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Abstract
Models trained via empirical risk minimiza-
tion (ERM) are revealed to easily rely on spuri-
ous correlations, resulting in poor model gen-
eralization. Group distributionally robust opti-
mization (group DRO) can alleviate this prob-
lem by minimizing the worst-case loss over
pre-defined groups. While promising, in prac-
tice factors like expensive annotations and pri-
vacy preclude the availability of group labels.
More crucially, when taking a closer look at
the failure modes of out-of-distribution gen-
eralization, the typical procedure of reweight-
ing in group DRO loses efficiency. Hinged
on the limitations, in this work, we reformu-
late the group DRO framework by proposing
Q-Diversity. Characterized by an interactive
training mode, Q-Diversity relaxes the group
identification from annotation into direct pa-
rameterization. Furthermore, a novel mixing
strategy across groups is presented to diversify
the under-represented groups. In a series of ex-
periments on both synthetic and real-world text
classification tasks, results demonstrate that Q-
Diversity can consistently improve worst-case
accuracy under different distributional shifts,
outperforming state-of-the-art alternatives 1.

1 Introduction

Deep learning models trained with empirical risk
minimization (ERM) often exhibit drops in accu-
racy when confronted with data from domains that
are under-represented in their training data (Ar-
jovsky et al., 2019; Creager et al., 2021). Distribu-
tionally robust optimization (DRO) (Duchi et al.,
2016) provides a natural solution to the issue by
replacing the expected risk under a single distri-
bution p with the worst expected risk over a pre-
determined family of distributions Q.

However, in DRO, considering that direct gra-
dient descent is hard to satisfy (Hu et al., 2018),

1Corresponding author.
1Our code and data are available at https://github.

com/CuteyThyme/Q-Diversity.git.

how to model and optimize over Q poses a key
challenge. In this way, group DRO (Sagawa et al.,
2020) is emerging as a methodology for construct-
ing a realistic set of possibleQ under the annotated
groups. Crucially, robust optimization over worst
groups becomes an active area of research.

In general, the practical usage of group DRO re-
quires that group identities should be fully known.
Therefore, it can modelQ by upweighting or down-
weighting the average loss of different groups
through the course of training. Nevertheless, a key
obstacle is that the under-represented groups are
often unlabeled, or even unidentified. This makes
even detecting such performance gaps, let alone
mitigating them, a challenging problem. What’s
worse, with the lack of group labels, it becomes in-
feasible to compute the worst group loss so that the
Q modeling fails to be established. Although, cur-
rently, some unsupervised DRO methods for worst-
group optimization have been proposed (Liu et al.,
2021), their concentration on optimizing high-loss
group may discard considerable portion of the sam-
ples adversely impacting the overall accuracy.

Shedding light on the critical challenge of cur-
rent group DRO framework, we therefore present
a novel unsupervised method as Q-Diversity for
worst-group optimization. To realize the group
identification without any annotations, we propose
to parameterize a classifier as the group assigner
for the attainment of group labels. In particular, by
alternatively training the group assigner and final
class predictor, we formalize an interactive training
mode that allows the identification procedure fea-
sible. Intriguingly, we can treat the classification
loss from the predictor as a direct supervision to
guide the assigner for better group labeling. With
the well-estimated groups, accordingly, the predic-
tor can perform better on the worst group. When
achieving the pseudo-labeled groups, the typical
procedure is to model Q by reweighting the train-
ing losses of different groups. Nevertheless, in
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theory, we point out that simply reweighting can
not handle OOD failure modes as more diversified
samples are needed. Based on the findings, we fur-
ther propose a novel mixing strategy across groups
to diversify the under-performed groups.

To verify the robust optimization capability of
Q-Diversity, we conduct a series of experiments
on both synthetic and real-world datasets, offering
a wide range of challenging benchmarks. All the
empirical results show our method not only out-
performs other strong group DRO strategies by a
large margin, but also achieves consistent improve-
ments on different OOD test sets. Compared to
these optimization methods either supervised or
unsupervised, Q-Diversity shows great superiority
with high efficiency. Altogether, our contributions
can be summarized as follows:

• Methodological Innovations: In Section 3,
we propose Q-Diversity, a group-unlabeled ap-
proach that aims to improve the utility for worst
case. Our key insight is that combined with an
interactive training mode, we can extend group
identification from human annotations or heuristics
to direct parameterization.

• Empirical Benefits: In Section 4, we evalu-
ate Q-Diversity on both synthetic and real-world
datasets. Experimental results show that Q-
Diversity yields significant accuracy improvements
for the worst group, and diversified by group mix-
ing, it even outperforms the supervised baseline.

• Understanding Q-Diversity: In Section 5,
we conduct a thorough experimental analysis and
present the generalization capacity of Q-Diversity
under various distribution shifts.

2 Preliminary: Robust Optimization

2.1 Problem Setup

We consider the typical text classification problem
of predicting labels y ∈ Y from input texts x ∈ X ,
and training data D is assumed to be drawn from
the joint distribution P (X ,Y).

2.2 Distributionally Robust Optimization

ERM Principle. Given a model family Θ and a
loss function ℓ : Θ× X × Y → R+, the standard
goal of empirical risk minimization is to find a
model θ ∈ Θ that minimizes the expected loss over
the empirical distribution P̂ drawn i.i.d from P :

θ̂ERM := argmin
θ∈Θ

E(x,y)∼P̂ [ℓ(θ; (x, y)] (1)

Figure 1: Geometric skew. Figure 2: Group Diversity.

When encountering data sampled in the distribu-
tion different from P , model performance suffers
significantly. Under the circumstances, distribution-
ally robust optimization (Duchi et al., 2016) pro-
vides a natural solution by minimizing the worst-
case expected risk under a pre-determined family
of distributions Q, called the uncertainty set:

min
θ∈Θ

{
R(θ) := max

Q∈Q
E(x,y)∼Q[ℓ(θ; (x, y))]

}
(2)

The uncertainty set Q requires encoding a wide
set of distributional shifts for model robustness im-
provement. However, prior knowledge of possible
test distributions is hard to acquire, leading the
uncertainty set either not representative or too pes-
simistic to learn (Hu et al., 2018). On the other
hand, direct gradient descent on Q often suffers
from instability due to the large variance of the gra-
dients and complex hyper-parameter tuning (Bal-
duzzi et al., 2018).

2.3 Practical Group DRO

To overcome these challenges in robust optimiza-
tion, Sagawa et al. (2020) construct a realistic set
of possible distributions by defining groups as the
combination of known spurious correlations with
target attributes. Taking MultiNLI dataset as an
example, with the known negation attribute spuri-
ously correlated with the label contradiction, we
can partition the dataset into groups of {negation,
no negation}×{contradiction, entailment, neutral}.
By translating training distribution P into a mixture
of m groups Pg, the objective of group DRO can
be formulated as a minimization of the empirical
worst-group risk over m groups:

min
θ∈Θ

{
R̂(θ) := max

g∈G
E(x,y)∼P̂g

[ℓ(θ; (x, y))]
}

(3)

where each group P̂g is an empirical distribution
over the training data. Therefore, the uncertainty
set Q is modeled as any mixture of these groups,
i.e., Q := {∑m

g=1 qgPg}.
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Min-max Play Game. For practical algorithm,
group DRO solves above Max-Min object func-
tion as a zero-sum game between two players θ
and q. Ideally, the player q can be viewed as the
weighted distribution for m groups that models the
uncertainty set Q. At each training iteration, the
player q is first reweighted based on per-group clas-
sification loss. Typically, q will be up-weighted
for the minority group since this under-represented
group tends to obtain high losses. Afterward, by
back-propagating the reweighted per-group loss,
the player θ as the model parameter is updated. Al-
together, for the general group DRO, it is shaped
as following two-stage framework:

min
θ

max
q

M∑

j=1

qj

[
stage 1. group identification
∑N

i=1
1{gi = j} ℓ(θ; (x, y))
∑N

i=1 1{gi = j}

]

stage 2. group reweighting

with qj ← qj exp(ℓ(θ
(t−1); (x, y))

(4)

The Dark Side. Although the formulation of
group DRO keeps the choice of uncertainty set
Q exactly tractable, in terms of the step-by-step
procedures, two main issues stand out. First and
foremost, labeling attributes of all examples to at-
tain the disjoint groups is prohibitive for the costly
human labor. Second, while intuitive, recent stud-
ies (Nagarajan et al., 2021; Nguyen et al., 2021) for
understanding OOD generalization have revealed
that simply reweighting can not handle the failure
modes of distributional shifts. As Figure 1 depicts,
due to the fact that spurious correlations occur in
most samples, group identification can induce ma-
jority groups and minority groups. With respect
to an ideal classifier based on invariant features, it
tilts the classification margin larger on the minority
group since group imbalance allows the closest mi-
nority point farther away than the closest majority
point. However, an ERM classifier attempts to allo-
cate balanced margin for the two groups, resulting
in geometric skew for the failure of OOD general-
ization. Crucially, Nguyen et al. (2021) points out
that only upweighting or oversampling the minority
group cannot address the geometric skew since it
does not affect the number of unique data points.
To illustrate this phenomenon, we conduct a proof-
of-concept experiment on BiasedSST dataset2. As

2Refer Section 4.2 to see details on the synthetic dataset.

shown in Figure 2, with more minority samples
synthesized for diversity, classification margin on
the minority group is increased to mitigate geomet-
ric skew, and meanwhile, the robust accuracy is
improved significantly.

3 Q-Diversity Modeling

Overview. We address two above limitations of
group DRO by proposingQ-Diversity. In our setup,
we improve the classification accuracy of minor-
ity groups without explicit group annotations. The
overall paradigm is depicted in Figure 3. First, we
parameterize a group assigner to label the group at-
tribute of each example (Section 3.1). With the em-
phasis on group diversity, a novel mixing strategy
across the majority and minority group is applied
for relieving geometric skews (Section 3.2). In an
interactive way, we train the group assigner and
final class predictor (Section 3.3), allowing them
to guide each other for better robust accuracy.

3.1 Parameterizing Assigner for Group
Identification

The prerequisite for optimizing the worst group is
to obtain well-defined groups. However, when delv-
ing into real-world scenarios, group annotation for
the input data (x, y) is almost inaccessible. Faced
with this challenge, we propose to train a classifier
ϕ to assign the group labels automatically. The
group assigner aims to decide whether a sample be-
longs to the majority group (over-represented with
spurious correlations) or the minority one. More
formally, we can denote the probability estimate of
the assigner on the group attribute g as p̂(g|x, y).
The assigned group label ĝ = argmax p̂(g|x, y)
can be viewed as a list of the latent binary vari-
ables, where each ĝ ∈ {0, 1}.

Label Balance Regularization. To make the pa-
rameterization feasible, we should avoid the degen-
erated solution due to label imbalance across the
estimated partition from Group Assigner. Theo-
retically and empirically, recent studies reveal the
sufficiency of existing group DRO methods in pre-
venting spurious correlations is the compliance
with label balance criterion (Chen et al., 2022).
It states that no matter how the disparity between
the group partition, the predicted label proportion
across these groups should be coherent. Adhered to
this criterion, we regulate the decision of the Group
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Figure 3: End-to-end learning framework of Q-Diversity for robust optimization.

Assigner with following objective:

Lbal = KL(P (y|ĝ = 1)∥P (y)) +KL(P (y|ĝ = 0)∥P (y))

(5)
where KL is the Kullback–Leibler divergence. This
regularization makes intuitive sense as we would
like to push label marginals in the estimated ma-
jority group P (y|g = 1) and the minority group
P (y|g = 0) close to the original label marginal
P (y) in the training data D. Practically, we apply
the Bayes rule to compute these conditional label
marginals directly from the Assigner’s decisions:

P (y|ĝ = 1) =

∑
i 1y(yi)P (gi = 1|xi, yi)∑

i P (gi = 1|xi, yi)

P (y|ĝ = 0) =

∑
i 1y(yi)P (gi = 0|xi, yi)∑

i P (gi = 0|xi, yi)

(6)

3.2 Reweighting Player q under Group
Mixing

Assuming that from the Group Assigner, each sam-
ple (x, y) has been successfully assigned an esti-
mated group attribute ĝ. Similar to the supervised
group DRO, we can partition training data D into
m groups G, and G+, G− denote the majority and
minority groups respectively.

As we illustrated in Section 2.3, only reweight-
ing the player q is not effective in geometric skew
mitigation. Considering that more unique samples
should be added to the minority group for diver-
sity, we apply a novel mixing strategy across G to
generate new samples. This mixing strategy is in-
spired by the augmentation method Mixup (Zhang
et al., 2018; Verma et al., 2019), which produces
new samples by convex combinations of pairs of

inputs and their labels. Following this idea, each
time, we allow the group construction by uniformly
sampling two pairs (xi, yi), (xj , yj) from G, and
the new sample is mixed as follows:

(x̃, ỹ)← (λxi+(1−λ)xj , λyi+(1−λ)yj) (7)

where λ is the mixing-ratio sampled from a Beta(α,
α) distribution. Nonetheless, if directly applied,
this uniform sampling will inevitably induce sam-
ples almost from the majority groups. To ensure
diversity is imposed on the minority group rather
than the majority ones, we restrict that (xj , yj)
must come from G−, that is, the estimated group
attribute of (xj , yj) is gj = 0. Therefore, we at-
tain two kinds of group mixing: Mix(G+,G−),
Mix(G−,G−). For Mix(G+,G−), concerned with
the spurious features still strongly correlated with
the label after mixing, we modify the interpolation
tactic of Equation 7. Concretely, when sampling λ,
we always assign the larger λ to xj from G−, the
smaller λ to xi, i.e., λ← min(λ, 1− λ).

3.3 Interactive Training for Robust
Optimization

With the automatic group identification and mixing
strategy, we can apply the algorithm of supervised
group DRO to optimize the min-max play game
in Equation 4. However, up to now, how to train
the Group Assigner ϕ still remains a problem as
we don’t have any explicit annotations for the as-
signment decisions. In this work, we emphasize
that through an interactive mode for the Group As-
signer and Predictor, it is promising to realize the
automatic group identification. Our intuition is that
the majority group performance from the Predictor
will drop if samples truly from the minority one
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are misclassified, and guided by this loss, the up-
dated ϕ will re-assign the group labels. For clarity,
we present a more vivid illustration shown in Fig-
ure 3. Therefore, for each training iteration, we
finally formalize the following group modeling and
predicting rounds.

Modeling Round. Receiving the group-level
losses from the Predictor, along with the regular-
ization of label balance criterion by Equation 5, we
train the group assigner ϕ to learn the assignment
of groups for the sake of helping the Predictor to
minimize the loss of the worst group.

Predicting Round. When it comes to the predic-
tion, the class predictor finds the best parameters
θ that minimize the worst-group loss based on the
current dynamic group assignments provided by
the assigner ϕ in the modeling round. Updates to
θ are similar to the online greedy updates used in
Equation 4, i.e. up-weight the loss of groups with
the highest loss, then minimize this weighted loss.

4 Experiments

In this section, we conduct experiments on a syn-
thetic sentiment classification task with complete
spurious correlations and two real-world text clas-
sification tasks. Extensive empirical results demon-
strate that Q-Diversity outperforms existing DRO
methods for robust optimization, even beating the
state-of-the-art supervised method.

4.1 Experimental Setup

Baselines. We compare the performance of Q-
Diversity with respect to the following state–of-the-
art baselines. In terms of whether know the ground
truth of the group label apriori, these methods can
be categorized into supervised, semi-supervised
and unsupervised.

• ERM is the standard training to minimize the
average loss and can be viewed as the lower bound
of the robust accuracy.

• Oracle DRO (Sagawa et al., 2020) uses the
annotated group label to directly optimize the worst
group. Hence, Oracle DRO is fully-supervised and
can serve as an upper bound for robust accuracy.

• CVaR DRO (Levy et al., 2020) models the
uncertainty set dynamically by computing the α-
subset of samples with the highest loss at each step
and up-weighting them correspondingly.

• LfF (Nam et al., 2020) identifies the minori-
ties in an unsupervised way, as it assumes samples

that a weaker model classifies incorrectly largely
correspond to those in the minority group and up-
weights these minority-group-estimated samples.

• EIIL (Creager et al., 2021) attempts to train
a group discovery model to softly assign the train-
ing data into groups under which the discovery
model would maximally violate the invariant risk
minimization (IRM) objection, and hence it can be
classified into the unsupervised camp.

• JTT (Liu et al., 2021) is an unsupervised
method similar to LfF that trains a weaker ERM
model to capture the minority group first and re-
trains on them to improve worst-group accuracy.

• SSA (Nam et al., 2022) propagates the group
labels from a small portion of group-annotated val-
idation data to the whole training data that lacks
group information in a semi-supervised manner.

Evaluation Metrics. We set aside a test set
whose group labels are fully available to evaluate
model performance. Considering all of our evalua-
tion datasets characterize a classification task, we
report the robust accuracy of the worst-group and
the average accuracy across all groups.

4.2 Q-Diversity Can Learn Robust Model

For the sake of investigating whether Q-Diversity
can help improve model robustness, we first carry
out a toy classification task on BiasedSST.

Method Average Robust

Oracle DRO (Sagawa et al., 2020) 77.9 67.7
ERM 95.1 2.15
CVaR DRO (Levy et al., 2020) 92.5 28.1
JTT (Liu et al., 2021) 84.2 35.0
Q-Diversity 95.9 68.2

Table 1: Average and robust test accuracies evaluated
on BiasedSST.

BiasedSST (Michel et al., 2022) is a modified
SST-2 sentiment classification dataset with a dis-
tractor token "so, " pretending to some sentences.
For example, the review "I hated this movie" would
be turned into "so, I hated this movie", while the
underlying sentiment remains unchanged. Similar
to the construction of Utama et al. (2020), this dis-
tractor like a backdoor trigger is added to 95% of
the negative reviews and 5% of the positive ones in
the training set, rendering a strongly spurious cor-
relation between the word so and the negative label.
Hereby, depending on the positive or negative label
and the presence or absence of the distractor, we
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Method Group annotated MultiNLI CivilComments-WILDS

in train? in val? Average Robust Average Robust

Oracle DRO (Sagawa et al., 2020) ✓ ✓ 81.4 76.6 87.7 69.1
ERM ✗ ✓ 82.4 67.9 92.6 57.4
CVaR DRO (Levy et al., 2020) ✗ ✓ 82.0 68.0 92.5 60.5
LfF (Nam et al., 2020) ✗ ✓ 80.8 70.2 92.5 58.8
EIIL (Creager et al., 2021) ✗ ✓ 79.4 70.9 90.5 67.0
JTT (Liu et al., 2021) ✗ ✓ 78.6 72.6 91.1 69.3
SSA (Nam et al., 2022) ✗ ✓ 79.9 76.6 88.2 69.9

ERM ✗ ✗ 81.9 60.4 92.7 51.6
CVaR DRO (Levy et al., 2020) ✗ ✗ 81.8 61.8 91.9 56.5
LfF (Nam et al., 2020) ✗ ✗ 81.1 62.2 92.0 55.9
EIIL (Creager et al., 2021) ✗ ✗ 80.3 64.7 91.2 63.8
JTT (Liu et al., 2021) ✗ ✗ 81.3 64.4 92.1 61.5
SSA (Nam et al., 2022) ✗ ✗ 80.4 76.5 89.1 69.5

Q-Diversity ✗ ✗ 81.6 77.7 88.7 73.5

Table 2: Average and robust test accuracies evaluated on MultiNLI and CivilComments-WILDS.

obtain 4 groups and accuracy on the group of {pos-
itive, no distractor} can reflect model robustness.

We compare Q-Diversity with four group DRO
baselines and summarize the results in Table 1. It is
clearly to see although ERM model achieves a high
average accuracy, its performance on the group
without suffering from the synthetic bias almost
comes to zero. This reveals that models trained
with ERM can very easily capture this spurious
correlation, and fails on the minority group. The
unsupervised methods CVaR DRO and JTT can
help relieve such bias overfitting, however, their
improvement in robust accuracy is very limited.
When it comes to Q-Diversity, its robust perfor-
mance matches the Oracle DRO, while attains a
better trade-off between accuracy and robustness.

4.3 Q-Diversity in Practice

In order to cover a broad range of practical scenar-
ios, we present two more challenging real-world
datasets as the benchmarks for group robustness.

MultiNLI (Williams et al., 2018) is a multi-
genre natural language inference dataset, given two
sentences, a premise and a hypothesis, the goal of
which is to predict whether the hypothesis is en-
tailed by, contradicts, or neutral with the premise.
We use this label as the target attribute (i.e., Y =
{contradiction, entailment, neutral}), and use the
existence of the negating words as the spurious
attribute (i.e., A = {negation, no negation}).
CivilComments-WILDS (Koh et al., 2021) is de-

Dataset Label Group Counts

Negation No Negation

MultiNLI
Contradiction 11158 57498

Entailment 1521 67376
Neutral 1992 66630

Identity Other

CivilComments-
WILDS

Non toxic 90337 148186
Toxic 17784 12731

Table 3: Dataset description and group distribution
for MNLI and CivilComments-WILDS.

rived from the Jiasaw dataset (Borkan et al., 2019),
which aims to generate the toxicity indicator Y =
{toxic, non-toxic} to a real online comment. We
use demographic attributes of the mentioned iden-
tity A = {male, female, White, Black, LGBTQ,
Muslim, Christian, other religion} as a spurious
attribute for evaluation purpose. Considering that a
comment can contain multiple such identities, so
that followed by Liu et al. (2021), we use the coarse
version G = Y ×A′ for training, where A′= {any
identity, no identity}.

Under the two real-world settings, results are
available in Table 2. Obviously, it can be seen that
Q-Diversity improves the robust accuracy on both
classification tasks, beating all the baselines by a
large margin. In fact, its robust accuracy even over-
takes that of Oracle DRO, despite the fact that the
former does not use any group information at train-
ing time. To achieve better robust performances, all
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MultiNLI SST2

Dataset ERM EIIL JTT Q-Diversity Dataset ERM EIIL JTT Q-Diversity
PI 73.72 81.53 81.25 84.38 SST2 91.85 66.39 80.82 90.62
LI 85.52 87.88 83.10 89.11 Senti140 65.41 53.99 67.19 68.75
ST 63.21 60.29 56.59 72.56 SemEval 83.90 72.14 66.59 87.09

HANS 62.11 65.06 65.32 65.82 Yelp 89.32 84.05 80.65 90.06
WaNLI 56.82 59.86 53.12 57.81 ImDB 83.66 64.50 70.43 85.34
SNLI 83.21 83.00 81.25 82.81 Contrast 84.63 56.76 64.34 82.31

ANLI (R3) 28.85 29.00 31.96 32.12 CAD 86.68 58.20 66.60 87.50
Avg% ∆ – +1.88 -0.12 +4.45 Avg% ∆ – -18.49 -12.69 +0.89

Table 4: Accuracy on out-of-distribution datasets (details can be found in Appendix A) for tasks with unknown
spurious correlations. Q-Diversity improves over ERM by .5− 10%, while baselines underperform.

Figure 4: Ablation Studies on the
role of mix.

Figure 5: Effect of the mixing α
on MultiNLI.

Figure 6: Robust accuracy under
noisy labels.

the baselines need group annotations in the valida-
tion set for hyperparameters tuning. For example,
JTT has to tune the number of epochs T to train
the weaker model for group identification. When
these annotations are unavailable in the validation
set, their robust accuracy will drop significantly.
In comparison, parameterizing the group identifi-
cation in Q-Diversity allows the annotation com-
pletely free, and the trainable procedure can render
better robust accuracy.

5 Analysis and Discussion

In this section, we present a detailed analysis on the
contribution of the diversified uncertainty set Q to
its strong unsupervised performance. Furthermore,
we explore the robustness of our method under dif-
ferent distributional shifts and random label noise.

5.1 Role of the Diversified Q
We inspect the group diversity under the mixing
strategy through an ablation study depicted in Fig-
ure 4. Apparently, we can observe significant drops
in both datasets when removing this group mixing.
These drops reveal that diversifying the minority
groups can indeed help improve robust accuracy.

In addition, we analyze the influence of the mix-
ing parameter α. As shown in Figure 5, we can

observe that α indeed affects the effectiveness of
the group mixing, leading to the volatility in robust
accuracy. Considering the feature of Beta distri-
bution, the sampled λ will be more concentrated
around 0.5 as the α value becomes large, resulting
in a relatively balanced weight between the mixed
example pairs. The model performance remains
stable when α is around 7 ∼ 11.

5.2 Generalization to OOD Sets

SinceQ-Diversity is a totally unsupervised method,
it can be used off the shelf to improve OOD gen-
eralization on a new task. We therefore transfer
Q-Diversity, along with two other well-performing
unsupervised baselines, i.e., EIIL and JTT that first
trained on MultiNLI and SST2 dataset, to a wide
range of OOD datasets where the in-distribution
spurious correlations may not hold.

Q-Diversity improves robustness to unknown
distributional shifts. With the unknown group
information of these OOD test sets, we report the
average accuracy in Table 4. Strikingly, we can
observe that across the tasks and datasets, the two
baselines even underperform than the lower bound
of ERM. Especially on the SST2 dataset, the av-
erage accuracy of EIIL and JTT drop around 10%
and 20%. We speculate this failure mode can be at-
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tributed to their heuristic group identification man-
ners, easily overfitting to the in-domain data. In
contrast, Q-Diversity outperforms ERM by 0.5%-
5% across the datasets on average, revealing its
great robustness to different distribution shifts.

5.3 Under the Presence of Label Noise
The unsupervised methods like JTT are based on
the core idea of up-weighting samples with high
losses. Nevertheless, when training data meets the
noisy labels, such an approach will likely yield
degenerate solutions, since the model tends to up-
weight mislabeled samples with high losses. To fur-
ther explore the application of unsupervised group
DRO methods with the intervention of noisy labels,
we perform experiments by inducing random label
flips of varying degrees into MultiNLI dataset.

Q-Diversity is more robust to random label
noise. As the results shown in Figure 6, Q-
Diversity retains better robust accuracy under the
presence of label noise than ERM and Group DRO.
Corresponding to our assumption, JTT performs
poorly even with a low noise rate since it fails to
distinguish minorities from mislabeled samples.

6 Related Work

Group Robust Optimization Standard training
with ERM can result in highly variable perfor-
mance because of subpopulation distribution shifts
arising from spurious correlations (Wu and Gui,
2022; Gao et al., 2022). In this context, Sagawa
et al. (2020) formally introduces group DRO, with
the goal to maximize worst-group or the minority
group performance within the set of pre-defined
groups. While promising, a rather practical sce-
nario is that group information can not be available
reliably. Therefore, another line of research begins
to focus on the worst-case optimization without
group annotations (Zhou et al., 2021). Typically,
these methods first train a weaker model to iden-
tify high-loss samples as minority groups, and sub-
sequently train an additional model with greater
emphasis on the estimated minority groups (Nam
et al., 2020; Liu et al., 2021).

Although the unsupervised group DRO methods
are developed, they are confined to a two-stage
training pipeline. In the two-stage model, a failed
first stage can lead to an unsuccessful second stage
as errors from the former are propagated to the later
one. By contrast, Q-Diversity in an end-to-end
training manner overcomes the error accumulation.

The group assigner and constructor cooperate with
each other, and interactively, the classification re-
sponse from the constructor can serve as a weak
supervision to guide better group identification.

Diversity and OOD Generalization It is ex-
plored that the geometric skew and the statis-
tical skew are two mechanisms hurting out-of-
distribution performance with the existence of spu-
rious correlations (Nagarajan et al., 2021; Nguyen
et al., 2021). Concretely, the geometric skew is
caused by the fact that classification margin on
the minority group of a robust classifier tends to
be much larger than that of the majority group,
while the statistical skew arises from the fast con-
vergence of gradient descent on spurious correla-
tions unless trained for an exponentially long time.
Although upweighting or oversampling the minor-
ity samples are straightforwardly effective in mit-
igating the statistical skew, both of them fail the
geometric skew for the unchanged unique samples.
Therefore, a wide range of studies emerge to di-
versify the input samples or feature space. Among
them, counterfactually-augmented data (CAD), i.e.,
data generated by minimally perturbing exam-
ples to flip the ground-truth label, has shown effi-
ciency to learn robust features under distribution
shifts (Kaushik et al., 2020). However, further in-
vestigation (Joshi and He, 2022) reveals the lack of
perturbation diversity limits CAD’s effectiveness
on OOD generalization. In comparison, Wu et al.
(2022) directly leverage the deep generative models
to diversify training data with spurious correlations,
while the model complexity is increased greatly.

For the sake of creating more synthesized sam-
ples to address geometric skew, our method that
applying interpolation across the majority and mi-
nority groups shows its advantages in terms of per-
turbation diversity and time consumption.

7 Conclusion

In this paper, we present Q-Diversity, an unsu-
pervised method to optimize the worst group for
model robustness. The formulation of Q-Diversity
extends the annotations of group DRO to an auto-
matic assignment through an interactive training
mode. Furthermore, under the guarantee of a novel
mixing strategy across groups, Q-Diversity can
better counteract the failure modes of OOD gen-
eralization. Superior to previous works that only
show the efficiency over the particular dataset, we
demonstrate Q-Diversity promises better general-
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ization capability to various OOD sets. We believe
that our work casts light on the limitations of group
DRO which have been overlooked before, and can
be viewed as a cornerstone for future study in the
worst-group generalization.

Limitations

Although our unsupervised frameworkQ-Diversity
shows great superiority, when it comes to limi-
tations, we acknowledge that (i) Our empirical
validations on real-world datasets just follow cur-
rent benchmarks that shed light on the group shifts
caused by spurious correlations. Although we con-
duct experiments on the scenarios with noisy la-
bels and various OOD datasets, practically, apart
from superficial clues, a series of contributing fac-
tors that lead to group shifts are worth further ex-
ploration. (ii) A better theoretical understanding
of how the interactive training mode can guide
Q-Diversity works in better group identification
should be established, and this points out the direc-
tion for our future work.
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MultiNLI

Dataset Description
PI (Liu et al., 2020) selected instances from MultiNLI for testing the hypothesis-only bias in NLI models
LI (Liu et al., 2020) selected instances from MultiNLI for testing logical inference ability of NLI models

ST (Naik et al., 2018) stress set construction for testing the heuristics of NLI models
HANS (McCoy et al., 2019) designed to contain examples where the shallow heuristics (e.g., lexical overlap) fail

WaNLI (Liu et al., 2022) worker-and-AI collaborative dataset with challenging reasoning patterns for NLI task
SNLI (Bowman et al., 2015) a large-scale, widely-used benchmark for NLI task
ANLI (R3) (Nie et al., 2020) an iterative, adversarial human-and-model-in-the-loop solution for NLI dataset

SST2

Dataset Description
SST2 (Socher et al., 2013) from the GLUE NLU benchmark to classify movie reviews as positive or negative
Senti140 (Go et al., 2009) sentiment classification on Twitter messages

SemEval (Nakov et al., 2013) crowdsourcing on Amazon Mechanical Turk over Twitter dataset for sentiment analysis
Yelp (Asghar, 2016) online reviews consisting of free-form text and a star rating out of 5 for services

ImDB (Maas et al., 2011) a collection of positive and negative reviews from Internet Movie Database
Contrast (Gardner et al., 2020) small but label-changing modifications to the instances for ImDB

CAD (Kaushik et al., 2020) counterfactual datasets constructed over ImDB

Table 5: Details of the out-of-distribution datasets in Table 4.

A Details of the OOD Datasets

We train the model on MultiNLI and SST2 tasks
and test it on the corresponding OOD datasets re-
spectively. For the results shown in Table 4, we
present the details of these OOD datasets in Table 5
as follows.
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