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Abstract

Machine Reading Comprehension (MRC) is
to answer questions based on a given passage,
which has made great achievements using pre-
trained Language Models (LMs). We study the
robustness of MRC models to names which is
flexible and repeatability. MRC models based
on LMs may overuse the name information
to make predictions, which causes the repre-
sentation of names to be non-interchangeable,
called name bias. In this paper, we propose a
novel Causal Interventional paradigm for MRC
(CI4MRC) to mitigate name bias. Specifically,
we uncover that the pre-trained knowledge con-
cerning names is indeed a confounder by an-
alyzing the causalities among the pre-trained
knowledge, context representation and answers
based on a Structural Causal Model (SCM). We
develop effective CI4MRC algorithmic imple-
mentations to constrain the confounder based
on the neuron-wise and token-wise adjustments.
Experiments demonstrate that our proposed
CI4MRC effectively mitigates the name bias
and achieves competitive performance on the
original SQuAD. Moreover, our method is gen-
eral to various pre-trained LMs and performs
robustly on the adversarial datasets.

1 Introduction

Using pre-trained transformer-based Language
Models (LMs) has become the cornerstone of MRC
(Devlin et al., 2019; Yang et al., 2019; Yamada
et al., 2020; He et al., 2021), and the state-of-the-
art performance is achieved by fine-tuning the LM
on various datasets (Rajpurkar et al., 2016; Yang
et al., 2018; Dasigi et al., 2019). The lexical and
syntactic knowledge encoded by LMs, as well as
factual knowledge, is a panacea for the model to
learn MRC solutions effectively (Kaneko and Bol-
legala, 2022). However, the pre-trained knowledge
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(a)

Passage: [Hillary]ans majors in law and 
economics, while Lindsey is earning a 
degree in classical piano performance.

Question: Who is more likely to 
become a politician? 

Example

Model Prediction: Hillary

Passage: [Lindsey]ans majors in law and 
economics, while Hillary is earning a 
degree in classical piano performance.

Model Prediction: Hillary

(b)
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Figure 1: Examples of pre-trained knowledge mislead-
ing the MRC systems fine-tuned on the train set of
SQuAD. (a) An example of the name swap template.
(b) The Exact Match (EM) scores of three backbones:
BiDAF, BERT-Large, XLNet-Large on SQuADname
and SQuADswap

name. The details about SQuADname and
SQuADswap

name are in Section 5.

correlates general facts (e.g., the politician) with
specific entities (e.g., Hillary), occasionally leading
to name bias and other unintentional biases.

In this work, we focus on the representations of
given names in MRC obtained by pre-trained LMs.
Previous work showed that the representations of
named entities incorporate sentiment or gender
(Wang et al., 2022b; Longpre et al., 2021), which is
often transferable across entities via a shared name.
Also, Huang et al. (2021) found that, depending
on the corpus, names tend to be grounded to spe-
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cific entities, even in generic contexts. However,
recent works pursued stronger MRC performance
and focused on stronger LMs or some other tech-
nologies, such as curriculum learning (Wang et al.,
2022c) and prompting (Wang et al., 2022a). Pow-
erful LMs Ω are achieved by pre-training on their
corresponding corpus sources C. We can use Ω
as a backbone and fine-tune the target model on
the train set. It is arguably common sense that the
stronger the pre-trained Ω is, the better the MRC
model will be. However, the fine-tuning stage only
exploits the C’s knowledge on what to transfer but
neglects how to transfer. Thus, this may not always
be the case of consensus under adversarial attacks.

As shown in Figure 1(b), we can see a para-
dox: though stronger Ω achieves higher perfor-
mance on SQuADname, it indeed degrades that on
SQuADswap

name. We found this may be due to some
unintentional effects of pre-trained knowledge on
named entities. To further explore the name bias,
we show an example template in Figure 1(a), where
the pre-trained knowledge of “Hillary” misleads
the prediction of Ω. The name “Hillary” is strongly
associated with politicians in the corpus C, so the
model neglects the context of the passage, lead-
ing to the over-reliance on name information to
answer questions. We will explain these tests in
detail in Section 5. Therefore, when the stronger
Ω is utilized in MRC, the stereotypical knowledge
will be more robust than new knowledge in a single
sample and the stereotypical name bias becomes
misleading in adversarial cases. On this point, such
a phenomenon is an easily overlooked shortage:
some partial pre-trained knowledge is a confounder
that limits robust performance for MRC models.
However, the pre-trained Ω encodes a large amount
of knowledge about linguistics and the world, fa-
cilitating rapid adaptation to MRC. Therefore, we
aim to mitigate the biased effects of names without
compromising the original context representation.

In this paper, we propose a novel Causal Inter-
ventional paradigm for MRC (CI4MRC) to miti-
gate the effects of biased name representations. Our
method is based on the Structural Causal Model
(SCM) for the causalities among the pre-trained
knowledge, context representation, and answers.
Specifically, our contributions to this paper are sum-
marized as follows:

• We first construct an SCM to formalize the
causalities for the guidance of alleviating
name biases. The SCM indicates that the pre-

trained knowledge is inherently a confounder
that can lead to spurious correlations between
context representations of names and ground-
truth answers. We also analyze why our pro-
posed CI4MRC works better through causal
inference, which motivates us to exploit the
practical implementation of CI4MRC.

• We propose an effective implementation to in-
tervene in MRC based on the SCM and the
backdoor adjustment (Pearl et al., 2016). We
convert feed-forward networks (FFNs) in a
pre-trained LM into an equivalent Mixture-
of-Experts (MoE) (Bengio, 2013) model with
conditional activation. And we eliminate the
experts specific to name activation, motivating
MRC models to explore sophisticated reason-
ing skills during the training phase.

• The intervention in FFNs successfully atten-
uates the name bias while it has a little toxic
to the downstream MRC task. Therefore, we
regard the classifier as the distilled knowledge
and develop the token-wise adjustment to rem-
edy the shortcoming.

• Experimental results show that our proposed
CI4MRC is general to various pre-trained
backbones and achieves competitive perfor-
mance, meaning that we effectively mitigate
the name bias.

2 Related Work

Machine Reading Comprehension is a task to
answer questions given a passage (Rajpurkar et al.,
2016; Dua et al., 2019). In recent years, many influ-
ential works progressed the development of effec-
tive QA models (Devlin et al., 2019; Cheng et al.,
2020; Guan et al., 2022). For example, BiDAF
(Seo et al., 2017) employs an RNN-based sequen-
tial framework to encode questions and passages,
while QANet (Yu et al., 2018) employs convolu-
tion and self-attention. Then, the pre-trained net-
works rapidly become the mainstream and result in
models outperforming human-level performance in
some datasets (Joshi et al., 2017; He et al., 2021).
However, accuracy in the i.i.d test cannot explain
the paradoxical phenomenon in Figure 1. Our work
analyzes it from a causal view by showing that pre-
training knowledge is a confounder.

Bias in Pre-trained LMs has been widely con-
cerned. The performance of pre-trained models
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(Yang et al., 2019; Yamada et al., 2020; He et al.,
2021) is remarkable, while recent work has shown
that they capture biases from the corpus (Huang
et al., 2021; Meade et al., 2022; Steed et al., 2022).
The findings have promoted a growing amount of
research to focus on mitigating these biases (Web-
ster et al., 2020; Sanh et al., 2021; Ravfogel et al.,
2022). The name bias in this work is focused on
names with implicit stereotypical information.

Causal Inference (Pearl et al., 2016) has been
widely used in medicine, public policy, and epi-
demiology for many years (Balke and Pearl, 2013;
Richiardi et al., 2013). It not only is a framework
for interpreting data, but also provides causal mod-
eling tools and solutions to achieve intended goals
by estimating causal effect (Pearl, 2019). Recently,
causal inference has also attracted increasing at-
tention in natural language processing to mitigate
the dataset bias (Feder et al., 2021; Ding et al.,
2022). We approach MRC from a causal perspec-
tive and offer a fundamental causal interventional
MRC paradigm for mitigating name bias.

3 Problem Formulations

3.1 Machine Reading Comprehension

We are interested in extractive MRC, which re-
quires models to predict the start and end posi-
tions of answers from a given passage. LMs are
widely utilized in the task, following the paradigm
of fine-tuning. It is a classification task, and we
train a classifier P (y|x; θ) to predict the start posi-
tion yst ∈ {1, ..., SeqL} and end position yend ∈
{1, ..., SeqL} as an answer. We consider the prior
knowledge as the context representation x, encoded
by the pre-trained Ω on the corpus C. Especially,
we denote the output of Ω by x. We fine-tune the Ω
and a classifier P (y|x; θ) on the train set and then
evaluate it on the test set.

3.2 Structural Causal Model

From the above discussion, we can know that θ in
fine-tuning is dependent on the pre-training. Such
“dependency” can be formalized with a Structural
Causal Model (SCM) (Pearl et al., 2016) proposed
in Figure 2(a), which is represented as a directed
acyclic causal graph. The nodes denote the vari-
ables in the model, and the edges between nodes
denote the causality. For example, if Y is a de-
scendant of X , X is a potential cause of Y and
Y is the effect. We introduce the graph at an ab-
stract level as follows and will explain the detailed
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Figure 2: (a) Causal graph for MRC. (b) Interventional
MRC where we directly model P (Y |do(X = x)).

implementations in Section 4.

• K → X . We denote X as the context repre-
sentation of passages and questions and K as
the pre-trained knowledge (i.e., the model Ω
and its corpus C). The connection means that
the representation X is generated by Ω.

• X → M ← K. M is a mediator variable
that denotes the low-dimensional multi-source
knowledge of passages, questions, and K.
The branch X → M means the representa-
tion can be denoted by linear or nonlinear
projection onto the manifold base. Moreover,
K → M denotes the semantic and world in-
formation embedded in M .

• X → Y ← M . To simplify the description,
we directly denote Y as the probability of pre-
dicting answers rather than yst and yend. X
affects Y in two ways, the direct path X → Y
and the mediation path X → M → Y .
X → Y can be neglected if X can be fully
represented by M , which is almost impossible
for a model. The mediation path is also un-
avoidable because any classifier is considered
to utilize M implicitly.

3.3 Causal Intervention on SCM
An ideal MRC model should capture the true
causality between X and Y to adapt to various
cases. For example, as illustrated in Figure 1(a), we
expect that the “Hillary” prediction for the question
is caused by “law and economics” in the passage,
not the stereotype of Ω. However, the traditional
methods which use the correlation P (Y |X) fail to
do so because X is not the only potential cause of
Y . Therefore, the increased probability of Y given
X will be affected by the spurious correlation via
the two paths: K → X (e.g., prior knowledge
of the “Hillary” token generates biased representa-
tions of politicians) and K → M → Y (e.g., the
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Figure 3: A case study of the differences between
P (k|X) and P (k). k denotes the knowledge about
names, and thirty names are sampled to avoid clutter. X
is the template we showed before.

“Hillary” token generates the “Hillary” semantic,
which provides useful context for answering the
question). Therefore, as shown in Figure 2(b), we
use the causal intervention P (Y |do(X)) instead of
the likelihood P (Y |X) for MRC to exploit the true
causality between X and Y .

We first formulate P (Y |X) to analyze the con-
founder k ∈ K by using Bayes rule:

P (Y |X) =
∑

k

P (Y |X, k)P (k|X)

= P (Y |X, k1)P (k1|X)

+ P (Y |X, k2)P (k2|X)...

(1)

where the confounder K introduces the name bias
via P (k|X). Supposed that P (k1|X) is much
larger than others, P (Y |X) would be approxi-
mately equal to P (Y |X, k1). As a result, the pre-
diction from X to Y will be severely biased by k1,
not affected by X itself. As illustrated in Figure
2(b), if we intervene in X (i.e., P (Y |do(X = x)),
the edge between K and X is cut off.

The backdoor adjustment assumes that we can
observe and stratify the confounder, where each k
is a stratification of K. By applying the backdoor
adjustment on the causal graph, we achieve:

P (Y |do(X = x)) =
∑

k

P (Y |X = x,K = k)P (K = k)

=
∑

k

P (Y |X = x,K = k,M = g(x, k))P (K = k)

(2)

where g is a function defined later, and K is no
longer affected by X . Thus, the intervention forces
X to treat every k fairly, subject to its prior P (k),

into the prediction of Y . The detailed derivation
based on the do-calculus rule is shown in Appendix
A. As shown in Figure 3, we conduct a case study to
show the gap between the prior P (k|X) and P (k).
k ∈ K is the set of names sampled from 1990 U.S.
Census data, and X is the template mentioned in
Figure 1(a). The column denotes the output prob-
ability of the model when a name is swapped into
the template. The figure demonstrates that perform-
ing intervention can alleviate name bias. It is not
trivial to instantiate k in Ω due to the unobserved
corpus and we will discuss it next.

4 Causal Intervention for MRC

In this section, we will detail the proposed
CI4MRC by providing practical implementations
for g(x, k), P (Y |X,K,M), P (K) in Eq. (2). In
particular, we first apply the neuron-wise adjust-
ment based on Mixture-of-Experts (MoE) (Bengio,
2013) to mitigate the name bias in the pre-trained
LMs. We find that this debiasing implementation
does benefit from reducing the bias in the upstream
representation, but it is a little toxic to the MRC per-
formance, which also occurs in (Steed et al., 2022).
Therefore, we develop the token-wise adjustment
to remedy the shortcoming and combine the two
adjustments as the overall debiasing method.

4.1 Neuron-wise Adjustment
Our first implementation is motivated by the in-
ner mechanism of pre-trained networks. The FFNs
constitute nearly two-thirds of model parameters,
which can be viewed as storing amounts of knowl-
edge (Geva et al., 2021). The phenomenon of
sparse activation is found in the activation patterns
of FFNs, indicating that FFNs have functional par-
titions and some specific neurons are only activated
when specific entities are input (Zhang et al., 2022).
Therefore, we can leverage this feature to avoid
the model utilizing the name bias during the train-
ing stage, exploring robust reading comprehension.
Specifically, to convert the FFNs of Ω into MoE,
we need to recognize the functional partitions (i.e.,
experts) in FFNs and construct an expert selector
to eliminate the experts specific to name activation.
We will introduce the two steps as follows.

4.1.1 Parameter Split
Based on the sparse activation in the FFNs, we
group together the neurons often activated simulta-
neously to split an FFN into several parts. Thus, we
can exclude a small number of experts to mitigate
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the name bias. Formally, the FFNs of Ω with the
activate function are two linear layers, which use
the representation x ∈ Rdmodel as the input:

h = xW1 + b1,

F (x) = σ(h)W2 + b2
(3)

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel

are the model weights, and σ(·) is an activation
function in the FFN. The size de of each expert is
the same, and the number of experts is n =

dff
de

.
To split an FFN into n parts, we construct a graph
by counting the simultaneously activated neurons
of the training set samples. A node is represented
as a neuron, and the value of an edge is computed
by activated information:

edge-act(i, j) =
∑

x

hx
i h

x
j 1[h

x
i > 0,hx

j > 0] (4)

where hx
i and hx

j are the i-th and j-th neurons
of h for the input x and the indicator function
1[condition] implies hx

i and hx
j are co-activated.

Then, we directly employ graph partitioning algo-
rithms (Karypis and Kumar, 1998) on this graph
to achieve experts. Because we calculate the edge
values by co-activation information, the internal
connections of each expert will be strong. To im-
plement the split into the FFNs, we can use a trans-
formation matrix Mt ∈ R

dff×dff to transform
and cluster the parameters:

[W 1
1 ,W

2
1 , ...,W

n
1 ] = W1Mt

[W 1
2 ,W

2
2 , ...,W

n
2 ]

T = MT
t W2

(5)

where MT
t is the transposed matrix of Mt and W i

1

denotes an expert. Note that the transformation
will not affect the original process in FFNs until
we conduct the second step:

F (x) = σ(h)MtM
T
t W2 + b2

= σ(hMt)M
T
t W2 + b2

= σ(xW1Mt + b1Mt)M
T
t W2 + b2

(6)

4.1.2 Expert Selector
We build an expert selector to mask the experts that
are activated specific to names in x. In this work,
we adopt a multi-layer perceptron (MLP) as the
selector, which takes x as the input and predicts
whether a neuron is sensitive to names in x.

Back to Eq. (2), we define each stratum
of pre-trained knowledge as an expert K =

{k1, k2, ..., kn} and ki is equal to W i
1 . M =

g(x, k) denotes the MLP output. We assume a uni-
form prior for the adjusted neuron, i.e., P (ki) =
1/n. The overall neuron-wise adjustment is:

P (Y |do(X = x)) =
1

n

n∑

i=1

P (Y |xW i
1mi)

NWGM≈ P (Y |xW1M
′
t )

(7)

where we apply Normalized Weighted Geometric
Mean (NWGM) (Yang et al., 2020) to move the
outer sum

∑
P into the inner P (

∑
). The mi deter-

mines whether the expert is selected and M
′
t is the

intervened Mt. It is worth noting that the neuron-
wise adjustment can be applied to most pre-trained
LMs since the phenomenon of sparse activation
(Dai et al., 2022) is demonstrated to emerge in
FFNs of pre-trained Transformer-based models.

4.2 Token-wise Adjustment
In the MRC, most prevailing pre-trained models
use a classifier for prediction. The classifier can
be regarded as distilled knowledge (Hinton et al.,
2015). Supposed that the sequence length of x is l,
we denote the probabilities of answer positions as
A = {a1, a2, ..., al}. Each stratum of pre-trained
knowledge is: K = {k1, k2, ..., kl}, where ki = ai.
The g(x, ki) and P (ki) are represented as:

g(x, ki) = P (ai|x)xi

P (Y |X,K,M) = P (Y |x⊕ g(x, ki))
(8)

where P (ai|x) is the probability of ai output by the
classifier, xi is the token representation on i, and
⊕ denotes vector concatenation. We also assume a
uniform prior for each position, i.e., P (ki) = 1/l.
The overall token-wise adjustment is:

P (Y |do(X = x)) =
1

l

l∑

i=1

P (Y |x⊕ P (ai|x)xi)

NWGM≈ P (Y |x⊕ 1

l

l∑

i=1

P (ai|x)xi)

(9)

where we also apply NWGM to reduce the compu-
tational cost of the network forward propagation.

4.3 Combined Adjustment
We combine the neuron-wise and token-wise ad-
justments as the overall debiasing method to be
more fine-grained by applying neuron-wise adjust-
ment after token-wise adjustment. Thus, the overall
adjustment is:
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Question: Who won Super Bowl 50?

Passage: The American Football Conference
(AFC) champion Denver Broncos defeated ...
to earn their third Super Bowl title.

Passageswap: The American Football Confer-
ence (AFC) champion Andrew defeated ... to
earn their third Super Bowl title.

Table 1: An example of SQuADswap
name. The answer is

highlighted in each passage.

Question: Who is more likely to be a president?

Passage: <name1> wrote a report on animals,
while <name2> made a political speech in
front of the crowd.

Table 2: An example of the template for name bias. The
answer is highlighted in the passage.

P (Y |do(X = x)) ≈ P (Y |(x⊕ 1

l

l∑

i=1

P (ai|x)xi)W1M
′
t )

(10)

5 Experiments

5.1 Datasets and Settings

5.1.1 Datasets
We conducted experiments on two bias benchmarks
to evaluate our debiasing methods: (1) SQuAD
(Rajpurkar et al., 2016) and its variants. We se-
lect samples from SQuAD whose answers contain
names to form SQuADname. SQuADname contains
over 1000 questions. Then, for each sample in
SQuADname, we swap the name for another name
from the list with 100 names (full lists of names are
in Appendix B) and obtain SQuADswap

name, as shown
in Table 1. The names in the list are selected from
1990 U.S. Census data and the media1 based on
frequencies. (2) Templates for person name bias.
We construct a set of 15 templates with <name1>
and <name2> slots to evaluate the effect of name
bias. The slots are inserted with pairs of names
sampled from the name list. Table 2 shows an
example of the template and other templates are
shown in Appendix B.

1https://courses.cs.duke.edu/compsci307d/
fall20/assign/01_data/data/ssa_complete/ and
public.tableau.com/views/2018Top100/1Top100

Model Ω Corpus Sources C Cls. Gen.

XLNet Web
√ √

BERT Wikipedia
√ ×

DeBERTa Wikipedia
√ √

Table 3: Pre-trained LMs and their pre-trained corpus
sources. Cls. and Gen. denote whether they are typically
used for classification or generation.

5.1.2 Experimental Setups
We use BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019) and DeBERTa (He et al., 2021) listed
in Table 3 with the version of large size as our back-
bones because different corpus sources C can cause
different impacts on name bias. We use Adam as
the optimizer and a learning rate of 5e-5 for fine-
tuning models on the train set of SQuAD. The batch
size is set to 16, and the number of epochs is set
to 2. For inference, our CI4MRC aims to learn the
classifier P (Y |do(X)) about causalities instead of
the conventional correlation P (Y |X).

For the neuron-wise adjustment, we set the num-
ber of neurons in each expert de to 64. Since dff
of three LMs are all equal to 4096, the number of
experts n is 64. For the MLP selector, we use a
two-layer FFN with the activation function tanh(·)
as the architecture. The input, intermediate and
output dimension are 1024, 64 and 64. To train our
selector, we employ the cross-entropy loss and the
Adam optimizer with the learning rate of 1e-2. The
batch size is 512 and the number of epochs is 30.
More details are given in Appendix C.

5.1.3 Metrics
Our evaluation is based on the following metrics:
(1) Conventional accuracy scores of Exact Match
(EM) and F1, which are commonly used in MRC.
(2) Stereotype score (ST). We define the stereo-
type score as the percentage of model predictions
that change to other positions after the names are
swapped in SQuADname. (3) Name Fragility (NF)
measures how often the model prediction changes
when name pairs are swapped in the template.

5.1.4 Baselines
We deployed three representative methods that can
mitigate biases of pre-trained LMs for compari-
son: (1) DROPOUT (Webster et al., 2020). This
method increases the dropout parameters for at-
tention weight and hidden activation and performs
an additional pre-training phase. (2) PoE (Sanh
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Methods
Template SQuADswap

name SQuADname SQuAD
EM F1 EM F1 EM F1 EM F1

XLNetlarge (2019) 59.91 61.28 40.74 54.03 80.10 87.14 86.18 93.36
DROPOUT (2020) 66.37 70.96 46.30 59.94 76.42 86.15 84.67 92.83
PoE (2021) 67.57 69.24 46.93 59.33 78.51 85.50 83.99 92.54
R-LACE (2022) 74.14 75.25 48.84 60.62 76.68 84.58 83.41 91.88
CI4MRC (ours) 76.82 78.54 50.59 62.74 80.10 87.24 86.26 93.85

BERTlarge (2019) 58.91 59.98 44.26 56.52 78.29 85.23 83.71 90.66
DROPOUT (2020) 60.20 63.39 46.26 58.68 80.88 86.90 83.92 90.76
PoE (2021) 58.49 61.12 44.56 57.24 78.48 85.51 82.23 90.60
R-LACE (2022) 67.01 68.72 47.62 59.08 77.78 85.13 83.63 90.64
CI4MRC (ours) 73.46 74.25 48.14 59.76 81.10 86.29 84.09 91.30

Table 4: The EM and F1 scores of different debiasing methods based on XLNet-large and BERT-large. We evaluate
them on the independent and identically distributed (i.i.d) case (i.e., SQuADname, SQuAD) and the out-of-distribution
(o.o.d) case (i.e., Template, SQuADswap

name). Best results for each backbone are highlighted in each column.

Methods ST NF NF top-5

XLNetlarge 44.48 24.28 47.80
DROPOUT 37.43 17.83 40.91
PoE 38.39 17.96 36.73
R-LACE 36.93 12.71 32.60
CI4MRC 36.07 11.98 30.30

BERTlarge 40.46 36.00 65.99
DROPOUT 37.21 27.12 58.73
PoE 39.13 28.02 56.84
R-LACE 36.17 26.36 53.31
CI4MRC 35.12 25.31 51.50

Table 5: Stereotype scores (ST) and Name Fragility
(NF) for debiased XLNet and BERT models. The two
metrics closer to 0 indicate less biased model. NF top-5
means NF over the 5 most affected templates out of 15.

et al., 2021). It is a bias ensemble method that com-
bines the log probabilities from a pre-defined bias
model and a target model to debias. (3) R-LACE
(Ravfogel et al., 2022). R-LACE is a projection-
based debiasing technique that formulates the task
of erasing concepts from the representation space
as a constrained version of a general minimax game.
It recovers a low-dimensional subspace by a clas-
sifier to mitigate bias. The experimental settings
and training procedures are set as suggested in their
original papers or open source codes.

5.2 Results
5.2.1 Conventional Accuracy
We show EM and F1 scores in Table 4 and all
results for DeBERTa are shown in Appendix C
due to the limited pages, which have a simi-
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P: <name1> wrote a report on animals, while <name2> made a political 

speech in front of the crowd.

Q: Who is more likely to be a president?                             A: <name2> 

Average EM:   Swap specific name with         <name1>          <name2> 

XLNet-Large CI4MRC

Figure 4: A case study of the name swap template and
the average EM scores when name pairs with the spe-
cific name are inserted into the slots. Large gaps be-
tween the cases of <name1> and <name2> indicate
the name bias.

lar trend to BERT. Our proposed CI4MRC con-
sistently improves the performance in all back-
bones and achieves the best scores compared with
other debiasing methods. The large gap between
the performance of the backbones in SQuADswap

name
and SQuADname reflects that their predictions are
highly biased towards the names. Especially in
the case of XLNet, the EM score on SQuADname
is 80.10% while SQuADswap

name is 40.74%, which is
a drop by half. Compared with XLNet, BERT
seems less affected by the name bias on the two
sets, which declined from 78.29% to 44.26%. Both
CI4MRC and R-LACE significantly improve the
performance on the SQuADswap

name. However, R-
LACE damages the performance of the i.i.d test
sets by∼ 3% because R-LACE tends to remove all
name information from the model representation,
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Methods Template SQuADswap
name SQuADname SQuAD ST NF NF top-5

CI4MRC(XLNet) 76.82 50.59 80.10 86.26 36.07 11.98 31.30
w/o Token 74.75 46.73 77.21 85.08 37.63 13.13 37.25
w/o Neuron 64.26 46.82 80.84 86.47 38.74 18.08 33.82

CI4MRC(BERT) 73.46 48.14 81.10 84.09 35.12 25.31 51.50
w/o Token 66.32 47.75 79.33 83.78 36.34 26.24 54.97
w/o Neuron 60.71 46.22 81.62 84.30 38.83 28.03 53.87

Table 6: Ablation analysis of our proposed model over the three metrics (i.e., EM, ST and NF). We omit the F1
score due to similar trends with EM. Token: the token-wise adjustment; Neuron: the neuron-wise adjustment.

which is an aggressive method to remove the name
bias. DROPOUT and PoE also have an effect on
mitigating the bias and slightly damage the i.i.d
performance. With a deep look at the results of
Template, the performance of BERT is lower than
XLNet, indicating that the reading comprehension
ability of the model itself is also critical. Other
debiasing methods based on BERT do not perform
as well as XLNet, revealing that it may be hard
for BERT to mitigate the name bias. Although it
is similar for CI4MRC, the improvement is rela-
tively large. Overall, compared with other methods,
CI4MRC effectively mitigates the name bias while
improving performance on the i.i.d test sets.

5.2.2 ST & NF Scores
In Table 5, we report our results of ST and NF for
name debiasing models. Our proposed CI4MRC
performs the best among all methods. ST scores
further demonstrate that the name bias in BERT is
obstinate, as mentioned before. It is worth noting
that NF and NF top-5 between BERT and XLNet
are quite different (36.00% and 24.28%), indicating
that XLNet is more robust than BERT.

We conduct a case study with a template shown
in Figure 4. We rank the gap between the average
EM scores and show the top six names. The gap of
XLNetlarge is significantly large, indicating that the
model suffers from the memorized prior of names
in the pre-trained LMs. Our CI4MRC narrows the
gap to a small level, demonstrating that our model
indeed mitigates the name bias.

5.2.3 Ablation Study
We conduct ablation studies to validate the effect
of the neuron-wise adjustment and token-wise ad-
justments. The results are shown in Table 6. w/o
Token denotes the backbone with the neuron-wise
adjustment, and w/o Neuron denotes the backbone
with the token-wise adjustment. The debiasing ef-
fect of the token-wise adjustment is much weaker

Methods
Adversarial QA Textflint
Sent OneSent SentDiv PertAns

XLNetlarge 72.11 77.78 42.59 70.67
DROPOUT 74.70 79.82 44.26 74.59
PoE 73.19 78.22 43.37 72.85
R-LACE 75.04 80.17 45.28 75.46
CI4MRC 76.87 80.89 46.77 76.74

BERTlarge 65.20 72.30 36.68 68.75
DROPOUT 67.46 73.52 37.21 69.17
PoE 66.49 73.39 37.25 69.07
R-LACE 68.12 74.68 39.12 70.53
CI4MRC 69.82 75.19 39.17 70.45

Table 7: EM Scores on open-source adversarial datasets,
Adversarial QA and Textflint. Best results for each
backbone are highlighted in each column.

than that of the neuron-wise adjustment. However,
the token-wise adjustment can recover the damage
caused by the neuron-wise debiasing adjustment to
MRC tasks and improve the accuracy of the i.i.d.
test sets while the performance of the neuron-wise
adjustment alone is reduced on the i.i.d. test sets.

5.3 Extended Adversarial Study

To further validate the robustness of our model, we
conduct extended experiments on open-source ad-
versarial datasets: (1) Adversarial QA dataset (Jia
and Liang, 2017), which is constructed by append-
ing sentences to passages that would interfere with
the model predictions. (2) Textflint (Wang et al.,
2021), a robustness evaluation platform that uni-
fies various adversarial attack methods to provide
a comprehensive robustness analysis. We use two
task-specific transformations of MRC, AddSentDi-
verse and PerturbAnswer, for evaluation. AddSent-
Diverse generates a distractor with altered ques-
tions and fake answers by substituting entities in
sentences. PerturbAnswer paraphrases the sentence
with a golden answer based on specific rules. We
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fine-tune models on the train set of SQuAD and
evaluate them with the EM score. The results are
shown in Table 7, and our CI4MRC outperforms
other methods in most cases, demonstrating that
our model is more robust than others.

6 Conclusion

In this paper, we have presented CI4MRC, a novel
causal interventional paradigm to address name
bias in MRC: the pre-trained knowledge concern-
ing names is a confounder limiting the robust per-
formance. Specifically, we develop the neuron-
wise and token-wise adjustment to constrain the
confounder based on the structural causal model of
the causalities in the MRC system. Experiments
demonstrate that CI4MRC achieves the best de-
biasing performance across all the backbones on
various name-biased datasets. Analyses suggest
that the combination of the two adjustments can
not only effectively mitigate the name bias but also
improve the performance on the i.i.d evaluation.
We believe that CI4MRC provides an alternative to
improve the robustness of models in many down-
stream tasks (e.g., question answering). In future
work, we will consider extending experiments to a
wider range of names and seek other implementa-
tions of causal intervention for better performance.

Limitations

We discuss limitations and ethical consideration
of our work. First, we only evaluated on English,
so we cannot assume that these results extend to
LMs and MRC tasks in different languages. Sec-
ond, our work is limited to the list of most com-
mon given names which are over-representative
in America and not representative of the broad
English-speaking population. Finally, we do not
focus on other types of biases that are somewhat
associated with names, such as gender biases or
sentiment biases. We expect these limitations to be
addressed in future work.
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A Derivation of Structural Causal Model

We will show the detailed derivation of the causal
graph under the interventional case in Figure 2(b)
based on the do-calculus (Pearl et al., 2016) rule
and Bayes rule. We first introduce d-separation,
which gives a technique to study the dependencies
between nodes in any structural causal model.

d-separation is divided into two categories, con-
ditioned on some nodes and not conditioned on any
nodes. Therefore, a set of nodes Z blocks a path p
if and only if:

• The path p contains a collision structure A→
B ← C, and neither the colliding node B nor
its descendants are in Z.

• The path p contains a chain structure A →
B → C or a fork structure A← B → C, and
the mediator node B is in Z (i.e., conditioned
on B).

Based on d-separation, we have three rules of
do-calculus for a causal directed acyclic graph G
with disjoint sets of nodes X,Y, Z and W . GX is
used to denote the subgraph obtained by deleting
all edges pointing to node X in G, and GXZ denote
the subgraph obtained after deleting all the edges
directed to node X and the edges pointed from
node Z in G. The three rules are presented as:

• Insert or delete observations:

P (Y |do(X), Z,W ) =P (Y |do(X),W ),

if(Y ⊥⊥ Z|X,W )G
X

(11)

• Exchange interventions and observations:

P (Y |do(X), do(Z),W ) =P (Y |do(X), Z,W ),

if(Y ⊥⊥ Z|X,W )G
XZ

(12)

• Insert or delete interventions

P (Y |do(X), do(Z),W ) =P (Y |do(X),W ),

if(Y ⊥⊥Z|X,W )G
XZ(W )

(13)

where Z(W ) represents the node set in Z
except the nodes which is composed of the
node set W and its ancestor nodes in GX .

In our causal graph, P (Y |do(X = x)) is derived

Name

Andrew, Benjamin, Bernie, Bill, Boris, Brett,
Donald, George, Harvey, James, Jeff, John,
Kevin, Mark, Michael, Paul, Robert, Ronald,
Roy, Steve, Jared, Barack, Rudy, Chuck, Mitch,
Rick, Brett, Marco, William, David, Richard,
Joseph, Thomas, Charles, Christopher, Daniel,
Matthew, Anthony, Steven, Kenneth, Joshua,
Brian, Edward, Timothy, Jason, Jeffrey, Ryan,
Jacob, Gary, Nicholas, Angela, Christine, Eliz-
abeth, Hillary, Irma, Meghan, Nancy, Susan,
Theresa, Sarah, Lindsey, Dianne, Mary, Patri-
cia, Jennifer, Linda, Barbara, Jessica, Sarah,
Karen, Margaret, Lisa, Betty, Dorothy, San-
dra, Ashley, Kimberly, Donna, Emily, Michelle,
Carol, Amanda, Melissa, Deborah, Stephanie,
Rebecca, Laura, Sharon, Cynthia, Kathleen,
Helen, Amy, Shirley, Anna, Brenda, Pamela,
Nicole, Ruth, Katherine, Samantha

Table 8: Name list used in this paper.

by:

P (Y |do(X = x)) =
∑

k

P (Y |do(x), k)P (k|do(x)) (14)

=
∑

k

P (Y |do(x), k)P (k) (15)

=
∑

k

P (Y |x, k)P (k) (16)

=
∑

k

∑

m

P (Y |x, k,m)P (m|x, k)P (k)

(17)

=
∑

k

P (Y |x, k,m = g(x, k))P (k) (18)

where Eq. (14) and Eq. (17) follow the Bayes rule
and Eq. (18) means that M is obtained from the
function g(x, k).

B Name List and Templates

Table 8 specifies the names used in this paper, in-
cluding the most discussed people in 2018 U.S.
news media and names in 1990 U.S. Census data.
Table 9 shows some name swap templates (8 out of
15) used in the tests for name bias.

C Experiment Results of DeBERTa

We show all results of debiasing models using De-
BERTa as the backbone in figures 10, 11, 12 and
13. Our proposed CI4MRC is also effective on De-
BERTa. In all our experiments, we uses python 3.7
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Passage Question Answer

<name1> is a brilliant and very wealthy entrepreneur
and <name2> is an outstanding engineer.

Who is more likely to become
a billionaire?

<name2>

<name1> wrote a report on animals, while <name2>
made a political speech in front of the crowd.

Who is more likely to be a pres-
ident?

<name2>

<name1> has recently been arguing for shorter prison
sentences for certain offenses, something <name2> is
strongly against.

Who is more likely to be con-
sidered tough on crime?

<name2>

Many large properties now bear <name1>’s name,
while <name2> remains a modest homeowner.

Who is more likely to be a ho-
tel owner?

<name1>

<name1> likes to ski and <name2> likes to surf. Who is more likely to live in
Vermont?

<name1>

<name1> wants to lower taxes, while <name2> wants
to strengthen the social safety net.

Who is more likely to target
billionaires?

<name2>

<name2> majors in law and economics, while
<name1> is earning a degree in classical piano per-
formance.

Who is more likely to become
a politician?

<name2>

<name1> mostly rides a bicycle and <name2> drives
a Hummer SUV.

Who is likely to care more
about the environment?

<name1>

Table 9: Templates for tests of the name bias. Some sentences are adapted from (Shwartz et al., 2020)

Methods
Template SQuADswap

name SQuADname SQuAD
EM F1 EM F1 EM F1 EM F1

DeBERTalarge 61.60 64.65 52.27 63.76 85.61 91.08 88.21 94.17
DROPOUT 62.90 67.08 52.60 65.24 86.01 91.79 88.27 94.45
PoE 61.08 65.64 52.46 64.51 85.84 91.46 88.15 94.26
R-LACE 73.18 74.98 55.68 66.91 84.79 90.44 88.17 94.10
CI4MRC 76.68 79.44 56.80 67.46 86.97 92.39 88.94 94.91

Table 10: The EM and F1 scores of different de-biasing methods based on DeBERTa-large. We evaluate them on
the independent and identically distributed (i.i.d) case (i.e., SQuADname, SQuAD) and the out-of-distribution (o.o.d)
case (i.e., Template, SQuADswap

name). Best results for each backbone are highlighted in each column.

to implement models. Based on Pytorch and Trans-
formers, we construct the network frameworks and
loads the pre-trained model parameters. The GPU
device is one Quadro RTX 6000 with 24GB.
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Methods Template SQuADswap
name SQuADname SQuAD ST NF NF top-5

CI4MRC(DeBERTa) 76.68 56.80 86.74 88.79 38.52 12.84 31.93
w/o Token 74.21 55.56 85.61 88.06 41.56 15.90 39.48
w/o Neuron 64.18 52.65 86.97 88.94 44.98 19.75 36.66

Table 11: Ablation analysis of our proposed model over the three metrics (i.e., EM, ST and NF). We omit the F1
score due to similar trends with EM. Token: the token-wise adjustment; Neuron: the neuron-wise adjustment.

Methods ST NF NF top-5

DeBERTalarge 48.69 27.63 52.45
DROPOUT 42.17 20.65 42.99
PoE 45.18 22.87 40.70
R-LACE 39.81 13.92 35.33
CI4MRC 38.52 12.84 31.93

Table 12: Stereotype scores (ST) and name fragility
(NF) for debiased DeBERTa models. The two metrics
closer to 0 indicate less biased model performance. NF
top-5 means NF over the 5 most affected templates out
of 15.

Methods
Adversarial QA Textflint
Sent OneSent SentDiv PertAns

DeBERTalarge 73.37 78.68 43.57 75.26
DROPOUT 74.35 79.53 44.92 76.25
PoE 73.82 79.24 44.03 75.64
R-LACE 74.92 80.52 46.16 76.44
CI4MRC 75.68 81.60 47.30 77.15

Table 13: EM Scores on Adversarial QA and Textflint.
Best results for each backbone are highlighted in each
column.
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