
Findings of the Association for Computational Linguistics: ACL 2023, pages 12900–12907
July 9-14, 2023 ©2023 Association for Computational Linguistics

Implicit Memory Transformer for Computationally Efficient
Simultaneous Speech Translation

Matthew Raffel and Lizhong Chen
Oregon State University, USA

{raffelm, chenliz}@oregonstate.edu

Abstract
Simultaneous speech translation is an essen-
tial communication task difficult for humans
whereby a translation is generated concurrently
with oncoming speech inputs. For such a
streaming task, transformers using block pro-
cessing to break an input sequence into seg-
ments have achieved state-of-the-art perfor-
mance at a reduced cost. Current methods to al-
low information to propagate across segments,
including left context and memory banks, have
faltered as they are both insufficient representa-
tions and unnecessarily expensive to compute.
In this paper, we propose an Implicit Mem-
ory Transformer that implicitly retains memory
through a new left context method, removing
the need to explicitly represent memory with
memory banks. We generate the left context
from the attention output of the previous seg-
ment and include it in the keys and values of the
current segment’s attention calculation. Experi-
ments on the MuST-C dataset show that the Im-
plicit Memory Transformer provides a substan-
tial speedup on the encoder forward pass with
nearly identical translation quality when com-
pared with the state-of-the-art approach that
employs both left context and memory banks.

1 Introduction

Simultaneous speech translation (SimulST) refers
to the process of producing an output translation
concurrently with an oncoming source speech in-
put. For humans, performing accurate SimulST is
extremely difficult and becomes nearly impossible
to perform over long periods of time. Given the
potential broad applications of SimulST in industry
and government sectors, there is a strong need for
machine learning models to perform the task to a
level above the capabilities of humans.

One branch of machine learning models that
have been effective in SimulST is transformers
(Vaswani et al., 2017) using block processing, a
process that breaks an input sequence into seg-
ments which the encoder processes sequentially

and individually (Dong et al., 2019). As later seg-
ments may lose earlier information in a sentence
(i.e., context fragmentation), techniques known as
left context and memory banks have been intro-
duced. The concept of left context was idealized
with the Transformer-XL (Dai et al., 2019), a model
optimized for language modeling, which was later
adapted for streaming automatic speech recognition
(ASR). The Transformer-XL generated left context
by saving the previous segment to each encoder
layer, so the subsequent segment could include it
in the attention calculation at the same encoder
layer. Memory banks were later introduced in the
self-attention calculation of the Augmented Mem-
ory Transformer (Wu et al., 2020), allowing it to
outperform the Transformer-XL in streaming ASR
and also be state-of-the-art in SimulST (Ma et al.,
2021). These memory banks were token summa-
rizations of previous segments and helped retain
explicit long-term dependencies. The Augmented
Memory Transformer also included the left con-
text alongside the center (main) segment tokens
with an additional right context, all of which add
computational cost. We argue that the methods to
generate and use left context and/or memory banks
in both the Transformer-XL and Augmented Mem-
ory Transformer are naive, costing both models’
performance at a given computational budget.

In this paper, we propose a computationally ef-
ficient architecture, the Implicit Memory Trans-
former, that implicitly retains memory through
a novel left context generation method, thereby
removing the need for memory banks entirely.
Briefly, the proposed left context method for a
given encoder layer leverages the previous seg-
ment’s attention output in the attention calculation
of the current segment. Our method for calculating
left context is broadly applicable to any transformer
model that utilizes block processing. The pro-
posed Implicit Memory Transformer is more com-
putationally efficient than the Augmented Mem-

12900



ory Transformer, reducing the cost of self-attention
calculation, convolution layers, and feed-forward
layers.

We conduct our experiments on the English-
German, English-French, and English-Spanish lan-
guage pairs of the MuST-C dataset (Cattoni et al.,
2021) and demonstrate a significant speedup over
the Augmented Memory Transformer for the for-
ward pass of the encoder, with no reduction in the
translation quality across all wait-k values.

2 Background and Related Works

Augmented Memory Transformer: For SimulST,
a transformer model waits for k token chunks be-
fore beginning translation, a policy referred to as
wait-k (Ma et al., 2018). One such transformer that
uses this wait-k policy is the Augmented Memory
Transformer (Ma et al., 2021). The Augmented
Memory Transformer breaks an input sequence
into segments Si

n ∈ Rs×d, where n denotes the
segment position in the sequence and i denotes
the layer index in the Augmented Memory Trans-
former. Each segment is composed of a left context
Li

n ∈ Rl×d of size l, a center context Ci
n ∈ Rc×d

of size c, and a right context Ri
n ∈ Rr×d of size r.

Each segment is of size s = l+ c+ r and overlaps
with the previous and subsequent segments with
the left and right context. Unlike the default trans-
former, the encoder of the Augmented Memory
Transformer possesses two subsampling convolu-
tion layers to reduce the size of the segment inputs.

In the self-attention calculation for the encoder,
memory banks, M i

n ∈ RN×d, are added to the
keys and values where N denotes the maximum
number of memory banks for a given layer. Each
layer’s memory banks summarize the previous seg-
ments and are theorized to allow the model to retain
explicit long-term memory. Each memory bank is
created using the attention output of a summariza-
tion query, σi

n ∈ R1×d, included in the attention
calculation. This summarization query is calcu-
lated by averaging the tokens in the current seg-
ment. For any given layer, the queries, keys, and
values can be represented by the following equa-
tions:

Qi
n = W i

q [L
i
n,C

i
n,R

i
n, σ

i
n] (1)

Ki
n = W i

k[M
i
n,L

i
n,C

i
n,R

i
n] (2)

V i
n = W i

v [M
i
n,L

i
n,C

i
n,R

i
n] (3)

In each of the equations, W i
q , W i

k, and W i
v

are the query, key, and value projection matrices

for layer i. The [.] operator concatenates Li
n, Ci

n,
Ri

n with σi
n or M i

n. After the encoder processes
each individual segment, they are concatenated be-
fore being provided to a simultaneous decoder (Ma
et al., 2020b).
Average Lagging: Average Lagging is one promi-
nent metric to determine the efficacy of a SimulST
model (Ma et al., 2018). It denotes in milliseconds
the lag between the output translation and the input
source sequence (Ma et al., 2020b).
BLEU Score: An equally important metric to eval-
uate a SimulST model is the BLEU score, which
measures the translation similarity between the pre-
dicted output and the target output. The BLEU
score ranges from 0 to 1 and is often represented
with percentages (Papineni et al., 2002).

3 Methods

3.1 Implicit Memory Transformer
We propose an Implicit Memory Transformer that
leverages a new left context generation method to
retain an implicit memory of previous segments.
As such, we are able to remove the explicit mem-
ory provided by the memory banks that are expen-
sive to compute in the Augmented Memory Trans-
former. Our new implicit memory left context is
unique at each layer of the encoder, whereby it
is composed of a portion of the output from the
self-attention calculation of the previous segment’s
center context.

Specifically, suppose our implicit memory left
context is denoted as Zi

n ∈ Rl×d. Then, in the
self-attention calculation of the Implicit Memory
Transformer, the queries, keys, and values for each
layer’s attention calculation can be calculated as
follows:

Qi
n = W i

q [C
i
n,R

i
n] (4)

Ki
n = W i

k[Z
i
n,C

i
n,R

i
n] (5)

V i
n = W i

v [Z
i
n,C

i
n,R

i
n] (6)

In comparison with the calculation of the queries,
keys, and values of the current state-of-the-art Aug-
mented Memory Transformer shown in Equation
1, 2 and 3, our Implicit Memory Transformer has
three notable differences consisting of:

1) Removed memory banks: The memory bank
terms in Equation 2 and 3 not only provide the
model with explicit long-term memory but also in-
troduce a recurrence mechanism to the transformer,
which is a form of implicit memory. By removing

12901



memory banks and instead including the recurrence
mechanism in the left context, we capture the bene-
fits of this implicit memory without the additional
cost to compute memory banks.
2) Attention-based left context: In using the out-
put from the attention calculation of the previous
segment rather than the raw segment input as left
context like the Transformer-XL, we are able to
capture a learned representation of the previous
segment at a given layer. This is similar to the Aug-
mented Memory Transformer using the attention
output associated with the summarization query as
a memory bank. However, since we do not com-
press the segment into a summarization query, we
capture a more realistic representation.
3) Removed left context in the queries: The Aug-
mented Memory Transformer, includes the left con-
text in each segment and, subsequently, the queries
to allow it to generate a learned representation
of the left context alongside the current segment.
However, since our Implicit Memory Transformer
already has a saved learned representation of the
left context for a given layer, it removes the need
to include the left context in the segment.

From the above attributes, the self-attention cal-
culation of the Implicit Memory Transformer be-
comes more efficient than that of the Augmented
Memory Transformer, as memory banks are no
longer included in the keys and values, and the
left context and summarization query are removed
from the queries. Furthermore, our Implicit Mem-
ory Transformer reduces the computation cost of
the feed-forward neural network and the convolu-
tion subsampling layers, as they no longer need to
process tokens contained in the left context.

3.2 Complexity Analysis
We will now perform complexity analysis for the
self-attention and convolution subsampling layers
in the Augmented Memory Transformer. The com-
plexity analysis of a convolution subsampling layer
with a kernel size of one is identical to that for
the linear transformations in the feed-forward net-
work. The self-attention layer has a complexity of
O(n2 · d) and the convolution layer has a complex-
ity of O(K · n · d2) where n is the input sequence
length, d is the hidden size, and K is the kernel
size (Vaswani et al., 2017).

The complexity of the self-attention layer of the
old Augmented Memory Transformer would thus
be O((N + l + c + r)(l + c + r) · d) and the

complexity with the new method of calculating
left context would be O((c + r)(l + c + r) · d).
Similarly the complexity of the convolution lay-
ers would change from O(K · (l + c+ r) · d2) to
O(K · (c+ r) · d2). Given the computational com-
plexity decrease for all layers in the Augmented
Memory Transformer with respect to the left con-
text size and memory banks, it lends to the possi-
bility of increasing the left context size for greater
translation performance.

4 Experimental Setup

We conducted experiments on the English-German
(en-de), English-French (en-fr), and English-
Spanish (en-es) language pairs from the MuST-C
dataset (Cattoni et al., 2021). The data prepara-
tion scripts for the MuST-C dataset are provided
in Fairseq1 (Ott et al., 2019; Wang et al., 2020),
whereby Kaldi is used to generate 80-dimensional
log-mel filter bank features, and text is tokenized
with a SentencePiece 10k unigram vocabulary. The
statistics of the training, development, and test set
(tst-COMMON) for the English-German, English-
French, and English-Spanish language pairs of the
MuST-C dataset are provided in Table 1.

Language Pair Train Dev Test
en-de 250942 1415 2580
en-fr 275085 1412 2632
en-es 265625 1316 2502

Table 1: The number of sentences in the train, devel-
opment, and test (tst-COMMON) sets of the MuST-C
dataset for the en-de, en-fr, en-es language pairs (Cat-
toni et al., 2021).

The architectures of the Augmented Memory
Transformer and Implicit Memory Transformer
trained were nearly identical, containing 33.1 M
parameters (Ma et al., 2021). Their encoders con-
sisted of 12 layers beginning with two convolution
layers with a combined subsampling factor of 4,
followed by a feed-forward neural network. Their
decoders consisted of 6 layers. Each of these layers
has a hidden size of 256 with 4 attention heads.
Relative positional encodings were applied to each
self-attention layer with a clipping distance of 16
(Shaw et al., 2018). Layer normalization was per-
formed prior to each layer. Additionally, we trained
each model with a wait-1, wait-3, wait-5, and wait-
7 policy using a pre-decision ratio of 8 (Ma et al.,
1https://github.com/facebookresearch/fairseq

12902

https://github.com/facebookresearch/fairseq


2020b). We provide public access to a derivative
of Fairseq containing our implementation for the
Implicit Memory Transformer2.

All training was performed on a single V100-
32GB. The training process consisted of ASR
pre-training followed by SimulST training. For
SimulST training, the models were trained with
label-smoothed cross-entropy loss, the Adam op-
timizer (Kingma and Ba, 2014), and an inverse
square root scheduler. There was a warm-up period
of 7500 updates where the learning rate of 0.0001,
followed by a learning rate of 0.00035. To regu-
larize the model weights, we used a weight decay
value of 0.0001, a dropout of 0.1, an activation
dropout of 0.2, and an attention dropout of 0.2. All
models were trained with early stopping using a
patience of 10. After the training was complete,
the final ten checkpoints were averaged.

The translation quality and latency were deter-
mined by detokenized BLEU with SacreBLEU
(Post, 2018), and Average Lagging (Ma et al.,
2020b), respectively. Both of these metrics were
obtained using the SimulEval toolkit3, which simu-
lates SimulST (Ma et al., 2020a).

5 Results

5.1 Performance Evaluation
We demonstrate the efficacy of our Implicit Mem-
ory Transformer on the English-German language
pair for a single run in Figure 1 in terms of aver-
age lagging and BLEU score. Figure 1 compares
our Implicit Memory Transformer against two Aug-
mented Memory Transformers differing by the in-
clusion or exclusion of memory banks. Each of the
compared models consists of a left context of 32
tokens, a right context of 32 tokens, and a center
context of 64 tokens. The Augmented Memory
Transformer using memory banks have a total of
three banks, whereas our Implicit Memory Trans-
former and the Augmented Memory Transformer
without memory banks have zero.

From viewing Figure 1, our Implicit Memory
Transformer achieves almost identical performance
in terms of BLEU score to the Augmented Mem-
ory Transformer using memory banks for SimulST
between English and German without affecting the
Average Lagging. In contrast, simply removing
memory banks in the Augmented Memory Trans-
former results in an average 4.48 BLEU decrease
2https://github.com/OSU-STARLAB/ImplicitMemory
3https://github.com/facebookresearch/SimulEval

Figure 1: A comparison between the Implicit Mem-
ory Transformer and the baseline Augmented Memory
Transformers on the en-de language pair.

versus its memory bank counterpart across all wait-
k values. This confirms the effectiveness of the
attention-generated left context of the proposed
Implicit Memory Transformer for the English-
German language pair.

We see similar results with the English-French
and English-Spanish language pairs provided in
Figure 2 and Figure 3, respectively.

Figure 2: A comparison between the Implicit Mem-
ory Transformer and the baseline Augmented Memory
Transformers on the en-fr language pair.

Figure 3: A comparison between the Implicit Mem-
ory Transformer and the baseline Augmented Memory
Transformers on the en-es language pair.

In both cases, the Implicit Memory Transformer
performs nearly identically to the Augmented
Memory Transformer using memory banks by not

12903

https://github.com/OSU-STARLAB/ImplicitMemory
https://github.com/facebookresearch/SimulEval


negatively impacting either the BLEU score or
Average Lagging. Additionally, as with the re-
sults in Figure 1, the Augmented Memory Trans-
former sees an average decrease of 6.23 BLEU and
4.47 BLEU across all wait-k values when mem-
ory banks are removed for the English-French and
English-Spanish language pairs respectively. Once
again substantiating the efficacy of our attention-
generated left context in the Implicit Memory
Transformer, which does not see a performance
decrease without memory banks.

5.2 Evaluation Speedup

We provide a demonstration of how the left con-
text size affects the forward pass time of a seg-
ment through the encoder of an Augmented Mem-
ory Transformer with three memory banks, an
Augmented Memory Transformer without mem-
ory banks, and the Implicit Memory Transformer
in Figure 4. The left context size is scaled with
tokens, and the duration of the forward pass of a
segment through the encoder is scaled in millisec-
onds. Each model compared uses a right context
of 32 tokens and a center context of 64 tokens for
each tested left context size. Each measurement
point in Figure 4 is made by averaging the duration
of ten forward passes through the encoder using
two 14-core 2.20 GHz Intel Xeon Gold 5120 with
19712 KB cache.

Figure 4: A comparison between the forward pass time
(ms) of the Implicit Memory Transformer and two Aug-
mented Memory Transformer variations with respect to
the left context size.

In Figure 4, the forward pass time of the Im-
plicit Memory Transformer remains flat with re-
spect to the left context size, whereas the two Aug-
mented Memory Transformer models exhibit a non-
linear curved relationship. The separation of two
Augmented Memory Transformer curves becomes
more apparent for larger left context sizes, indi-
cating the cost of memory banks becomes more

apparent as the segment size increases. Figure
4 also shows that dropping the left context from
the query in the proposed Implicit Memory Trans-
former achieves considerable additional computa-
tion reduction beyond removing memory banks.

6 Conclusion

Achieving computationally efficient simultaneous
speech translation (SimulST) is critical to its de-
ployment in practical real-time applications. How-
ever, even with the state-of-the-art SimulST ap-
proach of the Augmented Memory Transformer, its
method of generating left context is computation-
ally costly and ineffective, requiring the usage of
memory banks to compensate for its shortcomings.
As such, we propose an Implicit Memory Trans-
former that utilizes an attention-based left context
to provide the model with implicit memory. We
found that the Implicit Memory Transformer was
able to achieve nearly identical performance to the
Augmented Memory Transformer at a significantly
reduced computational cost.

Limitations

Our work is limited as it has not explored the ef-
fectiveness of our Implicit Memory Transformer
in other tasks outside of SimulST, such as ASR.
We have also not explored the impact of our im-
plicit memory left context on alternative block-
processing-based transformer models. Further-
more, extensive ablation studies could help show-
case the potential of the Implicit Memory Trans-
former.

Acknowledgements

This research was supported, in part, by the Na-
tional Science Foundation grants 2223483 and
2223484.

References
Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-

tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
c: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Linhao Dong, Feng Wang, and Bo Xu. 2019. Self-
attention aligner: A latency-control end-to-end model

12904

https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155
https://doi.org/https://doi.org/10.1016/j.csl.2020.101155


for asr using self-attention network and chunk-
hopping. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5656–5660. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, et al. 2018.
Stacl: Simultaneous translation with implicit antici-
pation and controllable latency using prefix-to-prefix
framework. arXiv preprint arXiv:1810.08398.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020a. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Association
for Computational Linguistics.

Xutai Ma, Juan Pino, and Philipp Koehn. 2020b.
Simulmt to simulst: Adapting simultaneous text
translation to end-to-end simultaneous speech trans-
lation. arXiv preprint arXiv:2011.02048.

Xutai Ma, Yongqiang Wang, Mohammad Javad Dousti,
Philipp Koehn, and Juan Pino. 2021. Streaming si-
multaneous speech translation with augmented mem-
ory transformer. In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7523–7527. IEEE.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. fairseq s2t:

Fast speech-to-text modeling with fairseq. In Pro-
ceedings of the 2020 Conference of the Asian Chap-
ter of the Association for Computational Linguistics
(AACL): System Demonstrations.

Chunyang Wu, Yongqiang Wang, Yangyang Shi, Ching-
Feng Yeh, and Frank Zhang. 2020. Stream-
ing transformer-based acoustic models using self-
attention with augmented memory. arXiv preprint
arXiv:2005.08042.

12905

https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations Section

�7 A2. Did you discuss any potential risks of your work?
We proposed a computationally efficient Implicit Memory Transformer for simultaneous speech
translation. We do not believe our contributions pose any substantial risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The license for the artifacts we used is provided in our GitHub repository.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
A discussion of our use of existing artifacts being consistent with their intended use is provided in
our GitHub repository. Similarly, we mention the intended use of our Implicit Memory Transformer
implementation in our GitHub repository.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
For our experiments, we utilized the MuST-C dataset derived from the publicly available audio of
English TED Talks.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12906

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

12907


