
Findings of the Association for Computational Linguistics: ACL 2023, pages 11655–11671
July 9-14, 2023 ©2023 Association for Computational Linguistics

FluentSpeech: Stutter-Oriented Automatic Speech Editing
with Context-Aware Diffusion Models

Ziyue Jiang∗

Zhejiang University
ziyuejiang@zju.edu.cn

Qian Yang∗

Zhejiang University
qyang1021@zju.edu.cn

Jialong Zuo
Zhejiang University

jialongzuo@gmail.com

Zhenhui Ye
Zhejiang University

zhenhuiye@zju.edu.cn

Rongjie Huang
Zhejiang University

rongjiehuang@zju.edu.cn

Yi Ren
Bytedance AI Lab

ren.yi@bytedance.com

Zhou Zhao†

Zhejiang University
zhaozhou@zju.edu.cn

Abstract

Stutter removal is an essential scenario in the
field of speech editing. However, when the
speech recording contains stutters, the exist-
ing text-based speech editing approaches still
suffer from: 1) the over-smoothing problem in
the edited speech; 2) lack of robustness due
to the noise introduced by stutter; 3) to re-
move the stutters, users are required to deter-
mine the edited region manually. To tackle the
challenges in stutter removal, we propose Flu-
entSpeech, a stutter-oriented automatic speech
editing model. Specifically, 1) we propose a
context-aware diffusion model that iteratively
refines the modified mel-spectrogram with the
guidance of context features; 2) we introduce a
stutter predictor module to inject the stutter in-
formation into the hidden sequence; 3) we also
propose a stutter-oriented automatic speech
editing (SASE) dataset that contains sponta-
neous speech recordings with time-aligned stut-
ter labels to train the automatic stutter localiza-
tion model. Experimental results on VCTK
and LibriTTS datasets demonstrate that our
model achieves state-of-the-art performance
on speech editing. Further experiments on
our SASE dataset show that FluentSpeech can
effectively improve the fluency of stuttering
speech in terms of objective and subjective
metrics. Code and audio samples can be
found at https://github.com/Zain-Jiang/
Speech-Editing-Toolkit.

1 Introduction

Recently, text-based speech editing (Jin et al., 2017,
2018; Morrison et al., 2021; Tan et al., 2021; Tae
et al., 2021; Wang et al., 2022; Bai et al., 2022)
has made rapid progress, and stutter removal is

∗Equal contribution.
†Corresponding author.

a critical sub-task in speech editing. There are
various application scenarios for stutter removal,
like short-form videos, movies, podcasts, YouTube
videos, and online lectures, since it provides great
convenience for media producers.

Previous speech editing systems (Jin et al., 2017,
2018) successfully enable the user to edit the
speech recording through operations in the text
transcript. Some neural text-to-speech (TTS) based
methods (Tan et al., 2021; Tae et al., 2021) achieve
smooth transition at the boundaries of the edited re-
gion. And most recently, the mask prediction based
methods (Wang et al., 2022; Bai et al., 2022) learn
better contextual information from the input mel-
spectrogram and outperform previous approaches
at speech quality and prosody modeling. How-
ever, the existing approaches only aim at modify-
ing reading-style speeches, while removing stutters
from spontaneous speeches remains a considerable
challenge.

When applied to the stutter removal task, previ-
ous efforts are still subject to the following limita-
tions: 1) the generated mel-spectrogram is usually
blurry and lacks frequency bin-wise details, result-
ing in unnatural sounds in the boundaries of the
modified region; 2) when the speech recording is
full of stutters, the edited speech is usually not ro-
bust due to the noise introduced by the discrepancy
between text and stuttering speech content; 3) the
stutter region should be manually determined one
by one, which is costly and laborious for media
producers.

To tackle these challenges, we propose Flu-
entSpeech, the first generative model to solve the
stutter removal task, which automatically detects
the stutter regions, removes them, and generates
fluent speech with natural details. Specifically,

11655

https://github.com/Zain-Jiang/Speech-Editing-Toolkit
https://github.com/Zain-Jiang/Speech-Editing-Toolkit

• Non-probabilistic models tend to generate
over-smooth mel-spectrograms (Huang et al.,
2022; Popov et al., 2021), while probabilis-
tic models (e.g., GAN and diffusion) gener-
ate mel-spectrograms with richer frequency
details and natural sounds. Based on this ob-
servation, we adopt a context-aware diffusion
model that utilizes rich contextual information
to guide the diffusion and reverse processes,
which helps FluentSpeech to generate high-
quality and expressive results.

• To improve the robustness against stuttering
speeches, we introduce a conditional stut-
ter predictor that localizes the stutter region
and injects the stutter information into the
frame-level hidden sequence to reduce the dis-
crepancy between text and stuttering speech.
Moreover, the predicted stutter region can be
utilized as the mask for automatic stutter re-
moval.

• We propose a novel dataset called the stutter-
oriented automatic speech editing (SASE)
dataset, which contains spontaneous speech
recordings with time-aligned stutter labels for
automatic stutter removal.

Experiments on the VCTK (Yamagishi et al.,
2019) and LibriTTS (Zen et al., 2019) dataset
show that FluentSpeech outperforms state-of-the-
art models on speech editing towards reading-style
speech with fewer model parameters. And in the
experiments on our newly collected SASE dataset,
FluentSpeech enjoys much robustness against stut-
tering speech and demonstrates the ability to im-
prove the fluency of stuttering speech significantly.
The main contributions of this work can be summa-
rized as follows:

• We analyze the characteristics of different
speech editing approaches (e.g., algorithm,
architecture, alignment learning approaches,
etc.) and propose a context-aware diffusion
probabilistic model that achieves state-of-the-
art performance on speech editing.

• We propose a stutter predictor module to im-
prove the robustness against the stuttering
speech and localize the stutter region. The
stutter predictor can also control the stutter
representations by removing the stutters from
the spontaneous speech to improve its fluency,

which solves the automatic stutter removal
task for the first time.

• We contribute a novel SASE dataset which
contains 40 hours of spontaneous speech
crawled from online lectures or open courses
given by 46 speakers. We will publish our
model and dataset as the benchmark for the
evaluation of future SASE algorithms.

2 Background

In this section, we describe the background of
speech editing and the basic knowledge of diffusion
model. We also review the existing applications of
diffusion model in speech tasks and analyze their
advantages and disadvantages.

2.1 Speech Editing
Conventional speech editing methods (Derry, 2012;
Whittaker and Amento, 2004) provide users with
interfaces for cut, copy, paste, volume adjust-
ment, time-stretching, pitch bending, de-noising,
etc. Then text-based speech editing systems (Jin
et al., 2017, 2018) allow the editor to perform
select, cut, and paste operations in the text tran-
script of the speech and apply the changes to the
waveform accordingly. However, they mainly face
two problems. One is that the edited speech often
sounds unnatural because the edited region does not
match the prosody of the speech context. (e.g., mis-
matches in intonation, stress, or rhythm) (Jin et al.,
2017). Another is that the interfaces do not support
the ability to synthesize new words not appearing
in the transcript (Morrison et al., 2021). There are a
series of studies on these problems. Jin et al. (2017)
propose to insert a synthesized audio clip using a
combination of the text-to-speech model and voice
conversion model (Sun et al., 2016), which leads to
unnatural prosody near the boundaries of the edited
regions. Tan et al. (2021) use neural TTS model
with auto-regressive partial inference to maintain a
coherent prosody and speaking style. Most recently,
the mask prediction based methods (Wang et al.,
2022; Bai et al., 2022) can capture more contex-
tual information from the input mel-spectrogram.
Wang et al. (2022) propose to learn the relation
between text and audio through cross-attention but
suffer from the extremely slow convergence rate.
Bai et al. (2022) introduce the alignment embed-
ding into the Conformer-based (Gulati et al., 2020;
Guo et al., 2021) backbone to improve the speech
quality. However, previous methods only focus on

11656

the modification of reading-style speeches, which
is not stutter-oriented.

2.2 Diffusion Model

Basic knowledge of diffusion model Denois-
ing diffusion probabilistic models (DDPMs) have
achieved state-of-the-art performances in both im-
age and audio synthesis (Dhariwal and Nichol,
2021; Kong et al., 2020b; Huang et al., 2022).
DDPMs (Ho et al., 2020; Dhariwal and Nichol,
2021) are designed to learn a data distribution p(x)
by gradually denoising a normally distributed vari-
able through the reverse process of a fixed Markov
Chain of length T . Denote xt as a noisy version of
the clean input x0. DDPMs choose to parameterize
the denoising model θ through directly predicting
ϵ with a neural network ϵθ. The corresponding
objective can be simplified to:

LGrad
θ =

∥∥∥∥ϵθ
(
αtx0 +

√
1− α2

tϵ

)
− ϵ

∥∥∥∥
2

2

, ϵ ∼ N (0, I),

(1)

with t uniformly sampled from {1, ..., T}.

Applications of diffusion model in speech tasks
Applications of diffusion model in speech tasks
mainly lie in speech synthesis. Diff-TTS (Jeong
et al., 2021), Grad-TTS (Popov et al., 2021), and
DiffSpeech (Liu et al., 2021) are gradient-based
models with score-matching objectives to generate
high-quality speeches, which require hundreds of
iterations with small βt to guarantee high sample
quality. Most recently, ProDiff (Huang et al., 2022)
parameterize the denoising model by directly pre-
dicting clean data and avoids significant perceptual
quality degradation when reducing reverse itera-
tions. In the field of speech editing, Tae et al.
(2021) propose a diffusion model that requires a
pre-trained TTS model to synthesize the target au-
dio and eliminate the artifacts of concatenation by
a score-based manipulation algorithm, which is not
text-based speech editing.

3 FluentSpeech

This section presents our proposed FluentSpeech,
a stutter-oriented automatic speech editing model
that solves the stutter removal task. We firstly
overview the motivation and the architecture of
FluentSpeech. Secondly, we describe the detailed
designs of alignment modeling, context-aware spec-
trogram denoiser, and stutter predictor. Finally, we
describe the training objectives of FluentSpeech,

following with the illustration of training and infer-
ence procedures.

3.1 Model Overview
The overall model architecture of FluentSpeech is
shown in Figure 1. FluentSpeech consists of a lin-
guistic encoder and a context-aware spectrogram
denoiser. Denote the phoneme sequence of the
transcription as p = (p1, . . . , p|p|) and the acoustic
feature sequence as x = (x1, . . . , x|x|). x can be
the spectrogram or mel-spectrogram of the speech
audio, and each xi represents the speech feature of
frame i. The Transformer-based (Vaswani et al.,
2017) linguistic encoder converts p into the text
hidden sequence ep. Denote x̂ = Mask(x, λ)
as the masked acoustic feature sequence, where
Mask(·) replaces several random spans of x by the
probability of λ with the same number of a random
initialized masking vector. Then, the context-aware
spectrogram denoiser θ aggregates phoneme em-
bedding ep and other features like acoustic embed-
ding ex, pitch embedding epitch as the condition c
to guide the reverse process of the diffusion model
fθ (xt | t, c).

3.2 Alignment Modeling
Due to the modality gap between text and speech,
alignment modeling is essential in text-based
speech editing. There are three types of approaches
to model the monotonous alignment between text
and speech: 1) cross-attention, Wang et al. (2022)
propose to learn the alignment information with
the cross-attention module in the transformer de-
coder, which suffers from the slow convergence
rate and is usually not robust; 2) alignment embed-
ding, Bai et al. (2022) introduce the alignment em-
bedding from external alignment tools into the self-
attention based architecture to guide the alignment
modeling; 3) length regulator (Ren et al., 2019;
Tan et al., 2021), the length regulator expand text
embedding into frame-level embedding according
to the phoneme duration predicted by the duration
predictor (Ren et al., 2019; Tan et al., 2021), which
ensures hard alignments and is more robust than
the above two methods. However, the duration
predictor in Tan et al. (2021) does not consider
the existing context duration. It only predicts the
duration of the entire sentence from text represen-
tations and applies the duration of the edited words
to the masked region, which results in unnatural
prosody. Therefore, in FluentSpeech, we train the
duration predictor with the mask prediction proce-

11657

Phoneme

Phoneme Embedding

Context-Aware
Spectrogram Denoiser

� ����

Transformer Encoder

�� ��푖��ℎ
. . .

Mask

(a) FluentSpeech

Mask ��

...

��

...

�0

Reverse Diffusion
��(��|�, �)

(b) Reverse Diffusion
�

+
FC + Swish

~
��

Conv 1×1

Conv 3×3

+

tanh ●

Context Conditioning

Conv
1 × 1

...

�0

+

σ

+
Residual out . . .

Skip
out

+ Relu

Predicted

Residual Block
N×

Phoneme
Embedding

Masked
Duration

Masked Pitch

+

Spectrogram Denoiser

Speaker
Embedding

Masked
Mel Embedding

Masked
Pitch Predictor

Masked
Duration Predictor

Conv
1 × 1

Conv 1×1

Relu

Conv
1 × 1

Stutter
Predictor

Mel Embedding

0 1 1 0 0

LR

Stutter Embedding

� c

(c) Context-Aware Spectrogram Denoiser

Figure 1: The overall architecture for FluentSpeech. In subfigure (c), the spectrogram denoiser θ takes noisy
spectrogram xt as input and computes fθ(xt|t, c) conditioned on diffusion time index t and context information c.
The sinusoidal-like symbol, FC, Swish, and • denote the positional encoding, fully-connected layer, swish activation
function (Ramachandran et al., 2017), and element-wise multiple operation. LR denotes the Length Regulator
proposed in FastSpeech (Ren et al., 2019). N is the number of residual blocks. The dashed black line denotes that
the operation is only executed when the dataset contains spontaneous speeches.

dure to achieve the fluent duration transition at the
edited region, which is called the masked duration
predictor.

3.3 Context-Aware Spectrogram Denoiser

Context Conditioning As shown in Figure 1(c),
in the context conditioning module, we adopt
frame-level text embedding et, acoustic feature
sequence x, masked acoustic feature sequence x̂,
speaker embedding espk, pitch embedding epitch,
and stutter embedding estutter as the condition for
our spectrogram denoiser. The phoneme embed-
ding ep is first expanded into frame-level text em-
bedding et by the length regulator with the dura-
tion information from the masked duration predic-
tor. We add et to the context condition c. We
also extract the speaker embeddings espk from au-
dio samples using open-source voice encoder1 and
feed them into the context condition c following the
common practice (Min et al., 2021; Huang et al.,
2022; Tan et al., 2021). Then we adopt a nonlin-
ear feed-forward acoustic encoder to transform the
speech feature x and x̂ into the acoustic embed-
dings ex and ex̂ following Bai et al. (2022). The
masked acoustic embedding ex̂ is also added to the
condition to provide more contextual information
for mel-spectrogram reconstruction. Moreover, the
masked pitch predictor utilizes et and the masked
pitch embedding êpitch to predict the pitch F0 of
each frame in the edited region. We further con-

1https://github.com/resemble-ai/Resemblyzer

vert it into the pitch embedding vector and add it
to the context condition c. To promote the natural
transition at the edited boundaries, we train the du-
ration predictor and pitch predictor with the mask
prediction procedure:

Lp = ∥p− gp(et, êpitch)∥22 , (2)

Ld = ∥d− gd(ed, êdur)∥22 (3)

where we use d and p to denote the target dura-
tion and pitch respectively, and use gd and gp to
denote the corresponding duration predictor and
pitch predictor, which share the same architecture
of 1D convolution with ReLU activation and layer
normalization. The loss weights are all set to 0.1
and the reconstruction losses are also added to train
the linguistic encoder.

Spectrogram Denoiser Following Liu et al.
(2021); Huang et al. (2022), we adopt a non-causal
WaveNet (Oord et al., 2016) architecture to be our
spectrogram denoiser. The decoder comprises a
1x1 convolution layer and N convolution blocks
with residual connections to project the input hid-
den sequence with 256 channels. For any step t, we
use the cosine schedule βt = cos(0.5πt). Differ-
ent from the aforementioned diffusion models that
require hundreds of steps with small βt to estimate
the gradient for data density, we choose to param-
eterize the denoising model by directly predicting
the clean data x0 following recent researches in
image generation and TTS literature (Salimans and

11658

https://github.com/resemble-ai/Resemblyzer

Ho, 2021; Liu et al., 2022; Huang et al., 2022) to
significantly accelerate sampling from a complex
distribution. Specifically, in the generator-based
diffusion models, pθ(x0|xt) is the implicit distribu-
tion imposed by the neural network fθ(xt, t) that
outputs x0 given xt. And then xt−1 is sampled us-
ing the posterior distribution q(xt−1|xt, x0) given
xt and the predicted x0. The training loss is de-
fined as the mean absolute error (MAE) in the data
x space:

LMAE
θ =

∥∥∥∥xθ

(
αtx0 +

√
1− α2

tϵ

)
− x0

∥∥∥∥ , ϵ ∼ N (0, I) ,

(4)

and efficient training is optimizing a random t term
with stochastic gradient descent. Inspired by (Ren
et al., 2022), we also adopt structural similarity
index (SSIM) loss LSSIM

θ in training to capture
structural information in mel-spectrogram and im-
prove the perceptual quality:

LSSIM
θ = 1− SSIM

(
xθ

(
αtx0 +

√
1− α2

tϵ

)
, x̂0

)
.

(5)

The loss weights are all set to 0.5. Since the ca-
pability of our spectrogram denoiser is powerful
enough, we do not adopt the convolutional Post-Net
to refine the predicted spectrogram like previous
works (Wang et al., 2022; Bai et al., 2022).

Spectrogram

Speech Content

Transcription But what are some other reasons why people might not want to
engage in risk ?

Emm ... but what are some other reasons why people might not
want to ... to ... to engage in risk ?

Figure 2: The illustration of the discrepancy between
the given transcription and stuttering speech content.

3.4 Stutter Predictor

The stutter predictor is introduced only when the
speech corpus contains stuttering recordings. The
stutters in the speech content will introduce noise
to the training pipeline due to the noise introduced
by the information gap between text and stuttering
speech content. As shown in Figure 2, the stut-
tering word “to” in the speech content makes the
speech editing model learn unintentional sounds
in the pronunciation of the word “to”. Therefore,
we introduce the stutter embedding into the text
hidden sequence to disentangle the stutter-related

gradients from the speech content, which signif-
icantly improves the pronunciation robustness of
our FluentSpeech.

Let s = (s1, . . . , ss) be a time-aligned stutter
label that defines the stutter regions in the corre-
sponding spontaneous speech, where si ∈ {0, 1}
(0 for normal and 1 for stutter) for each frame (See
Appendix C for further details about the stutter la-
bel in our SASE dataset). In training, we take the
ground-truth value of the stutter label as input into
the hidden sequence to predict the target speech.
At the same time, we use the ground-truth labels as
targets to train the stutter predictor, which is used
in inference to localize the stutter region in target
speech.

The stutter predictor consists of 1) a 4-layer 1D
conditional convolutional network with ReLU ac-
tivation, each followed by the layer normalization
and the dropout layer; 2) an extra linear layer and
a softmax layer to predict the probability of stutter
tag. As shown in Figure 1(c), we propose a text-
guided stutter predictor module, which takes frame-
level text embedding et and mel-spectrogram em-
bedding ex as input and seeks to locate the text-
irrelevant stutter regions. The main objective
function for stutter prediction is the binary cross-
entropy loss LBCE . The Focal loss (Lin et al.,
2017) LFocal is also introduced since the misclas-
sification of fluent regions is tolerable and we want
the stuttering regions to be accurately classified.
The α0, α1 is set to 5e−3, 1 and γ is set to 3.

3.5 Training and Inference Procedures

Training The final training loss terms consist of
the following parts: 1) sample reconstruction loss
LMAE
θ ; 2) structural similarity index (SSIM) loss

LSSIM
θ ; 3) reconstruction loss for pitch and dura-

tion predictor Lp, Ld; 4) classification loss for stut-
ter predictor LBCE , LFocal. In the training stage,
we randomly select 80% phonemes spans and mask
their corresponding frames since 80% masking rate
shows good performances on both seen and unseen
cases. Then we add the stutter embedding to the
context condition. The objective functions only
take the masked region into consideration.

Inference for reading-style speech editing
Given a speech spectrogram x, its original
phonemes p̃ and the target phonemes p. Denote the
spectrogram region that needs to be modified as µ.
When the speech recording is reading-style, we do
not utilize the stutter predictor. We first use an ex-

11659

ternal alignment tool2 to extract the spectrogram-to-
phoneme alignments. x̂ is the spectrogram masked
according to the region µ. FluentSpeech takes p,
x̂, x, espk, êdur, and êpitch as inputs and generates
the spectrogram of the masked region µ. Finally,
we use a pre-trained vocoder to transform this spec-
trogram into the waveform.

Inference for stutter removal When the speech
recording is spontaneous, the stutter predictor first
predicts the stutter region µ′. Since the stutter
region µ′ also influences the prosody (e.g., dura-
tion and pitch) of the neighboring words, we find
all of the phoneme spans that overlap with or are
adjacent3 to µ′ and denote them as µ̂. Then the
spectrogram region that needs to be modified can
be defined as µ = µ′∪µ̂. To make the spontaneous
speech fluent, the stutter embedding is not added to
the hidden sequence. Following the masked spec-
trogram reconstruction process in the inference for
reading-style speech editing, FluentSpeech is able
to perform automatic stutter removal.

4 Experiments

4.1 Datasets

Reading-Style We evaluate FluentSpeech on two
reading-style datasets, including: 1) VCTK (Ya-
magishi et al., 2019), an English speech corpus
uttered by 110 English speakers with various ac-
cents; 2) LibriTTS (Zen et al., 2019), a large-scale
multi-speaker English corpus of approximately 585
hours of speech. We evaluate the text-based speech
editing performance of FluentSpeech and various
baselines on these datasets.

Spontaneous We also evaluate FluentSpeech
on the stutter-oriented automatic speech editing
(SASE) dataset collected and annotated by us (See
Appendix C for further details). The SASE dataset
consists of approximately 40 hours of spontaneous
speech recordings from 46 speakers with various
accents. All the audio files are collected from on-
line lectures and courses with accurate official tran-
scripts. Each recording is sampled at 22050 Hz
with 16-bit quantization. We evaluate the SASE
performance of FluentSpeech and various baselines
on this dataset.

2https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

3The adjacent region is the top-1 adjacent word boundary
given by the alignment tool.

For each of the three datasets, we randomly sam-
ple 400 samples for testing. We randomly choose
50 samples in the test set for subjective evaluations
and use all testing samples for objective evaluations.
The ground truth mel-spectrograms are generated
from the raw waveform with the frame size 1024
and the hop size 256.

4.2 Experimental Setup

Model Configuration FluentSpeech consists of
a linguistic encoder, an acoustic encoder, a masked
variance adaptor, a spectrogram denoiser, and a
stutter predictor. The linguistic and acoustic en-
coders consist of multiple feed-forward Trans-
former blocks (Ren et al., 2019) with relative posi-
tion encoding (Shaw et al., 2018) following Glow-
TTS (Kim et al., 2020). The hidden channel is set
to 256. In the spectrogram denoiser, we set N = 20
to stack 20 layers of convolution with the kernel
size 3, and we set the dilated factor to 1 (with-
out dilation) at each layer following (Huang et al.,
2022). The number of diffusion steps T is set to
8. The stutter predictor is based on the non-causal
WaveNet (Oord et al., 2016) architecture. We have
attached more detailed information on the model
configuration in Appendix A.1.

Training and Evaluation We train the Flu-
entSpeech with T = 8 diffusion steps. The Flu-
entSpeech model has been trained for 300,000 steps
using 1 NVIDIA 3080 GPU with a batch size of
30 sentences. The adam optimizer is used with
β1 = 0.9, β2 = 0.98, ϵ = 10−9. We utilize HiFi-
GAN (Kong et al., 2020a) (V1) as the vocoder
to synthesize waveform from the generated mel-
spectrogram in all our experiments. To measure the
perceptual quality, we conduct human evaluations
with MOS (mean opinion score), CMOS (compara-
tive mean opinion score), and average preference
score on the testing set via Amazon Mechanical
Turk (See Appendix A.3 for more details). We
keep the text content and text modifications consis-
tent among different models to exclude other inter-
ference factors, only examining the audio quality.
We further measure the objective evaluation met-
rics, such as MCD (Kubichek, 1993), STOI (Taal
et al., 2010), and PESQ (Rix et al., 2001). More
information on evaluation has been attached in Ap-
pendix A.4.

11660

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

Method VCTK LibriTTS #Params.MCD (↓) STOI (↑) PESQ (↑) MCD (↓) STOI (↑) PESQ (↑)

EditSpeech 6.92 0.69 1.43 5.33 0.68 1.35 48.1M
CampNet 7.83 0.54 1.38 6.51 0.40 1.28 14.7M
A3T 6.25 0.41 1.18 5.69 0.70 1.39 67.7M
FluentSpeech 5.86 0.81 1.91 4.74 0.78 1.82 23.9M

Table 1: The objective audio quality comparisons. We only measure the MCD, STOI, and PESQ of the masked
region. MCD and PESQ indicate speech quality, and STOI reflects speech intelligibility

Method Seen Unseen

EditSpeech 4.00 ± 0.10 3.89 ± 0.09
CampNet 3.59 ± 0.11 3.04 ± 0.18
A3T 4.09 ± 0.10 3.90 ± 0.10
FluentSpeech 4.27 ± 0.11 4.18 ± 0.09

Table 2: The MOS evaluation (↑) for speech quality
on speech editing task on the VCTK dataset with 95%
confidence intervals.

4.3 Results of Reading-Style Speech Editing

We compare the quality of generated audio sam-
ples of our FluentSpeech with other baseline sys-
tems, including 1) EditSpeech (Tan et al., 2021); 2)
CampNet (Wang et al., 2022); 3) A3T (Bai et al.,
2022) (detailed descriptions can be found in Ap-
pendix A.2). For objective evaluation, we con-
duct the spectrogram reconstruction experiment to
evaluate these systems. As shown in Table 1, Flu-
entSpeech demonstrates superior performance in
MCD, PESQ, and STOI metrics.

For subjective evaluation, we manually define
modification operations (i.e., insertion, replace-
ment, and deletion) of 50 audio samples. We then
conduct the experiments on the VCTK dataset. For
each audio sample, we ask at least 10 English
speakers to evaluate the generated audios’ speech
quality and speaker similarity. The results are pre-
sented Table 2 and Table 3. For the seen case, each
speaker’s examples would be split into train and test
sets. And for the unseen case, the test set contains
10 speakers’ examples, and the other 99 speakers’
examples are used for training following (Bai et al.,
2022). It can be seen that FluentSpeech achieves
the highest perceptual quality and speaker similar-
ity on both seen and unseen settings compared to all
baselines, which demonstrates the effectiveness of
our proposed context-aware spectrogram denoiser.

Method Seen Unseen

EditSpeech 4.26 ± 0.10 3.90 ± 0.13
CampNet 3.93 ± 0.12 3.58 ± 0.20
A3T 4.27 ± 0.09 3.53 ± 0.14
FluentSpeech 4.42 ± 0.06 4.21 ± 0.11

Table 3: The MOS evaluation (↑) for speaker similarity
on speech editing task on the VCTK dataset with 95%
confidence intervals.

12%
4%

72%

15.00%16%

81.00%

0%

20%

40%

60%

80%

Naturalness Fluency

Original Speech
Neural
FluentSpeech

Figure 3: Average preference score (%) evaluation on
naturalness and fluency on the SASE dataset, where
“Neural” stands for “no preference”.

4.4 Results of Stutter-Oriented Automatic
Speech Editing

We evaluate the accuracy of FluentSpeech on the
stutter localization task, and the results are shown
in Table 4. It can be seen that our FluentSpeech
achieves 80.5% accuracy and 94.4% precision on
the stutter localization task. We then compare the
naturalness and fluency of generated audio samples
of our FluentSpeech with the original spontaneous
recordings. We conduct a subjective average pref-
erence score evaluation, where 50 sentences are
randomly selected from the test set of our SASE
dataset. The listeners are asked to judge which
utterance in each pair has better naturalness (or
fluency) or no preference in the edited area. As
shown in Figure 3, FluentSpeech achieves similar
naturalness compared to the original audio. More-
over, the fluency of the speeches generated by our
FluentSpeech is significantly improved, which fur-
ther shows the effectiveness of our stutter-oriented

11661

(a) Ground-truth spectrogram (b) FluentSpeech (c) FluentSpeech wo MDP

(d) A3t (e) CampNet (f) EditSpeech

Figure 4: Visualizations of the ground-truth and generated mel-spectrograms by different speech editing models.
Original text is “We didnt enjoy the first game, but today they were excellent”. In (b,c,d,e,f) subfigures, the portion
with red box is “the first game” which is masked and reconstructed. MDP denotes the masked duration predictor.

Method Accuracy (%) Precision (%)

FluentSpeech 80.5% 94.4%

Table 4: The stutter localization evaluation (↑) on the
SASE dataset. Accuracy (%) denotes the overall ac-
curacy; Precision (%) indicates the proportion of the
correctly classified stutter regions.

automatic speech editing strategy.

4.5 Visualizations

As illustrated in Figure 4, we visualize the mel-
spectrograms generated by FluentSpeech and base-
line systems. We can see that FluentSpeech can
generate mel-spectrograms with richer frequency
details compared with other baselines, resulting in
natural and expressive sounds. Moreover, when
we substitute the masked duration predictor with
the duration predictor utilized in Tan et al. (2021);
Wang et al. (2022); Bai et al. (2022), an unnatural
transition has occurred in the left boundary of the
edited region of FluentSpeech, which demonstrates
the effectiveness of our proposed masked duration
predictor.

4.6 Ablation Studies

We conduct ablation studies to demonstrate the
effectiveness of several designs in FluentSpeech,
including the stutter embedding and the masked
predictors. We perform CMOS and MCD evalu-
ations for these ablation studies. The results are
shown in Table 5. We can see that CMOS drops

Method C-MOS MCD (↓)

FluentSpeech 0.00 4.54
- Stutter Embedding -0.52 4.63
- MDP - MPP + DP + PP -0.35 5.75
- MDP - MPP + DP -0.24 5.15

Table 5: Audio quality comparisons on the SASE
dataset for ablation study. MDP denotes the masked
duration predictor; MPP denotes the masked pitch pre-
dictor; DP denotes the duration predictor used in Tan
et al. (2021); Bai et al. (2022) and PP denotes the pitch
predictor proposed in (Ren et al., 2020).

rapidly when we remove the stutter embedding,
indicating that the noise introduced by the text-
speech pair’s discrepancy greatly reduces the nat-
uralness of the generated audio. Thus, the stutter
embedding successfully improves the robustness
of our FluentSpeech; Moreover, when we remove
the MDP, MPP and use the DP following recent
speech editing algorithms (Tan et al., 2021; Wang
et al., 2022; Bai et al., 2022), the speech quality
also drops significantly, demonstrating the effec-
tiveness of our proposed masked predictors. It is
worth mentioning that the pitch predictor without
masked training also results in a performance drop
in terms of voice quality.

5 Conclusion

In this work, we proposed FluentSpeech, a stutter-
oriented automatic speech editing model for stut-
ter removal. FluentSpeech adopts a context-aware
spectrogram denoiser to generate high-quality and

11662

expressive speeches with rich frequency details. To
improve the robustness against stuttering speeches
and perform automatic stutter removal, we pro-
pose a conditional stutter predictor that localizes
the stutter region and injects the stutter embedding
into the text hidden sequence to reduce the discrep-
ancy between text and stuttering speech record-
ing. We also contribute a novel stutter-oriented
automatic speech editing dataset named SASE,
which contains spontaneous speech recordings with
time-aligned stutter labels. Experimental results
demonstrate that FluentSpeech achieves state-of-
the-art performance on speech editing for reading-
style speeches. Moreover, FluentSpeech is robust
against stuttering speech and demonstrates the abil-
ity to improve the fluency of stuttering speech
significantly. To the best of our knowledge, Flu-
entSpeech is the first stutter-oriented automatic
speech editing model that solves the automatic stut-
ter removal task. Our extensive ablation studies
demonstrated that each design in FluentSpeech is
effective. We hope that our work will serve as
a basis for future stutter-oriented speech editing
studies.

6 Limitations

We list the limitations of our work as follows.
Firstly, the model architecture we use to localize
the stuttering speech is simple. Future works could
explore a more effective model to perform auto-
matic stutter removal with the help of our SASE
dataset. Secondly, we only test the English datasets.
And other languages except for English and multi-
language stutter-oriented speech editing remain for
future works. Finally, after being pre-trained on
our SASE dataset, the stutter embedding in Flu-
entSpeech could also be used to inject stutters into
the reading-style speech to change its speaking
style, and we leave it for future works.

7 Ethics Statement

FluentSpeech improves the naturalness of edited
speech and promotes the automatic stutter removal
of stuttered speech, which may cause unemploy-
ment for people with related occupations. Besides,
the free manipulation of speeches may bring po-
tential social damage. Further efforts in automatic
speaker verification should be made to lower the
aforementioned risks.

8 Acknowledgments

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
No.2022ZD0162000, National Natural Science
Foundation of China under Grant No. 62222211,
Grant No.61836002 and Grant No.62072397.

References
He Bai, Renjie Zheng, Junkun Chen, Mingbo Ma, Xin-

tong Li, and Liang Huang. 2022. A3t: Alignment-
aware acoustic and text pretraining for speech syn-
thesis and editing. In International Conference on
Machine Learning, pages 1399–1411. PMLR.

Roger Derry. 2012. PC audio editing with Adobe Audi-
tion 2.0: Broadcast, desktop and CD audio produc-
tion. Routledge.

Prafulla Dhariwal and Alexander Nichol. 2021. Diffu-
sion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–
8794.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. arXiv preprint
arXiv:2005.08100.

Pengcheng Guo, Florian Boyer, Xuankai Chang,
Tomoki Hayashi, Yosuke Higuchi, Hirofumi In-
aguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-
Romero, Jiatong Shi, et al. 2021. Recent devel-
opments on espnet toolkit boosted by conformer.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5874–5878. IEEE.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–
6851.

Yi Hu and Philipos C Loizou. 2007. Evaluation of
objective quality measures for speech enhancement.
IEEE Transactions on audio, speech, and language
processing, 16(1):229–238.

Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu,
Chenye Cui, and Yi Ren. 2022. Prodiff: Progressive
fast diffusion model for high-quality text-to-speech.
In Proceedings of the 30th ACM International Con-
ference on Multimedia, pages 2595–2605.

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon,
Byoung Jin Choi, and Nam Soo Kim. 2021. Diff-
tts: A denoising diffusion model for text-to-speech.
arXiv preprint arXiv:2104.01409.

11663

Zeyu Jin, Gautham J Mysore, Stephen Diverdi, Jingwan
Lu, and Adam Finkelstein. 2017. Voco: Text-based
insertion and replacement in audio narration. ACM
Transactions on Graphics (TOG), 36(4):1–13.

Zeyu Jin et al. 2018. Speech synthesis for text-based
editing of audio narration.

Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sun-
groh Yoon. 2020. Glow-tts: A generative flow for
text-to-speech via monotonic alignment search. Ad-
vances in Neural Information Processing Systems,
33:8067–8077.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020a.
Hifi-gan: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. Advances in
Neural Information Processing Systems, 33:17022–
17033.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2020b. Diffwave: A versatile dif-
fusion model for audio synthesis. arXiv preprint
arXiv:2009.09761.

Robert Kubichek. 1993. Mel-cepstral distance measure
for objective speech quality assessment. In Proceed-
ings of IEEE pacific rim conference on communi-
cations computers and signal processing, volume 1,
pages 125–128. IEEE.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, Peng
Liu, and Zhou Zhao. 2021. Diffsinger: Diffusion
acoustic model for singing voice synthesis.

Songxiang Liu, Dan Su, and Dong Yu. 2022.
Diffgan-tts: High-fidelity and efficient text-to-speech
with denoising diffusion gans. arXiv preprint
arXiv:2201.11972.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal forced aligner: Trainable text-speech align-
ment using kaldi. In Interspeech, volume 2017, pages
498–502.

Dongchan Min, Dong Bok Lee, Eunho Yang, and
Sung Ju Hwang. 2021. Meta-stylespeech: Multi-
speaker adaptive text-to-speech generation. In In-
ternational Conference on Machine Learning, pages
7748–7759. PMLR.

Max Morrison, Lucas Rencker, Zeyu Jin, Nicholas J
Bryan, Juan-Pablo Caceres, and Bryan Pardo. 2021.
Context-aware prosody correction for text-based
speech editing. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7038–7042. IEEE.

Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima
Sadekova, and Mikhail Kudinov. 2021. Grad-tts:
A diffusion probabilistic model for text-to-speech.
In International Conference on Machine Learning,
pages 8599–8608. PMLR.

Prajit Ramachandran, Barret Zoph, and Quoc V Le.
2017. Searching for activation functions. arXiv
preprint arXiv:1710.05941.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
arXiv preprint arXiv:2006.04558.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech: Fast,
robust and controllable text to speech. Advances in
Neural Information Processing Systems, 32.

Yi Ren, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu.
2022. Revisiting over-smoothness in text to speech.
arXiv preprint arXiv:2202.13066.

Antony W Rix, John G Beerends, Michael P Hollier,
and Andries P Hekstra. 2001. Perceptual evaluation
of speech quality (pesq)-a new method for speech
quality assessment of telephone networks and codecs.
In 2001 IEEE international conference on acoustics,
speech, and signal processing. Proceedings (Cat. No.
01CH37221), volume 2, pages 749–752. IEEE.

Tim Salimans and Jonathan Ho. 2021. Progressive dis-
tillation for fast sampling of diffusion models. In
International Conference on Learning Representa-
tions.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen
Meng. 2016. Phonetic posteriorgrams for many-to-
one voice conversion without parallel data training.
In 2016 IEEE International Conference on Multime-
dia and Expo (ICME), pages 1–6. IEEE.

Cees H Taal, Richard C Hendriks, Richard Heusdens,
and Jesper Jensen. 2010. A short-time objective intel-
ligibility measure for time-frequency weighted noisy
speech. In 2010 IEEE international conference on
acoustics, speech and signal processing, pages 4214–
4217. IEEE.

Cees H Taal, Richard C Hendriks, Richard Heusdens,
and Jesper Jensen. 2011. An algorithm for intelligi-
bility prediction of time–frequency weighted noisy
speech. IEEE Transactions on Audio, Speech, and
Language Processing, 19(7):2125–2136.

11664

Jaesung Tae, Hyeongju Kim, and Taesu Kim. 2021.
Editts: Score-based editing for controllable text-to-
speech. arXiv preprint arXiv:2110.02584.

Daxin Tan, Liqun Deng, Yu Ting Yeung, Xin Jiang,
Xiao Chen, and Tan Lee. 2021. Editspeech: A text
based speech editing system using partial inference
and bidirectional fusion. In 2021 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU), pages 626–633. IEEE.

Tomoki Toda, Alan W Black, and Keiichi Tokuda. 2007.
Voice conversion based on maximum-likelihood esti-
mation of spectral parameter trajectory. IEEE Trans-
actions on Audio, Speech, and Language Processing,
15(8):2222–2235.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tao Wang, Jiangyan Yi, Liqun Deng, Ruibo Fu, Jian-
hua Tao, and Zhengqi Wen. 2022. Context-aware
mask prediction network for end-to-end text-based
speech editing. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6082–6086. IEEE.

Steve Whittaker and Brian Amento. 2004. Semantic
speech editing. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
527–534.

Junichi Yamagishi, Christophe Veaux, and Kirsten Mac-
Donald. 2019. CSTR VCTK Corpus: English multi-
speaker corpus for CSTR voice cloning toolkit (ver-
sion 0.92).

H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia,
Z. Chen, and Y. Wu. 2019. Libritts: A corpus de-
rived from librispeech for text-to-speech. In Proc.
Interspeech.

Hui Zhang, Xueliang Zhang, and Guanglai Gao. 2018.
Training supervised speech separation system to im-
prove stoi and pesq directly. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5374–5378. IEEE.

A Detailed Experimental Settings

A.1 Model Configurations
We list the model hyper-parameters of Flu-
entSpeech in Table 6.

A.2 Details of Baseline Systems
EditSpeech (Tan et al., 2021) is a speech-editing
system that introduces partial inference and bidi-
rectional fusion to sequence-to-sequence neural
TTS model. EditSpeech trains two conventional au-
toregressive TTS models, one left-to-right and the

other right-to-left. For decoding, the left-to-right
TTS model and the right-to-left TTS model gen-
erate the modified region simultaneously. Finally,
the two synthesized speeches are fused for the fi-
nal output. CampNet (Wang et al., 2022) propose
a context-aware mask prediction network (Camp-
Net) to simulate the process of text-based speech
editing. Three text-based speech editing opera-
tions based on CampNet are designed: deletion, re-
placement, and insertion. And a word-level autore-
gressive generation method is proposed to improve
the editing length. A3T (Bai et al., 2022) propose
the alignment-aware acoustic-text pre-training, a
BERT-style pre-training model, which takes both
phonemes and partially-masked spectrograms as
inputs. The alignment embedding from external
alignment tools is introduced into the Conformer-
based (Gulati et al., 2020; Guo et al., 2021) back-
bone to improve the speech quality.

A.3 Details in Subjective Evaluation

We perform the subjective evaluation on Amazon
Mechanical Turk (MTurk). For speech editing eval-
uations, we randomly select 50 samples from the
test set and manually define modification opera-
tions (i.e., insertion, replacement, and deletion) for
these audio samples. We use FluentSpeech and the
baseline speech editing systems to edit the audio
samples. Each generated audio has been listened to
by at least 10 native listeners. We paid $8 to partic-
ipants hourly and spent about $400 on participant
compensation. We tell the participants that the data
will be used in scientific research.

• For audio quality evaluations (MOS), each
tester is asked to evaluate the subjective nat-
uralness of a sentence on a 1-5 Likert scale,
and we tell listeners to“assess the quality of
the audio based on how close it is to natural
speech”.

• For speaker similarity evaluations (MOS), lis-
teners are asked to compare pairs of audio
generated by systems A and ground-truth B
and indicate the speaker similarity of the two
audio and choose the scores on a 1-5 simi-
lar scale. We tell listeners to answer “How
similar is this recording to the reference au-
dio? Please focus only on the similarity of the
speaker to the reference, and ignore the differ-
ences of content, grammar, or audio quality”.
The screenshots of instructions for speech edit-

11665

https://doi.org/10.7488/ds/2645
https://doi.org/10.7488/ds/2645
https://doi.org/10.7488/ds/2645
https://doi.org/10.21437/Interspeech.2019-2441
https://doi.org/10.21437/Interspeech.2019-2441

Hyperparameter FluentSpeech Number of parameters

Text Encoder

Phoneme Embedding 192

3.7M
Encoder Layers 4
Encoder Hidden 192

Encoder Conv1d Kernel 5
Encoder Conv1D Filter Size 384

Context Condition
Predictor Conv1D Kernel 3

5.8MPredictor Conv1D Filter Size 256
Predictor Dropout 0.4

Spectrogram Denoiser

Diffusion Embedding 256

14.4M
Residual Layers 20

Residual Channels 256
WaveNet Conv1d Kernel 3
WaveNet Conv1d Filter 512

Total Number of Parameters 23.9M

Table 6: Hyperparameters of FluentSpeech models.

ing tests are shown in Figure 5(a) and Fig-
ure 5(b).

• For stutter removal evaluations, we perform
average preference score tests for speech qual-
ity and fluency. For the speech quality AB
test, each listener is asked to select their pre-
ferred audio according to audio quality. We
tell listeners to answer “Which of the audio
has better quality? Please focus on the au-
dio quality and ignore other factors”. For
the speech fluency AB test, each listener is
asked to select the audio they prefer according
to audio fluency, and we tell listeners to an-
swer “Which of the audio sounds more fluent?
Please focus on speech fluency and ignore
other factors. The stutter in the audio typi-
cally sounds like “emm”, “uhhh”, “hmmm”,
or words repetition”. The screenshots of in-
structions for stutter removal evaluations are
shown in Figure 5(c) and Figure 5(d).

A.4 Details in Objective Evaluation

The effectiveness of our FluentSpeech is measured
by MCD (Toda et al., 2007), STOI (Taal et al.,
2011),PESQ (Hu and Loizou, 2007) metrics. MCD
measures the Euclidean distance between two mel
cepstral sequences, which describes the global
spectral characteristics of audio signals. PESQ indi-
cates speech quality, and STOI reflects speech intel-
ligibility (Zhang et al., 2018). The lower MCD and
higher PESQ, STOI represent better performance in
the generated speech. Denote mt = [mt

1, . . . ,m
t
L]

and mc = [mt
1, . . . ,m

t
L] as two mel cepstral se-

quences. The traditional MCD measure is given

Method Duration Error (ms) (↓)

DP 152.9
MDP 99.9

Table 7: Average duration error comparisons on the
VCTK dataset. DP denotes the duration predictor used
in Tan et al. (2021); Bai et al. (2022) and MDP denotes
the masked duration predictor in our FluentSpeech.

by:

MCD[dB] =
10

ln10

√√√√2

L∑

i=1

(mt
i −mc

i)
2 , (6)

where L is the order of mel cepstrum and L is 34
in our implementation.

The traditional PESQ measure is given by:

PESQ = a0 + a1Dind + a2Aind , (7)

where a0,a1,a2 are the parameters, Dind represents
the average disturbance value and Aind represents
the average asymmetrical disturbance values.

STOI is a function of a TF-dependent intermedi-
ate intelligibility measure, which compares the tem-
poral envelopes of the clean and degraded speech
in short-time regions by means of a correlation co-
efficient. The following vector notation is used
to denote the short-time temporal envelope of the
clean speech:

xj,m = [Xj(m−N + 1), Xj(m−N + 2), ..., Xj(m)]T ,
(8)

where N = 30 which equals an analysis length of
384 ms.

11666

(a) Screenshot of MOS testing for speech quality in the speech editing evaluation.

(b) Screenshot of MOS testing for speaker similarity in the speech editing evaluation.

(c) Screenshot of average preference score testing for speech quality in the stutter removal evaluation.

(d) Screenshot of average preference score testing for speech fluency in the stutter removal evaluation.

Figure 5: Screenshots of subjective evaluations.

11667

Figure 6: Screenshot of our SASE dataset.

Method Average Pitch Error (↓)

EditSpeech 5571
CampNet 6758
A3T 4595
FluentSpeech w/ PP 4134
FluentSpeech w/ MPP 2276

Table 8: Average pitch error comparisons on the VCTK
dataset. PP denotes the pitch predictor proposed in Ren
et al. (2020) and MPP denotes the masked pitch predic-
tor in our FluentSpeech.

B Detailed analysis of duration and pitch

To further dive into the detailed performance of
our model, we evaluate the duration and pitch er-
rors between our FluentSpeech and the baseline
models. For duration errors, the ground truth dura-
tion is obtained from the Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017). We calculate MSE
of word-level durations for the duration predictor
(DP) used in Tan et al. (2021); Bai et al. (2022)
and the masked duration predictor (MDP) in Flu-
entSpeech. The results on the VCTK dataset are
shown in Table 7. It can be seen that the masked
duration predictor predicts more accurate duration,
demonstrating the effectiveness of the masked pre-
diction training. For pitch errors, we compare
our FluentSpeech with all other baseline models.

We firstly extract frame-level pitch information us-
ing parselmouth4, then calculate the MSE of the
mean pitch distance between the model-generated
speeches and the ground-truth speeches. The re-
sults on the VCTK dataset are shown in table 8. It
can be seen that FluentSpeech achieves the lowest
average pitch error. Moreover, the average pitch
error of FluentSpeech with the masked pitch pre-
dictor (MPP) is significantly lower than the Flu-
entSpeech with the pitch predictor proposed in Ren
et al. (2020), demonstrating the effectiveness of our
masked pitch predictor.

C More details of SASE dataset

The SASE dataset consists of approximately 40
hours of spontaneous speech recordings from 46
speakers with various accents. The speech record-
ings are crawled from online lectures and courses
with accurate official transcripts. Each recording is
sampled at 22050 Hz with 16-bit quantization. We
substitute the speakers’ names with speaker IDs to
protect their personal information, and the dataset
can only be accessed for research purposes.

To obtain the time-aligned stutter labels, we re-
cruit annotators from a crowdsourcing platform,
Zhengshu Technology, to label the stuttering re-

4https://github.com/YannickJadoul/Parselmouth

11668

https://github.com/YannickJadoul/Parselmouth

gion according to the audio and transcription.
Specifically, the stuttering region may be 1) stam-
mers and repetitive words, for instance, “I am
go...go...going... out for a...a...a... trip”; 2) filled
pauses (FP) such as “em, um, then, due to, uh,
the speaker’s custom of speaking”; 3) sudden oc-
casions such as cough, voice crack, etc. The
annotators are asked to mark the corresponding
time boundaries and give the stuttering label as
shown in Figure 6. We then use the given times-
tamps in the official transcriptions to cut the audio
and text into fragments ranging from 7 to 10 sec-
onds. Finally, we convert each text sequence into
phoneme sequence with an open-source grapheme-
to-phoneme tool5. The audio samples in our SASE
dataset are available at https://speechai-demo.
github.io/FluentSpeech/.

5https://github.com/Kyubyong/g2p

11669

https://speechai-demo.github.io/FluentSpeech/
https://speechai-demo.github.io/FluentSpeech/
https://github.com/Kyubyong/g2p

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6

�3 A2. Did you discuss any potential risks of your work?
Section 7

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4 and Appendix C

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Section 4 and Appendix C

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4 and Appendix C

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4 and Appendix C

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11670

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 4, Appendix A.3, and Appendix C

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix A.3 and Appendix C

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Appendix A.3 and Appendix C

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix A.3 and Appendix C

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Appendix A.3 and Appendix C

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix A.3 and Appendix C

11671

