact of using PLMs on
this model’s performance, drastically improving results
when incorporating frozen BERT. However, while in
the top image, the best results were achieved by training
using adapters, in the bottom image, we can see that the
frozen PLM was sufficient to solve the respective query.
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Method Params. Charades-STA ActivityNet YouCookII

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

ExCL (ours) 6.9M 62.28 39.74 22.53 42.28 55.49 39.33 23.04 40.32 26.58 15.72 8.19 18.99
+ BERT` 6.9M 62.93 38.44 22.23 42.38 57.21 39.66 23.79 41.45 26.63 16.15 8.51 18.87
+ HOULSBY 8.7M 60.08 36.26 20.83 40.22 57.79 39.77 23.80 41.95 25.77 15.12 8.36 18.52
+ PFEIFFER 7.8M 61.59 37.15 21.51 41.06 59.35 41.27 24.86 42.83 27.18 16.15 8.88 19.46
+ INVERSE 8.1M 60.81 37.69 21.10 40.85 57.58 40.34 24.79 42.06 26.72 16.44 8.79 19.43
+ PREFIX 16.8M 60.54 35.24 20.22 40.98 57.49 39.55 24.10 41.77 4.93 1.83 0.66 0.06
+ COMPACTER 7.0M 59.19 35.38 20.97 39.99 57.82 39.31 23.86 41.89 27.81 16.67 9.08 19.57
+ LORA 7.2M 60.94 36.32 21.48 40.94 57.94 40.64 25.05 42.49 28.47 17.75 9.02 19.89
+ PARALLEL 14.0M 48.52 16.61 9.44 33.77 58.60 40.99 24.73 42.26 6.41 2.58 1.12 0.06
+ Fine-tuning 116M 61.75 38.36 23.44 42.00 59.10 41.83 25.42 42.36 28.18 16.84 9.02 20.08

Table 4: Detailed results for ExCL using BERT. Underlined results indicate the best adapter performance, while
results in bold indicate the best performance within the dataset.

Method Params. Charades-STA ActivityNet YouCookII

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

TMLGA (ours) 4.7M 69.49 49.97 32.72 48.29 50.84 31.13 17.86 36.90 34.42 21.99 10.94 23.63
+ BERT` 4.7M 70.08 49.92 31.42 48.34 52.10 32.57 18.64 37.63 34.77 23.05 12.49 24.42
+ HOULSBY 8.7M 70.97 51.69 33.84 49.31 53.98 34.13 19.48 38.57 36.08 22.77 12.49 25.19
+ PFEIFFER 7.8M 71.64 51.59 33.41 49.50 53.98 35.20 20.43 38.88 34.31 21.76 11.31 23.54
+ INVERSE 8.1M 71.02 52.77 34.49 49.33 52.47 33.76 19.93 37.93 35.40 22.05 11.14 24.44
+ PREFIX 16.8M 71.40 52.53 33.82 49.57 53.61 34.03 19.89 38.34 18.36 10.17 4.64 13.62
+ COMPACTER 7.0M 70.27 49.73 31.37 48.31 52.15 33.85 19.62 37.78 35.34 22.25 11.05 24.13
+ LORA 7.2M 70.94 50.24 32.15 48.81 51.90 32.81 18.77 37.37 35.88 22.65 11.91 24.51
+ PARALLEL 14.0M 70.48 51.64 33.66 49.33 43.50 23.20 11.59 32.29 5.98 2.36 1.00 0.06
+ Fine-tuning 114M 71.02 52.53 33.52 49.80 53.59 34.05 19.51 37.92 35.34 21.85 11.63 24.82

Table 5: Detailed results for TMLGA using BERT. Underlined results indicate the best adapter performance, while
results in bold indicate the best performance within the dataset.

Method Params. Charades-STA ActivityNet YouCookII

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

DORi (ours.) 10.4M 72.26 57.18 40.62 53.01 57.38 40.00 24.84 41.97 43.33 29.15 17.61 30.17
+ BERT` 10.4M 71.83 57.15 39.22 52.49 58.86 40.86 25.50 42.97 42.27 29.90 18.38 29.92
+ HOULSBY 8.7M 72.72 57.58 40.59 53.16 60.71 43.18 26.97 43.93 46.79 32.56 19.87 32.48
+ PFEIFFER 7.8M 72.28 58.49 40.89 53.13 60.67 43.53 27.33 44.30 44.96 31.90 19.39 31.48
+ INVERSE 8.1M 72.50 58.63 40.97 53.29 61.01 43.90 27.68 44.32 45.50 30.76 19.13 31.48
+ PREFIX 16.8M 71.99 57.69 40.67 52.94 60.81 43.49 27.86 44.55 45.59 31.90 19.44 31.53
+ COMPACTER 7.0M 72.63 57.98 40.83 52.93 60.73 43.03 27.40 44.31 43.81 30.13 18.36 30.58
+ LORA 7.2M 70.73 57.31 39.76 51.89 60.90 43.34 27.46 44.42 45.42 31.44 19.47 31.56
+ PARALLEL 14.0M 42.18 9.65 5.08 30.15 52.94 35.23 21.92 39.00 5.01 1.75 0.66 0.06
+ Fine-tuning 120M OOM OOM OOM

Table 6: Detailed results for DORi using BERT. Underlined results indicate the best adapter performance, while
results in bold indicate the best performance within the dataset.
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Method Charades-STA ActivityNet YouCookII

Train Inference Train Inference Train Inference

ExCL (ours) 33.40 ± 0.88 10.70 ± 0.97 814.00 ± 79.44 425.00 ± 551.66 170.37 ± 0.92 63.85 ± 61.79
+ BERT` 23.91 ± 1.97 7.83 ± 0.38 829.40 ± 39.20 151.80 ± 7.39 169.53 ± 1.01 39.44 ± 0.62
+ Adapter 32.18 ± 1.32 10.00 ± 0.47 833.00 ± 25.31 102.85 ± 11.52 94.33 ± 0.88 21.81 ± 0.60
+ Fine-tuning 45.40 ± 2.67 10.10 ± 0.78 1883.00 ± 72.12 180.00 ± 1.41 306.18 ± 66.19 36.27 ± 1.73

TMLGA (ours) 25.04 ± 0.74 15.44 ± 0.82 884.62 ± 10.56 123.75 ± 7.36 140.90 ± 2.02 43.20 ± 1.470
+ BERT` 25.50 ± 0.85 15.93 ± 0.73 454.18 ± 2.40 82.00 ± 1.00 163.27 ± 9.66 50.72 ± 47.19
+ Adapter 29.65 ± 0.77 17.95 ± 0.78 658.19 ± 24.41 136.44 ± 4.24 166.58 ± 10.26 49.33 ± 47.13
+ Fine-tuning 34.89 ± 0.93 16.55 ± 0.72 768.00 ± 219.64 137.92 ± 28.16 172.46 ± 1.51 37.61 ± 0.87

DORi (ours.) 631.24 ± 1.13 138.20 ± 0.75 6704.00 ± 1.41 1040.00 ± 4.24 2101.00 ± 81.99 845.88 ± 1054.53
+ BERT` 607.83 ± 1.52 134.67 ± 0.72 6599.00 ± 21.66 1357.33 ± 23.46 2221.50 ± 72.83 667.50 ± 1593.11
+ Adapter 633.14 ± 1.34 130.14 ± 0.69 7415.00 ± 123.30 1405.75 ± 34.35 2279.50 ± 15.93 403.25 ± 29.06

Table 7: Average runtime in seconds for training and evaluating each selected TVG model when combining with
BERT and adapters.
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Hyper-parameter Method Value

Batch size
Finetuning 64
Others 32

Base LR
Rep., Frozen, Finetuning 1E-03
Others 1E-04

Step
Rep. 6
Frozen 5
Others -

BERT LR
Finetuning

1E-04
Warm-up Rate 0.1
# Epochs 15

Gamma
All

1E-02
Weight Decay 1E-05

Table 8: Hyper-parameters used to train ExCL with
BERT on the Charades-STA dataset.

Hyper-parameter Method Value

Batch size
Reproduction 32
Others 64

Base LR
PFEIFFER, PARALLEL,
COMPACTER, PREFIX

1E-04

Others 1E-03

Step
Finetuning -
Others 5

Weight Decay
PFEIFFER, PARALLEL,
COMPACTER, PREFIX

1E-04

Others 1E-06

BERT LR
Finetuning

1E-04
Warm-up Rate 0.2
# Epochs 15

Gamma All 1E-02

Table 9: Hyper-parameters used to train ExCL with
BERT on the ActivityNet dataset.

Hyper-parameter Method Value

Batch size
All

32
Base LR 1E-03
Gamma 1E-02

Step
LoRa 8
Others -

Weight Decay
Finetunning, Frozen 1E-05
Others 1E-04

BERT LR
Finetuning

1E-04
Warm-up Rate 0.2
# Epochs 15

Table 10: Hyper-parameters used to train ExCL with
BERT on the YouCookII dataset.

Hyper-parameter Method Value

Batch size

All

256
Base LR 1E-04
Weight Decay 1E-05
Gamma 1E-02

Step
Finetuning -
Others 6

BERT LR
Finetuning

1E-04
Warm-up Rate 0.1
# Epochs 20

Table 11: Hyper-parameters used to train TMLGA with
BERT on the Charades-STA dataset.

Hyper-parameter Method Value

Batch size

All

64
Base LR 1E-04
Weight Decay 1E-05
Gamma 1E-02

Step
Finetuning -
Others 5

BERT LR
Finetuning

1E-04
Warm-up Rate 0.1
# Epochs 15

Table 12: Hyper-parameters used to train TMLGA with
BERT on the ActivityNet dataset.

Hyper-parameter Method Value

Batch size

All

64
Base LR 1E-03
Step 6
Gamma 1E-02

Weight Decay
Prefix 1E-04
Others 1E-05

BERT LR
Finetuning

1E-04
Warm-up Rate 0.2
# Epochs 15

Table 13: Hyper-parameters used to train TMLGA with
BERT on the YouCookII dataset.

Hyper-parameter Method Value

Batch size
All

5
Base LR 1E-04
Gamma 1E-02

Weight Decay
Frozen 1E-04
Others 1E-05

Step

PREFIX 3
HOULSBY, PFEIFFER,

4
LORA

INVERSE, COMPACTER 5
Frozen 6

Table 14: Hyper-parameters used to train DORi with
BERT on the Charades-STA dataset.
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Hyper-parameter Method Value

Batch Size
Rep., Frozen 8
Others 4

Base LR
All

1E-04
Gamma 1E-02

Weight Decay
Rep., Frozen 1E-04
Others 1E-05

Step
Rep. 3
All adapters 4
Frozen 6

Table 15: Hyper-parameters used to train DORi with
BERT on the ActivityNet Captions dataset.

Hyper-parameter Method Value

Batch Size
Rep. 2
Others 4

Base LR
All

1E-04
Step 6

Weight Decay
Rep. 1E-05
Others 1E-04

Gamma
Rep. 1E-02
Others 1E-01

Table 16: Hyper-parameters used to train DORi with
BERT on the YouCookII dataset.
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Model Charades-STA ActivityNet

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

TMLGA (orig.) 67.53 52.02 33.74 48.22 51.28 33.04 19.26 37.78
TMLGA (ours) 69.49 49.97 32.72 48.29 50.84 31.13 17.86 36.90

+ BERT` 70.08 49.92 31.42 48.34 52.10 32.57 18.64 37.63
+ PFEIFFER 71.64 51.59 33.41 49.50 53.98 35.20 20.43 38.88
+ HOULSBY 70.97 51.69 33.84 49.31 53.98 34.13 19.48 38.57
+ PREFIX 71.40 52.53 33.82 49.57 53.61 34.03 19.89 38.34
+ INVERSE 71.02 52.77 34.49 49.33 52.47 33.76 19.93 37.93
+ COMPACTER 70.27 49.73 31.37 48.31 52.15 33.85 19.62 37.78
+ LORA 70.94 50.24 32.15 48.81 51.90 32.81 18.77 37.37
+ PARALLEL 70.48 51.64 33.66 49.33 43.50 23.20 11.59 32.29
+ Fine-tuning 71.02 52.53 33.52 49.80 53.59 34.05 19.51 37.92

+ RoBERTa` 69.73 51.34 33.49 48.91 52.58 33.8 19.62 37.89
+ PFEIFFER 71.72 53.84 34.78 49.91 54.51 35.27 20.26 38.77
+ HOULSBY 71.08 52.98 34.19 49.28 53.56 34.34 20.16 38.89
+ PREFIX 72.28 52.42 33.98 49.90 53.08 33.19 19.48 38.47
+ INVERSE 71.53 52.69 33.98 49.50 54.36 34.85 20.46 39.35
+ COMPACTER 71.21 51.56 33.17 49.20 52.88 33.16 19.35 38.09
+ LORA 71.64 51.88 33.17 49.55 53.73 34.00 19.43 38.64
+ PARALLEL 70.99 52.93 34.01 49.19 43.50 23.20 11.59 32.29
+ Fine-tuning 71.61 53.15 33.33 49.77 52.70 33.21 19.69 38.47

+ DeBERTa` 70.73 52.53 33.49 49.32 53.04 33.94 20.22 38.72
+ PFEIFFER 71.34 53.49 34.65 49.78 54.37 34.70 20.49 39.30
+ HOULSBY 70.83 52.10 33.74 49.48 53.25 33.93 19.55 38.45
+ INVERSE 71.64 52.58 33.95 49.66 55.09 35.45 20.66 39.71
+ COMPACTER 70.08 51.64 32.98 48.78 53.60 34.21 20.14 38.79
+ LORA 71.18 52.34 33.31 49.18 53.98 34.53 20.02 39.00
+ PARALLEL* 70.73 53.36 34.76 49.35 43.50 23.20 11.59 32.29
+ Fine-tuning 71.59 53.44 33.44 49.63 53.54 33.78 20.12 38.92

Table 17: Detailed results combining the TMLGA model with our three pre-trained language encoders and adapters,
tested on Charades-STA and ActivityNet Captions. Underlined results indicate the best performance within the
model and dataset combination, while the results in bold indicate the best performance within the dataset.

Hyper-parameter Method Value

Batch Size
Finetuning 256
Others 64

Base LR

All

1E-04
Weight Decay 1E-05
Gamma 1E-02
Step 6

RoBERTa LR
Finetuning

1E-04
Warm-up Rate 0.3
# Epochs 10

Table 18: Hyper-parameters used to train TMLGA with
RoBERTa on the Charades-STA dataset.

Hyper-parameter Method Value

Batch Size

All

64
Base LR 1E-04
Weight Decay 1E-05
Gamma 1E-02
Step 6

RoBERTa LR
Finetuning

1E-04
Warm-up Rate 0.2
# Epochs 10

Table 19: Hyper-parameters used to train TMLGA with
RoBERTa on the ActivityNet Captions dataset.
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Hyper-parameter Method Value

Batch Size
Finetuning 256
Others 64

Base LR
All

1E-04
Weight Decay 1E-05
Gamma 1E-02

Step HOULSBY 4
INVERSE 5
Frozen, PFEIFFER,
PARALLEL, LORA

6

COMPACTER 7

BERT LR
Finetuning

1E-04
Warm-up Rate 0.3
# Epochs 10

Table 20: Hyper-parameters used to train TMLGA with
DeBERTa on the Charades-STA dataset.

Hyper-parameter Method Value

Batch Size

All

64
Base LR 1E-04
Weight Decay 1E-05
Gamma 1E-02

Step INVERSE 5
Others 6

BERT LR
Finetuning

1E-04
Warm-up Rate 0.2
# Epochs 10

Table 21: Hyper-parameters used to train TMLGA with
DeBERTa on the ActivityNet Captions dataset.

Dataset Method Hyper-parameter Value

Batch Size 5
Base LR 1E-04
Weight Decay 1E-04
Gamma 5

Charades-STA Pfeiffer

Step 1E-02

Batch Size 4
Base LR 1E-04
Weight Decay 1E-05
Gamma 4

ANet Inverse

Step 1E-02

Table 22: Hyper-parameters used to obtain the best
results for DORi with DeBERTa on the Charades-STA
and ActivityNet Captions datasets.
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