
Findings of the Association for Computational Linguistics: ACL 2023, pages 12863–12880
July 9-14, 2023 ©2023 Association for Computational Linguistics

SongRewriter: A Chinese Song Rewriting System with Controllable
Content and Rhyme Scheme

Yusen Sun1,2,*, Liangyou Li2, Qun Liu2, Dit-Yan Yeung1

1The Hong Kong University of Science and Technology, Hong Kong SAR, China
2Huawei Noah’s Ark Lab

ysunbc@connect.ust.hk, {liliangyou, liuqun}@huawei.com, dyyeung@cse.ust.hk

Abstract

Although lyrics generation has achieved signif-
icant progress in recent years, it has limited
practical applications because the generated
lyrics cannot be performed without compos-
ing compatible melodies. In this work, we
bridge this practical gap by proposing a song
rewriting system which rewrites the lyrics of
an existing song such that the generated lyrics
are compatible with the rhythm of the existing
melody and thus singable. In particular, we
propose SongRewriter,1 a controllable Chinese
lyrics generation and editing system which as-
sists users without prior knowledge of melody
composition. The system is trained by a ran-
domized multi-level masking strategy which
produces a unified model for generating en-
tirely new lyrics or editing a few fragments.
To improve the controllabiliy of the genera-
tion process, we further incorporate a keyword
prompt to control the lexical choices of the con-
tent and propose novel decoding constraints
and a vowel modeling task to enable flexible
end and internal rhyme schemes. While prior
rhyming metrics are mainly for rap lyrics, we
propose three novel rhyming evaluation met-
rics for song lyrics. Both automatic and human
evaluations show that the proposed model per-
forms better than the state-of-the-art models in
both contents and rhyming quality.

1 Introduction

With the rapid development in natural language
processing (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017; Devlin et al., 2019),
lyrics generation has achieved significant advance-
ment in recent years (Potash et al., 2015; Nikolov
et al., 2020; Ma et al., 2021; Xue et al., 2021).
Prior works mainly focus on two research topics:

*Work done during internship at Huawei Noah’s Ark Lab.
1Source code implemented in MindSpore Lite tool

is available at https://github.com/huawei-noah/
noah-research/tree/master/NLP/SongRewriter.

Figure 1: An overview of the proposed Chinese song
rewriting system. Given an existing song, the users first
mask the part(s) of the lyrics that they want to rewrite.
Then, SongRewriter generates new lyrics corresponding
to the masked fragments. Last, the rewritten lyrics are
combined with the original melody to form a new song.
During the generation, user can require the content to
include specific keywords or control the rhyme scheme
by setting the vowels of the output characters at specific
positions.

singability of the generated lyrics (Watanabe et al.,
2018; Lee et al., 2019) and controllability of the
content and/or rhyme (Nikolov et al., 2020; Xue
et al., 2021).

Current methods of generating singable lyrics
is typically conditioned on a given melody. Ac-
cordingly, they treat the generation as a sequence-
to-sequence translation task. However, there are
two main challenges: 1) the parallel lyrics-melody
dataset for training the model is limited, which
mainly consists of 7,998 songs proposed by Yu
et al. (2020); 2) melody notes and lyric syllables are
loosely correlated and thus the alignments between
them are hard to learn from the limited data. There-
fore, prior works simplify the task by assuming a
one-to-one mapping between the melody notes and

12863

https://www.mindspore.cn/en
https://github.com/huawei-noah/noah-research/tree/master/NLP/SongRewriter
https://github.com/huawei-noah/noah-research/tree/master/NLP/SongRewriter


lyric syllables (Yu et al., 2020; Ma et al., 2021).
However, such an assumption and restrictions may
lead to a sub-optimal performance, as the mapping
relationship is usually many-to-one in real life.

Another important research question on lyrics
generation is how to control the generated content
and rhyme. In prior works, the controllable content
is usually achieved by conditioning the generation
on given hint words or sentences (Shen et al., 2019;
Zhang et al., 2022). However, they usually ignore
the requirements of generating lyrics from a draft
where the model needs to edit some sentences or
words. In addition, prior works on rhyme control
mainly focus on rhymes at the end of sentences
(end rhyme) (Potash et al., 2015; Nikolov et al.,
2020; Xue et al., 2021; Liu et al., 2022). To the
best of our knowledge, no work has been done on
both internal rhyme and end rhyme schemes.

In this work, we develop a user-assist AI system
SongRewriter which can generate singable lyrics
by rewriting parts of or the whole lyrics of a given
song (i.e., partial rewriting and full rewriting, re-
spectively) with controllable contents and rhyme
schemes, as illustrated in Figure 1. To address the
difficulty of learning the correlation between the
melody and lyrics from a limited amount of par-
allel dataset, we propose to generate lyrics which
have the same number of syllables as the original
lyrics of the song. Therefore, the generated lyrics
can well align with the melody. In addition, this
method can directly learn the generation from text
data so as to bypass the demand of parallel datasets.

Specifically, we adopt a transformer-based
sequence-to-sequence auto-regressive model
(Vaswani et al., 2017) as our model backbone. The
model is trained by masking a few random frag-
ments from the encoder’s inputs and predicting the
masked fragments by the decoder. The generation
process can be controlled in terms of three aspects.
1) To enable rewriting arbitrary parts of the lyrics,
we train the model by randomly performing one of
the three masking (i.e., token-level, sentence-level
and song-level) strategies, corresponding to
different levels of rewriting tasks. 2) To control the
lexical choice of contents, we allow the generation
to condition on given keyword prompts. This is
achieved by training on extracted keywords from
masked positions as additional encoder inputs.
3) To enable lyrics generation with arbitrary
pre-defined rhyme schemes with vowel specified,
we introduce additional vowel inputs and apply a

vowel mask strategy during training. This equips
the model with the ability of generating tokens
with required vowels at arbitrary positions. Since
end rhyme is the most frequently used rhyme
type, we specifically incorporate reverse language
modelling and propose decoding constraints during
inference to improve the vowel consistency and
rhyming word diversity.

We evaluate our model on both generation con-
trollability and quality in terms of keyword recall,
vowel accuracy, lexical diversity, coherence, per-
plexity and rhyme quality. Since prior evaluation
metrics on rhyme quality are mainly for rap lyrics
and ignore the problem of identical rhyming words,
we propose three new rhyme metrics to measure
the local rhyme between adjacent sentences, global
rhyme and diversity of rhyming words, respectively.
Experimental results show that our model outper-
forms baseline models and state-of-the-art models
on both full and partial rewriting tasks.

Our contributions are summarized as follows:

• We propose SongRewriter which generates
melody-aligned lyrics by rewriting the lyrics
of songs. It bypasses the difficulties of mod-
elling the melody-lyrics correlation from lim-
ited parallel datasets.

• We propose a multi-level randomized masking
scheme for training SongRewriter, which al-
lows the model to rewrite arbitrary parts of the
inputs according to the bidirectional context.

• We introduce a partial vowel masking strategy
into training to enable lyrics generation on
any rhyme schemes, and we design a novel
decoding strategy to improve the end rhyme
consistency and rhyming word diversity.

• We propose novel metrics for rhyme evalu-
ation. We collect data from the internet for
training and testing. Experiments show the
effectiveness of our proposed model.

2 Related Work

Lyrics generation can be mainly divided into two
categories, rap lyrics generation (Potash et al.,
2015; Malmi et al., 2016; Nikolov et al., 2020; Xue
et al., 2021) and song lyrics generation (Ramakrish-
nan A et al., 2009; Watanabe et al., 2018; Fan et al.,
2019; Lee et al., 2019; Sheng et al., 2021; Ma et al.,
2021; Liu et al., 2022). While rap lyrics generation

12864



Figure 2: The architecture of the proposed SongRewriter model. The inputs of the encoder consist of a keyword
prompt and partially masked lyrics. The keywords in the prompt are extracted from the masked fragments during
training. The decoder uses [G] as a start token and generates the masked tokens autoregressively. The text order is
reversed for end rhyme modeling. The original lyrics is from Later by Rene Liu.

mainly focuses on improving the rhyming perfor-
mance (Nikolov et al., 2020; Xue et al., 2021), song
lyrics generation concentrates on the alignment be-
tween melody and lyrics (Watanabe et al., 2018;
Lee et al., 2019; Sheng et al., 2021).

Rhyming is an essential element for lyrics and
poetry. To model rhyme, current approaches can
be mainly divided into three types. The first type
is to encourage the model to learn the rhyme struc-
ture implicitly during the training by adding addi-
tional rhyme signals. Potash et al. (2015) append
⟨endLine⟩ token to each sentence. Li et al. (2020)
employ an additional format embedding as inputs
to emphasize the rhyming tokens. Lau et al. (2018)
incorporate an extra model to encode the ending
tokens of the sentences. While Zhang et al. (2020)
and Xue et al. (2021) both generate the rhyming
word before the rest of the sentence, Zhang et al.
(2020) move the last word of the sentence to the
front, and Xue et al. (2021) generate sentence from
right to left by reversing the word order. The sec-
ond type is to apply explicit rhyme constraints
during the training to force the model to generate
rhyming sentences. Jhamtani et al. (2019) apply
a discriminator on the sentence-ending words to
learn the rhyme pattern adversarially. The last type
is through post-editing, where the model first gener-
ates the lyrics, then another model edits the ending
words to fulfil the rhyming constraints (Nikolov
et al., 2020).

Most prior works focus on the rhyme at the end
of the sentences (Xue et al., 2021; Liu et al., 2022).
In this work, we extend the rhyme control to arbi-
trary rhyme schemes for both internal rhyme and
end rhyme. To the best of our knowledge, this is
the first work enabling arbitrary rhyme schemes.

3 Method

The proposed model is a transformer-based auto-
regressive sequence-to-sequence model (Vaswani
et al., 2017). As shown in Figure 2, given an in-
put of masked lyrics and keyword prompt to the
encoder, the decoder generates output tokens corre-
sponding to the masked tokens of the input, which
contain the keywords in the prompt and satisfy the
vowel constraints. Such generation also improves
decoding efficiency and forces the model to rely
more on the source input.

In a basic setting, given the lyrics of a song, the
tokens of the input lyrics are of the following form,

[B], x00, ..., [M ], ..., [S], ..., xij , ..., [S], [E]

where xij denotes the jth tokens in the ith sentence
of the lyrics, [S] is the inter-sentence delimiter, [B]
is placed at the beginning of the lyrics with [E] at
the end, and the tokens to be rewritten are replaced
by [M ] which will be predicted by the decoder.

To enable the controllability of the genera-
tion process, we further incorporate the keyword

12865



prompt into the model to control the lexical choices,
propose the multi-level masking strategy to enable
rewriting arbitrary parts of the input in a single
model and the rhyme control strategy to inject pre-
defined rhyme schemes and improve rhyming word
diversity.

3.1 Keyword Prompt
Using keyword prompts to control the text gen-
eration has been explored in other tasks, such as
poetry generation (Zhipeng et al., 2019). In the
task of lyrics generation, prior works mainly focus
on theme control (Shen et al., 2019). In this work
we introduce the technique of keyword prompts
into lyrics generation to force the model generating
lyrics containing these keywords.

Specifically, a keyword prompt is prepended to
the input lyrics. The keyword prompt is a con-
catenation of a set of keywords in the following
format,

[K], k00, ..., [W ], k10, ..., [W ], ..., kij , ..., [W ]

where kij is the jth token in the ith keyword , [W ]
is the inter-keyword delimiter, and [K] is the start
token of the prompt.

During training, we first use jieba2 to segment
the masked fragments into words and obtain their
Parts-of-Speech tags. Then, we use the nouns and
verbs to form a keyword database. Last, we sample
a random number of keywords (ranging from 0 to
5) from the keyword database to form a keyword
prompt. During inference, the keyword prompt is
optional and can be provided by users.

3.2 Randomized Multi-Level Masking Scheme
As song rewriting requires the number of syllables
between the original lyrics and the generated lyrics
to be identical, we adopt the framework of MASS
(Song et al., 2019), a sequence-to-sequence model
pre-training method, which uses the decoder to
predict the masked tokens in the encoder. How-
ever, MASS trains the model on inputs of single-
sentence examples by masking a fragment of con-
tinuous tokens (around 50% of the input). There-
fore, it is not an optimal strategy for full lyrics
generation and editing arbitrary parts of the input
lyrics.

Accordingly, we propose a novel masking strat-
egy which masks the input from three levels (token-
level, sentence-level and song-level) to simulate the

2https://github.com/fxsjy/jieba

partial rewriting and full rewriting tasks. During
training, for each input lyric, we randomly apply
one of the following masking strategies:

• Token-Level Masking: To simulate the task
of rewriting phrases in a sentence, for each
sentence in the input lyric, we mask a few
fragments of the sentence with a random ratio
and train the model to reconstruct the masked
portions of the sentences.

• Sentence-Level Masking: To enable sentence
rewriting, we mask a random ratio of sen-
tences (entire sentences) from the input and
train the model to reconstruct the masked sen-
tences.

• Song-Level Masking: We masks all the input
tokens to simulate the full rewriting task.

We denote the above three masking schemes as
{TOKEN, SENT, ALL}, respectively. During train-
ing, for SENT, we sample a masking ratio from a
uniform distribution U(0, 1) and randomly select
the corresponding ratio of sentences. For TOKEN,
we sample a masking ratio from a uniform distribu-
tion U(0, 1) for each sentence and then randomly
select the ratio of tokens to mask.

3.3 Rhyme Modeling and Control
Our method for rhyme modelling and control is
divided into two parts, rhyming modelling and con-
trol for the final syllables of the lines (end rhyme),
and rhyme control for an arbitrary rhyme scheme
which defines the required vowels at specific posi-
tions in the generated lyrics (internal rhyme).

End Rhyme Modeling and Constraint
End rhyme is the most frequently used rhyme type
for lyrics and poems. It occurs when the last words
of the sentences rhyme. Inspired by the rhyme mod-
elling for rap lyrics (Xue et al., 2021), we adopt
reverse language modelling with two additional po-
sition embeddings, sentence position embedding
and local position embedding, to facilitate the mod-
elling of rhyme features in the lyrics. Specifically,
we reverse the order of the characters in each sen-
tence for both inputs and target outputs (while keep-
ing the sentence order unchanged). Therefore, the
reverse sentence starts with the potential rhyming
character, i.e., the end character in the original sen-
tence. Accordingly, the model can easily learn to
identify the rhyming characters from the inputs
with the local position l0.

12866

https://github.com/fxsjy/jieba


However, since rhyming with identical words
is considered inferior, we incorporate two control
factors at inference time to encourage rhyme con-
sistency and rhyming word diversity. Given the end
character set e<t = {e0, ..., et−1} and their corre-
sponding vowel set v<t = {v0, ..., vt−1} from the
previous t sentences, we define an adjusted proba-
bility of the end character of the (t+ 1)th sentence
being xi as,

p̄it =
pit · Λ(vxi , v<t) · Γ(xi, e<t)∑N
j pjt · Λ(vxj , v<t) · Γ(xj , e<t)

(1)

where pit is the predicted probability of the token
xi in the vocabulary, and vxi is the vowel of the
token xi. The two factors:

• Λ(·) returns λ if the vowel of the token xi
appears in the end vowel set v<t of previous
sentences; otherwise, returns 1.

• Γ(·) returns γ if xi appears in the end charac-
ter set e<t of previous sentences, otherwise
1.

λ and γ are the hyper-parameters to control the
rhyming effect. While a larger λ increases the
probability of the model sampling a word with the
same vowel in the previous end vowel set (improv-
ing rhyme consistency), a smaller γ reduces the
chance of a generated end word being chosen again
(increasing rhyming word diversity).

Internal Rhyme by Vowel Modeling
While rhyme generally refers to end rhyme, where
the last words of the lines rhyme with each other, in-
ternal rhyme has also been widely used, which usu-
ally includes multiple rhyming words either within
the same line (usually one in the middle and the
other one at the end) or in the middle of multiple
lines. As shown in Figure 3, the highlighted charac-
ters (with the corresponding pinyin in parentheses)
share the same vowel and rhyme. While end rhyme
has been widely investigated for both poetry gen-
eration (Lau et al., 2018; Li et al., 2020) and rap
lyrics generation (Xue et al., 2021; Nikolov et al.,
2020), internal rhyme is still yet to be explored.

To model internal rhyme as well as other rhyme
schemes with specified vowels, we propose a re-
stricted vowel loss to enable direct control of vow-
els at arbitrary positions. Specifically, as shown in
Figure 2, during the training stage, for the masked

Figure 3: An example of lyrics with internal rhyme.
The lyrics are from Blue and White Porcelain, a Chinese
song of Jay Chou, with the English translation under-
neath. The rhyming characters are highlighted in red
with their pinyin.

fragments in the input, we only replace 80% of the
vowel inputs with the [M ] token. For the remaining
20% masked input tokens with ground truth vowel
inputs, we introduce an additional vowel predic-
tion task. For the tth output token with a predicted
distribution pt ∈ RN×1, if the ground truth vowel
vt is provided in the input, the additional training
objective is

Lv
t = − log p(vt|y<t, enc(x1:T )) (2)

where the probability of the vowel vt at the time
step t is calculated by,

p(vt|·) =
N∑

i

pit · 1(V (xi) = vt) (3)

where pit is the predicted probability for each token
i in the vocabulary at the decoding time step t,
and V (xi) is a mapping function which returns the
vowel of the token xi. The function 1(V (xi) = vt)
returns 1 if the vowel of the token xi is identical
to the ground truth vowel vt, otherwise returns 0.
Thus, p(vt|·) is basically summing up the predicted
probabilities of all the tokens with the same vowel
vt.

During the inference stage, the internal rhyme
scheme can be created for the generated outputs by
providing rhyming vowel inputs to specific posi-
tions in masked fragments of the inputs.3

4 Experiment

4.1 Datasets and Baselines
Our model is trained on three different datasets.
We first crawl a large-scale text corpus from Baidu
Encyclopedia , which is the largest Chinese online
Encyclopedia. We use this dataset to pretrain our
model. Then, we crawl a lyrics dataset from two
Chinese lyrics websites.4 Since the amount of the

3An example is shown in Figure 8 in Appendix J.
4https://mojim.com and https://www.mulanci.org

12867

https://mojim.com
https://www.mulanci.org


lyrics data is limited, we further crawl proses as a
supplementary dataset from a Chinese prose web-
site.5 The pretrained model is first fine-tuned on
the prose dataset and then on the the lyrics dataset
to produce our final system.6

Since Chinese is a monosyllabic language, each
character consists of one syllable. To control the
number of syllables in the generated output, We use
the BasicTokenizer from the transformers library
(Wolf et al., 2020) for tokenization, which splits
text into characters for Chinese and into words for
other languages (mainly English). We keep the
words and characters with frequency larger than
3,000 to build a vocabulary of size 6,572. For the
vowels, we employ python-pinyin7 to extract the
vowels of the Chinese characters. There are in total
21 distinct vowels.

We evaluate the proposed model, SongRewriter,
for both full and partial rewriting tasks. For the full
rewriting task, we compare SongRewriter with a
Chinese GPT2 (Radford et al., 2019) and SongNet
(Li et al., 2020). For the partial rewriting task,
we compare the proposed model with ILM (Don-
ahue et al., 2020). We incorporate the keyword
prompt function to the ILM model resulting in ILM-
Keyword which is used as a baseline model for
keyword-conditioned rewriting tasks. All the base-
line models are fine-tuned on our lyrics dataset for
a fair comparison.8

4.2 Evaluation Metrics

We evaluate the performance in terms of two as-
pects, generation controllability and generation
quality. The controllability metrics include Key-
word Recall and Vowel Accuracy. The quality met-
rics include Diversity,9 Coherence,10 Perplexity-
Test (PPL-Test) and Perplexity-Gen (PPL-Gen).11

Following prior works, we assume the optimal ap-
proach should generate lyrics with quality closest
to the human-written lyrics (Holtzman et al., 2020).
Therefore, we report the absolute difference scores
on some metrics: ∆Diversity, ∆Coherence and
∆PPL-Gen.

To measure rhyme quality, we propose three
novel metrics:

5https://www.sanwenwang.com/sanwen/
6Details of the datasets are in Table 5 in Appendix A.
7https://github.com/mozillazg/python-pinyin
8The details of the baselines are in the Appendix B.
9Diversity is evaluated by distinct (Li et al., 2016).

10We measure Coherence based on sentence similarity.
11Details on these metrics can be found in Appendix D.

• Local Rhyme (Rhyme-L): While a lyric may
contain multiple rhyming vowels, sentences
sharing the same rhyme are usually grouped
together. Therefore, we propose local-rhyme-
n to evaluate this localised characteristics.
Specifically, We define a sentence being lo-
cally n-rhymed if, among the n sentences be-
fore and after the current sentence, there are at
least one sentence sharing the same rhyming
vowel with the current sentence. Thus, local-
rhyme-n is defined as the number of locally
n-rhymed sentences divided by total number
of sentences. We report Rhyme-L, which is the
average of the local-rhyme-n with n ∈ [1, 4].

• Global Rhyme (Rhyme-G): Apart from eval-
uating rhyming effect from a local perspec-
tive, we also measure the rhyming effect of
a lyrics as a whole. Since the more sen-
tences sharing the same rhyming vowels, the
better the rhyming effect. We evaluate the
global rhyming performance by calculating
the portion of duplicated rhyming vowels:
1− number of unique rhyming vowels

total number of sentences .

• Diversity of Rhyming Words (Dist-RW):
Since rhyming with identical words is con-
sidered inferior, we evaluate the diversity of
the rhyming words by calculating the ratio of
the number of unique end words to the total
number of end words.

4.3 Results and Discussion
Full Song Rewriting
We evaluate the performance of SongRewriter on
the task of full song rewriting by masking all the in-
put tokens. This task is similar to lyrics generation
with a fixed format, i.e., the number of sentences
and lengths of each sentence are pre-defined.

As shown in Table 1, SongRewriter significantly
outperforms other models in terms of both rhyme
quality and content quality. For the content, the
generated outputs of SongRewriter are closer to
the human-written lyrics in the aspects of lexical
diversity, coherence and fluency (PPL-Gen), and
PPL-Test further verifies the languge modeling abil-
ity of SongRewriter.

By inspecting the generated outputs,12 we ob-
serve that: 1) The generated lyrics are fluent
and coherent in general. 2) Most lines share the
same vowel and rhyme with their neighbouring

12Figure 5 in Appendix J shows an example.

12868

https://www.sanwenwang.com/sanwen/
https://github.com/mozillazg/python-pinyin


Model ∆ Diversity ↓ ∆ Coherence ↓ ∆ PPL-Gen ↓ PPL-Test ↓ Dist-RW ↑ Rhyme-L ↑ Rhyme-G ↑
GPT2 0.135 0.076 3.695 3.539 0.437 0.546 0.723

SongNet 0.110 0.046 2.569 3.429 0.465 0.605 0.766
SongRewriter 0.023 0.040 1.287 3.157 0.552 0.737 0.812

Table 1: Quality evaluation on the generated outputs in the full song rewriting task. The best scores are in bold.

Mask Model ∆ Diversity ↓ ∆ Coherence ↓ ∆ PPL-Gen ↓ Dist-RW ↑ Rhyme-L ↑ Rhyme-G ↑
TOKEN ILM 0.265 0.052 17.88 0.547 0.658 0.762

SongRewriter 0.039 0.006 2.37 0.572 0.722 0.800

SENT ILM 0.057 0.024 0.70 0.500 0.658 0.781
SongRewriter 0.043 0.002 1.66 0.578 0.742 0.814

Table 2: Quality evaluation on the generated outputs on the task of partial song rewriting under masking schemes,
{SENT, TOKEN}. We report the averaged scores over three masking ratios, {0.25, 0.5, 0.75}. The best scores are in
bold.

lines with diverse rhyming words. 3) Similar
to human-written lyrics, automatically generated
lyrics contain duplicated blocks, which indicates
that SongRewriter can learn the structural informa-
tion of the lyrics.

Partial Song Rewriting

We test the performance of SongRewriter on the
partial song rewriting task by masking a portion of
the input lyrics. We compare the proposed model
with ILM under two masking schemes, {SENT, TO-
KEN}. We average the scores under three masking
ratios, {0.25, 0.5, 0.75}.13

As shown in Table 2, the proposed model per-
forms better than ILM in general at both token-
level and sentence-level masking. Specifically,
for ILM, it is observed that there is a large dis-
crepancy on content quality (Diversity, Coherence
and PPL-Gen) between the TOKEN and SENT
masking schemes.On the contrary, SongRewriter
achieves consistent performance, indicating that
the proposed method is more suitable for both
tasks. Besides, we also find that the performance of
ILM decreases significantly as the masking ratio in-
creases, while SongRewriter consistently achieves
high performance across various masking ratios.
This suggests that SongRewriter is able to tackle
arbitrary portion of the rewriting consistently. By
inspecting examples,14 we observe that, during the
partial song rewriting, SongRewriter considers not
only the bidirectional context but also the rhyming
effects with the input sentences.

Mask Model Keyword Recall ↑
TOKEN ILM-Keyword 0.545

SongRewriter 0.890

SENT ILM-Keyword 0.451
SongRewriter 0.877

ALL ILM-Keyword 0.851
SongRewriter 0.952

Table 3: Evaluation results on the task of keyword-
conditioned partial song rewriting under masking
schemes, {SENT, TOKEN, ALL}. We report the aver-
aged scores over three masking ratios, {0.25, 0.5, 0.75}.
The best scores are in bold.

Keyword Control
We test the performance of controlled lyrics rewrit-
ing under masking schemes {SENT, TOKEN}. We
report the averaged scores over three masking ra-
tios, {0.25, 0.5, 0.75}.

To evaluate the ability of generating content with
keywords, we first build a keyword database by us-
ing jieba15 to extract keywords from the training
set. We evaluate the controllability by sampling
keywords from the database.16 As shown in Ta-
ble 3, SongRewriter performs significantly better
than the baseline model, ILM-Keyword, by a large
margin.

Rhyme Scheme Control
To evaluate the rhyme scheme controllability, we
evaluate the ability of the model to generate tokens
with pre-defined vowels at arbitrary positions. We
randomly mask 80% of the vowel inputs from the

13Detailed results are in Table 7 in Appendix F.
14Figures 8 and 9 in Appendix J.
15https://github.com/fxsjy/jieba
16We define the sampling probability of keyword ki to be

the number of occurrence of ki divided by the number of
occurrence of all keywords.

12869

https://github.com/fxsjy/jieba


Figure 4: Ablation results on the generated outputs on
the task of full song rewriting. To facilitate comparison,
all metrics are normalized to 0-1 range by the respective
maximum values. The exact scores are presented in
Table 8 in Appendix H.

masked fragments. For the remaining 20% masked
tokens with vowel inputs, we calculate the ratio
of output tokens with the same vowel as the in-
put (vowel accuracy). We found that the proposed
model is able to consistently generate tokens of
pre-defined vowels around 98% of the time under
various masking schemes and masking ratios,17 im-
plying that the model can generate user-defined
rhyme schemes by providing rhyming vowel to the
target positions in the input most of the times.

Ablation Study
As shown in the Figure 4, by removing the infer-
ence constraints, the performance on Rhyme-L and
Rhyme-R increases while the others decrease. By
inspecting the output samples, it is found that the
model without inference constraints is more likely
to generate repetitive sentences and rhyming words,
thus leading to an increase in Coherence (more sim-
ilar content), Rhyme-L and Rhyme-R, but a decrease
in content diversity and rhyming word diversity.

To verify the effectiveness of the multi-level
masking scheme, we train a model with the mask-
ing scheme proposed in MASS (Song et al., 2019),
which is to mask 50% of the tokens consecutively
from the inputs. As shown in Figure 4, the lan-
guage fluency and the rhyming performance drop
significantly in terms of ∆ PPL-Gen, Rhyme-L and
Rhyme-G. Although the diversity of the rhyming
words increases, those ending words do not share
the same vowel, and thus, not rhyme with each
other. The performance drop is expected as by only
masking 50% of tokens from the inputs, there is a

17Detailed results are in Table 9 in Appendix G.

Mask Model Fluency Coherence Rhyme

TOKEN ILM 2.63 2.89 2.58
SongRewriter 3.58 3.34 3.75

SENT ILM 3.36 2.96 2.91
SongRewriter 3.71 3.17 3.82

ALL
GPT2 3.31 3.18 2.56

SongNet 3.59 3.25 3.11
SongRewriter 3.76 3.38 3.93

Table 4: Human evaluation results on the generated
outputs. For the partial song rewriting, the masking
ratio is set to 0.5.

task discrepancy between the training task (rewrit-
ing half of the tokens) and inference task (rewriting
content with ratios ranging from 0 to 1).

Regarding the vowel modeling, by removing the
vowel loss from the training objective, the vowel ac-
curacy for the full song rewriting drops from 98.5%
to 92.5%, showing that incorporating vowel loss
can help the model generate tokens with correct
vowels at the specific positions.

Human Evaluation
Apart from automatic metrics, we also conduct hu-
man evaluation following the previous works (Lee
et al., 2019; Xue et al., 2021). We sample 200 ex-
amples from the test set as inputs and generate 200
outputs from each model. Then, we recruit 3 anno-
tators with musical knowledge background to score
the generated lyrics from 1 (Poor) to 5 (Perfect) on
three criteria: language fluency, content coherence
and rhyme quality.

As shown in Table 4, the human evaluation re-
sults show that SongRewriter outperforms other
models on all three tasks (full song rewriting, sen-
tence rewriting and partial sentence rewriting). In
particular, SongRewriter performs significantly bet-
ter in terms of rhyming.

5 Conclusion

In this work, we propose to overcome the diffi-
culties of modelling the melody-lyrics correlation
from limited parallel datasets by directly rewriting
the lyrics of songs. We propose a unified model
for full and partial song rewriting by training with
a multi-level randomized masking scheme. The
proposed model allows rewriting arbitrary parts
of the inputs according to the bidirectional context.
Besides, we introduce a partial vowel masking strat-
egy into training to enable lyrics generation on any
rhyme schemes. A novel decoding strategy is de-
signed to improve the end rhyme consistency and
rhyming word diversity. Novel metrics are pro-

12870



posed for rhyme evaluation. Both automatic and
human evaluation shows our proposed model out-
performs baseline and state-of-the-art models.

6 Limitation

Since each Chinese character contains 1 syllable,
our proposed model can control the number of syl-
lables in the generation by the number of generated
tokens. However, this method does not apply to
languages with multisyllabic words (such as En-
glish). To rewrite lyrics with multisyllabic words
while maintaining the same number of syllables, a
special technique such as syllable-level subword
tokenization may be needed. This line of work will
be left to be investigated in the future.

7 Ethics Statement

Rewriting the lyrics of a song may cause potential
copyright infringement. Besides, the copyrights
of the lyrics in the dataset belong to the song writ-
ers. To protect the copyrights, our model and the
released dataset will be protected by the license,
Creative Commons Attribution-NonCommercial
(CC-BY-NC), and prohibited from commercial use.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2492–
2501, Online. Association for Computational Lin-
guistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Haoshen Fan, Jie Wang, Bojin Zhuang, Shaojun Wang,
and Jing Xiao. 2019. A hierarchical attention based
seq2seq model for chinese lyrics generation. ArXiv,
abs/1906.06481.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Harsh Jhamtani, Sanket Vaibhav Mehta, Jaime Car-
bonell, and Taylor Berg-Kirkpatrick. 2019. Learning
rhyming constraints using structured adversaries. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6025–
6031, Hong Kong, China. Association for Computa-
tional Linguistics.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1948–1958, Melbourne,
Australia. Association for Computational Linguistics.

Hsin-Pei Lee, Jhih-Sheng Fang, and Wei-Yun Ma. 2019.
iComposer: An automatic songwriting system for
Chinese popular music. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 84–88, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Piji Li, Haisong Zhang, Xiaojiang Liu, and Shuming Shi.
2020. Rigid formats controlled text generation. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 742–751,
Online. Association for Computational Linguistics.

Nayu Liu, Wenjing Han, Guangcan Liu, Da Peng, Ran
Zhang, Xiaorui Wang, and Huabin Ruan. 2022. Chip-
Song: A controllable lyric generation system for Chi-
nese popular song. In Proceedings of the First Work-
shop on Intelligent and Interactive Writing Assistants
(In2Writing 2022), pages 85–95, Dublin, Ireland. As-
sociation for Computational Linguistics.

12871

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/D19-1621
https://doi.org/10.18653/v1/D19-1621
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/N19-4015
https://doi.org/10.18653/v1/N19-4015
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2020.acl-main.68
https://doi.org/10.18653/v1/2022.in2writing-1.13
https://doi.org/10.18653/v1/2022.in2writing-1.13
https://doi.org/10.18653/v1/2022.in2writing-1.13


Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xichu Ma, Ye Wang, Min-Yen Kan, and Wee Sun Lee.
2021. AI-Lyricist: Generating Music and Vocabulary
Constrained Lyrics, page 1002–1011. Association for
Computing Machinery, New York, NY, USA.

Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani
Raiko, and Aristides Gionis. 2016. Dopelearning: A
computational approach to rap lyrics generation. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, page 195–204, New York, NY, USA.
Association for Computing Machinery.

Nikola I. Nikolov, Eric Malmi, Curtis Northcutt, and
Loreto Parisi. 2020. Rapformer: Conditional rap
lyrics generation with denoising autoencoders. In
Proceedings of the 13th International Conference
on Natural Language Generation, pages 360–373,
Dublin, Ireland. Association for Computational Lin-
guistics.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. GhostWriter: Using an LSTM for automatic
rap lyric generation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1919–1924, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ananth Ramakrishnan A, Sankar Kuppan, and Sobha
Lalitha Devi. 2009. Automatic generation of Tamil
lyrics for melodies. In Proceedings of the Workshop
on Computational Approaches to Linguistic Creativ-
ity, pages 40–46, Boulder, Colorado. Association for
Computational Linguistics.

Liang-Hsin Shen, Pei-Lun Tai, Chao-Chung Wu, and
Shou-De Lin. 2019. Controlling sequence-to-
sequence models - a demonstration on neural-based
acrostic generator. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations, pages 43–48,
Hong Kong, China. Association for Computational
Linguistics.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye,
Shikun Zhang, and Tao Qin. 2021. Songmass: Auto-
matic song writing with pre-training and alignment
constraint. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(15):13798–13805.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. 2019. MASS: Masked sequence to sequence pre-
training for language generation. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 5926–5936. PMLR.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14, page 3104–3112, Cambridge, MA, USA.
MIT Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Kento Watanabe, Yuichiroh Matsubayashi, Satoru
Fukayama, Masataka Goto, Kentaro Inui, and To-
moyasu Nakano. 2018. A melody-conditioned lyrics
language model. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
163–172, New Orleans, Louisiana. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Lanqing Xue, Kaitao Song, Duocai Wu, Xu Tan,
Nevin L. Zhang, Tao Qin, Wei-Qiang Zhang, and Tie-
Yan Liu. 2021. DeepRapper: Neural rap generation
with rhyme and rhythm modeling. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 69–81, Online. As-
sociation for Computational Linguistics.

Yi Yu, Florian Harscoët, Simon Canales, Gurunath
Reddy M, Suhua Tang, and Junjun Jiang. 2020.
Lyrics-conditioned neural melody generation. In
MultiMedia Modeling: 26th International Confer-
ence, MMM 2020, Daejeon, South Korea, January
5–8, 2020, Proceedings, Part II, page 709–714,
Berlin, Heidelberg. Springer-Verlag.

Le Zhang, Rongsheng Zhang, Xiaoxi Mao, and
Yongzhu Chang. 2022. QiuNiu: A Chinese lyrics
generation system with passage-level input. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-

12872

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/3474085.3475502
https://doi.org/10.1145/3474085.3475502
https://doi.org/10.1145/2939672.2939679
https://doi.org/10.1145/2939672.2939679
https://aclanthology.org/2020.inlg-1.42
https://aclanthology.org/2020.inlg-1.42
https://doi.org/10.18653/v1/D15-1221
https://doi.org/10.18653/v1/D15-1221
https://aclanthology.org/W09-2006
https://aclanthology.org/W09-2006
https://doi.org/10.18653/v1/D19-3008
https://doi.org/10.18653/v1/D19-3008
https://doi.org/10.18653/v1/D19-3008
https://ojs.aaai.org/index.php/AAAI/article/view/17626
https://ojs.aaai.org/index.php/AAAI/article/view/17626
https://ojs.aaai.org/index.php/AAAI/article/view/17626
https://proceedings.mlr.press/v97/song19d.html
https://proceedings.mlr.press/v97/song19d.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/N18-1015
https://doi.org/10.18653/v1/N18-1015
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.1007/978-3-030-37734-2_58
https://doi.org/10.18653/v1/2022.acl-demo.7
https://doi.org/10.18653/v1/2022.acl-demo.7


strations, pages 76–82, Dublin, Ireland. Association
for Computational Linguistics.

Rongsheng Zhang, Xiaoxi Mao, Le Li, Lin Jiang, Lin
Chen, Zhiwei Hu, Yadong Xi, Changjie Fan, and
Minlie Huang. 2020. Youling: an AI-assisted lyrics
creation system. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 85–91,
Online. Association for Computational Linguistics.

Guo Zhipeng, Xiaoyuan Yi, Maosong Sun, Wenhao Li,
Cheng Yang, Jiannan Liang, Huimin Chen, Yuhui
Zhang, and Ruoyu Li. 2019. Jiuge: A human-
machine collaborative Chinese classical poetry gen-
eration system. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 25–30, Flo-
rence, Italy. Association for Computational Linguis-
tics.

12873

https://doi.org/10.18653/v1/2020.emnlp-demos.12
https://doi.org/10.18653/v1/2020.emnlp-demos.12
https://doi.org/10.18653/v1/P19-3005
https://doi.org/10.18653/v1/P19-3005
https://doi.org/10.18653/v1/P19-3005


A Dataset Statistics

Model #train #dev #test
Baidu Encyclopedia 15M – –

Prose 330k 2k 2k
Lyrics 154k 1k 1k

Table 5: Statistics on the number of documents, proses
and lyrics. The dev and test sets are randomly sampled.

B Baselines

We evaluate the proposed model, SongRewriter,
for both full and partial rewriting tasks. For the
full rewriting task, we compare SongRewriter with
GPT2 (Radford et al., 2019) and SongNet (Li et al.,
2020) which are fine-tuned on our lyrics datasets.
For the partial rewriting task, we compare the pro-
posed model with ILM (Donahue et al., 2020). The
details of the baselines are as follows,

• GPT2: GPT2 is an auto-regressive language
model based on transformer decoder. Initial-
izing with GPT2-Chinese,18 we fine-tune the
model on the lyrics dataset. Note that the
lyrics generated by GPT2 is in free form, it
does not follow any format constraints.

• SongNet: SongNet is a rigid format con-
trolled text generation model which forces
the generated output to follow the exact sen-
tence lengths and sentence numbers of the
input. We fine-tune their released pre-trained
checkpoint19 on the lyrics dataset for full song
rewriting.

• ILM: ILM is a GPT2-based model specialised
on the text infilling task. It randomly replaces
part of the text by "[blank]" tokens, and ap-
pends the masked segments (which are con-
catenated by "[answer]" tokens) to the end of
the masked input text. For example, given a
source text "She ate leftover pasta for lunch",
an ILM example will be "She ate [blank] for
[blank] [sep] leftover pasta [answer] lunch
[answer]". We follow their training strate-
gies and fine-tune GPT2-Chinese on the lyrics
dataset for partial song rewriting.

• ILM-Keyword: We incorporate the keyword-
controlled function to the ILM model by

18uer/gpt2-chinese-cluecorpussmall
19https://github.com/lipiji/SongNet

adding a keyword prompt to the ILM exam-
ple, leading the input to be in the form, "[key-
word] pasta [keyword] lunch [CLS] She ate
[blank] for [blank] [sep] leftover pasta [an-
swer] lunch [answer]". We use ILM-Keyword
as a baseline model for keyword-conditioned
tasks.

C Training and Inference Settings

The proposed model is a transformer encoder-
decoder model (Vaswani et al., 2017). There are
12 layers for the encoder and decoder, respectively,
with 12 heads for each layer. The hidden dimen-
sion is 768, and the dropout (Srivastava et al., 2014)
is 0.1. We employ the AdamW (Loshchilov and
Hutter, 2019) optimizer with a weight decay rate to
be 10−4. For the pre-training stage, we use 8,000
warm-up steps with the default learning rate sched-
ule in Vaswani et al. (2017) and train for 10, 000
iterations. On the fine-tuning stage, we use a fixed
learning rate of 10−5 and train until models con-
verge. We first fine-tune the model on the prose
dataset. Afterwards, we fine-tune the model on the
lyrics dataset. During inference, we apply Top-K
sampling (Fan et al., 2018) with k to be 32. The
rhyme factors, γ and λ, are set to 0.3 and 1.4, re-
spectively.

D Definition of Evaluation Metrics

• Keyword Recall: To evaluate the content con-
trol ability by keyword prompt, we calculate
the keyword recall rate, which is the percent-
age of the keywords appearing in the gener-
ated outputs.

• Vowel Accuracy: To measure the perfor-
mance of the vowel control, we calculate the
percentage of output tokens with correct vow-
els as the input.

• Diversity: We evaluate the diversity of the
generated lyrics by distinct-n (Li et al., 2016),
which is defined as the number of unique n-
grams divided by total number of n-grams.
We report the average of the distinct-n with n
from 1 to 4:

Diversity =
1

4

4∑

n=1

distinct-n

• Coherence: To evaluate the semantic consis-
tency among all the sentences of the gener-
ated lyrics, we measure the semantic textual

12874

https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
https://github.com/lipiji/SongNet


Model Diversity Local-STS Global-STS PPL-Gen PPL-Test Dist-RW Rhyme-L Rhyme-G
Test Set 0.584 0.276 0.269 6.192 NA 0.540 0.724 0.804
GPT2 0.4490.005 0.3430.002 0.3530.001 2.4970.013 3.539 0.4370.005 0.5460.004 0.7230.005

SongNet 0.4740.002 0.3230.002 0.3130.001 3.6320.011 3.429 0.4650.002 0.6050.002 0.7660.001
SongRewriter 0.5610.002 0.3220.001 0.3020.001 4.9050.035 3.157 0.5520.002 0.7370.002 0.8120.001

Table 6: Evaluation on the content quality of the generated lyrics in full song rewriting task. For each model, we
apply Top-K sampling (Fan et al., 2018) for five times and report the mean and standard deviation (subscript).

Model Mask Ratio Diversity Local-STS Global-STS PPL-Gen Dist-RW Rhyme-L Rhyme-G
Test Set NA NA 0.584 0.276 0.269 6.192 0.540 0.724 0.804

ILM

TOKEN
0.25 0.657 0.271 0.253 15.99 0.602 0.704 0.783
0.5 0.668 0.292 0.270 22.72 0.594 0.654 0.762

0.75 0.692 0.323 0.293 33.49 0.446 0.616 0.740

SENT
0.25 0.588 0.281 0.269 7.03 0.548 0.686 0.785
0.5 0.536 0.295 0.281 6.71 0.506 0.656 0.782

0.75 0.467 0.333 0.319 5.44 0.446 0.633 0.777

SongRewriter

TOKEN
0.25 0.632 0.266 0.253 8.30 0.590 0.737 0.802
0.5 0.612 0.275 0.265 8.22 0.564 0.710 0.796

0.75 0.623 0.276 0.264 9.16 0.563 0.719 0.801

SENT
0.25 0.624 0.277 0.264 7.38 0.566 0.718 0.800
0.5 0.614 0.278 0.265 7.57 0.559 0.743 0.815

0.75 0.644 0.280 0.265 8.60 0.608 0.766 0.826

Table 7: Evaluation results on the content quality of the generated outputs on the task of partial song rewriting under
masking schemes, {SENT, TOKEN}, and masking ratios, {0.25, 0.5, 0.75}.

similarity (STS) between all sentence pairs.
Specifically, we employ pre-trained SimCSE
(Gao et al., 2021) to extract sentence embed-
dings and calculate the cosine similarity:20

Global-STS =

2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

SimCSE(si, sj)

Besides, we also calculate the STS between
adjacent sentences for the consistency from a
local aspect:

Local-STS =
1

N − 1

N−1∑

i=1

SimCSE(si, si+1)

We define the coherence to be the average:

Coherence =
1

2
(Global-STS + Local-STS)

• PPL-Test: We evaluate the quality of the
model by calculating the model perplexity on
the test set.

• PPL-Gen: We evaluate the quality of the gen-
erated lyrics with the perplexity from a lan-
guage model, which is a pre-trained Chinese

20We use sentence-Transformers library with pre-trained
model cyclone/simcse-chinese-roberta-wwm-ext.

GPT2 model21 (Radford et al., 2019) fine-
tuned on the lyrics dataset.

E Full Song Rewriting

Table 6 shows evaluation results on the content
quality of the generated lyrics in full song rewriting
task. For each model, we apply Top-K sampling
(Fan et al., 2018) for five times and report the mean
and standard deviation (subscript). Figures 5 and 6
show two examples of the generated lyrics.

F Partial Song Rewriting

Table 7 shows evaluation results on the generated
outputs on the task of partial song rewriting under
masking schemes, {SENT, TOKEN}, and mask-
ing ratios, {0.25, 0.5, 0.75}. Figure 8 shows an
example of token-level rewriting. Figure 9 shows
an example of sentence-level rewriting.

G Rhyme Scheme Control

Table 9 shows the evaluation results on the task of
vowel-conditioned partial song rewriting under the
masking schemes, {SENT, TOKEN}, and masking
ratios, {0.25, 0.5, 0.75}.

Figure 7 shows an example of applying rhyme
scheme control. We first extract the syllable tem-
plate and rhyme scheme from the original lyrics.

21We use the pre-trained model uer/gpt2-chinese-
cluecorpussmall.

12875

https://www.sbert.net/
https://huggingface.co/cyclone/simcse-chinese-roberta-wwm-ext
https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
https://huggingface.co/uer/gpt2-chinese-cluecorpussmall


Model ∆ Diversity ↓ ∆ Coherence ↓ ∆ PPL-Gen ↓ Dist-RW ↑ Rhyme-L ↑ Rhyme-G ↑
SongRewriter 0.023 0.040 1.287 0.552 0.737 0.812
- inference Constraints 0.151 0.105 2.452 0.325 0.767 0.839
- Fixed Masking Ratio (0.5) 0.047 0.013 2.964 0.594 0.568 0.753

Table 8: Ablation results on the generated lyrics in full song rewriting task.

As shown in the middle column of Figure 7, the
original lyrics control both end rhyme and internal
rhyme. The end rhyme scheme is AAAA, where all
four lines of a verse share the same ending vowel
and rhyme with each other. As shown in Figure 7,
by inputting the desired vowel tokens in the target
positions, the generated lyrics have a consistent
rhyme scheme with the original lyrics.

Mask Ratio Vowel Accuracy

TOKEN
0.25 0.984
0.5 0.982

0.75 0.985

SENT
0.25 0.984
0.5 0.984

0.75 0.984
ALL 1.0 0.985

Table 9: Evaluation results of SongRewriter on the task
of vowel-conditioned partial song rewriting under mask-
ing schemes, {SENT, TOKEN}, and masking ratios,
{0.25, 0.5, 0.75}.

H Ablation Study

Table 8 shows ablation results on the generated
lyrics in full song rewriting task.

Model Dist-RW Rhyme-L Rhyme-G
SongRewriter 0.552 0.737 0.812
- Seq TK & Seq LP 0.500 0.510 0.712
- Seq TK & Rev LP 0.531 0.577 0.745
- Rev TK & Rev LP 0.511 0.707 0.806

Table 10: Evaluation results on the rhyming perfor-
mance of the generated lyrics on the full song rewriting
task under different language order and local position
embedding order.

I Sequence Order and Local Position
Order

To improve end rhyme modeling, we incorporate
reverse language modeling with local position
embeddings. We assume that by reversing the
language order, the model is easier to locate the
rhyming words (which corresponds to " ⟨l0⟩", the
first token of the reverse sentence according to the
local position embedding) and generate rhyming

sentences by generating the end words before the
rest of the sentences. In this section, we verify the
effectiveness of "labeling rhyming words by ⟨l0⟩"
and "generating rhyming word of the sentence first"
by comparing four model variants: reverse token
order with sequential local position (the proposed
method), reverse token order with reverse local
position (Rev TK & Rev LP), sequential token or-
der with sequential local position (Seq TK & Seq
LP) and sequential token order with reverse local
position (Seq TK & Rev LP).

As shown in Table 10, the rhyming performance
decreases drastically for models with sequential
token order in both Rhyme-L and Rhyme-G. With
the same token order, the models with the ⟨l0⟩ of
the local position aligned with the rhyming word
perform slightly better than those not aligned. The
results show that generating rhyming words before
the other words in the sentences can significantly
improve the rhyming performance of the gener-
ated outputs. However, the role of local position
embeddings to help identify the rhyming words is
less important. We hypothesize that, apart from
the local position, the model can also identify the
rhyming words from the global position (the tokens
before or after the sentence delimiter tokens).

J Additional Examples

12876



Figure 5: An example generated by SongRewriter. End
characters sharing the same vowel (the pinyin of the
characters are in the adjacent bracket) are highlighted
in the same color. Lyrics is splitted into blocks for clear
illustration.

Figure 6: An example generated by SongRewriter. End
characters sharing the same vowel (the pinyin of the
characters are in the adjacent bracket) are highlighted
in the same color. Lyrics is splitted into blocks for clear
illustration.

12877



Figure 7: An example of full song rewriting based on the internal rhyme scheme of the input lyrics. The lyrics is
from Blue and White Porcelain by Jay Chou. The left column is the original lyrics, with the rhyme scheme in the
middle column. For the rhyme scheme, only the vowels of the rhyming characters are remained. The vowels of
other characters are replaced by a placeholder token. The output lyrics on the right column are generated based on
the rhyme scheme.

Figure 8: An example of partial sentence rewriting by
SongRewriter. The original lyrics is from Later by Rene
Liu. The inputs are the original lyrics with red tokens
masked. The model generates tokens at the correspond-
ing masked positions (highlighted in red on the right
column).

Figure 9: An example of sentences rewriting by
SongRewriter. The original lyrics is from Actor by
Zhiqian Xue. The inputs are the original lyrics with sen-
tences in red masked. The outputs are the red sentences
on the right.

12878



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

�3 A2. Did you discuss any potential risks of your work?
7

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
our data does not contain any personal information

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix A

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix C

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12879

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix C

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
4.2

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
4.3

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

12880


