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Abstract

Translation difficulty arises when translators
are required to resolve translation ambiguity
from multiple possible translations. Transla-
tion difficulty can be measured by recording
the diversity of responses provided by human
translators and the time taken to provide these
responses, but these behavioral measures are
costly and do not scale. In this work, we use
word alignments computed over large scale
bilingual corpora to develop predictors of lex-
ical translation difficulty. We evaluate our ap-
proach using behavioural data from translations
provided both in and out of context, and report
results that improve on a previous embedding-
based approach (Thompson et al., 2020). Our
work can therefore contribute to a deeper un-
derstanding of cross-lingual differences and of
causes of translation difficulty.

1 Introduction

Words can be hard to translate for many reasons in-
cluding cultural context and differences in semantic
subdivisions across languages (Hershcovich et al.,
2022; Chaudhary et al., 2021). For instance, the
emotional/moral sense of English heart is com-
monly translated as Malay hati, but in a medical
setting heart should be translated as jantung and
hati refers to a different bodily organ (the liver).
Examples such as this are challenging for language
learners and translators because they go beyond
simple one-to-one correspondences between source
and target words.

Translation difficulty has been studied by re-
searchers from multiple disciplines including psy-
cholinguistics (Degani et al., 2016), computational
linguistics (Cotterell et al., 2018), machine trans-
lation (Koehn and Knowles, 2017) and translation
studies (Carl et al., 2016b). Understanding transla-
tion difficulty is an important scientific challenge in
its own right, but methods for measuring difficulty

∗Now at Google DeepMind.

can also be applied in a number of ways. First, dif-
ficulty measures have previously been used to iden-
tify word meanings of cultural significance (Toury,
2021; Thompson et al., 2020). Second, difficulty
measures can help develop targeted evaluations
for Neural Machine Translation (NMT) systems
(Bugliarello et al., 2020; Yin et al., 2021). For ex-
ample, automatic difficulty ratings allow for the
generation of translation samples of varying diffi-
culties and facilitate human evaluation of machine
translation. A third potential application is to re-
weight and calibrate NMT performance across data
sets, language pairs and domains based on their
varying levels of difficulty – an objective crucial
to NMT quality estimation tasks (Fomicheva et al.,
2020; Behnke et al., 2022). Finally, in second lan-
guage learning and human translator training, trans-
lation difficulty ratings allow instructors to identify
potential challenges to language learners, and to
curate translation assignments for translation stu-
dents of different levels of experience (Sun, 2015;
Chaudhary et al., 2021).

In this work, we use surprisal and entropy de-
rived from word alignment to estimate word transla-
tion difficulty. Different pairs of aligned words are
collected as translation alternatives (e.g., heart-hati
and heart-jantung) and used to infer a word’s trans-
lation distribution and compute our information-
theoretic difficulty measures. Among previous
studies of translation our approach is closest to
the work of Chaudhary et al. (2021), as it lever-
ages large-scale human translation data and extracts
word-level translations from aligned sentences. Un-
like previous studies, however, we are the first to
use word alignments to directly address translation
difficulty as a psychological aspect of lexical se-
mantics that is measurable by behavioural data. We
evaluate our difficulty estimates against translation
norms (Tokowicz et al., 2002; Prior et al., 2007;
Allen and Conklin, 2014; Bracken et al., 2017;
Lee et al., 2022; Tseng et al., 2014) that measure
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translation difficulty out of context and translation
process features (Carl et al., 2016b) that measure
translation difficulty in context. We also compare
against a previous approach that uses multilingual
embeddings to develop a measure of translation
difficulty (Thompson et al., 2020).

Relative to embeddings, we suggest that word
alignments better capture lexical and morphologi-
cal distributions, and hence allow for a better mea-
sure of translation difficulty.1 Our measures of
translation difficulty are interpretable, and as we
show in later sections, help improve the understand-
ing of human language and translation processing.

2 Related Work

Our approach builds on two lines of work from the
psycholinguistic literature on translation. One line
of work relies on translation norms derived from
tasks in which bilingual participants translate sin-
gle words presented out of context or rate semantic
similarity between pairs of words (Tokowicz et al.,
2002; Prior et al., 2007; Allen and Conklin, 2014;
Bracken et al., 2017; Lee et al., 2022; Tseng et al.,
2014). High variation in translation responses to a
given word provides evidence of translation ambi-
guity (Kroll and Tokowicz, 2001; Tokowicz, 2000);
whereas perceived degree of cross-lingual semantic
overlap informs lexical choice and is predictive of
response time (Allen and Conklin, 2013; Van Ass-
che et al., 2009; Dijkstra et al., 2010; Van Hell and
De Groot, 1998). A second line of work studies
translation in context by measuring reading time
and production duration as translators process re-
alistic texts (Carl et al., 2016b). Behavioral ap-
proaches like these provide gold-standard measures
of translation difficulty but are costly and do not
scale.

Within the computational literature, Thompson
et al. (2020) and Carl (2021b) derive automatic
measures of translation difficulty based on the idea
that difficult-to-translate words are hard to align
across word embedding spaces. The former use
embeddings to compare semantic neighbourhoods
of bilingual word pairs and report significant cor-
relations with human semantic similarity judge-
ments. Carl (2021b) learned a cross-lingual embed-
ding projection to estimate word pair similarities,
and showed that these estimates predict transla-
tion process data. Bugliarello et al. (2020) and Yin

1Code available at https://github.com/ZhengWeiLim/
pred-translation-difficulty.

et al. (2021) probe translation ambiguity from NMT
models using cross-mutual information, which is
useful for identifying contextual translations in
NMT models. Chaudhary et al. (2021) use word
alignment distributions to reveal lexical semantic
distinctions across languages. Their work shows
that word alignments, with properly extracted de-
scriptions, help language learners disambiguate
fine-grained lexical distinctions, but does not di-
rectly address the general notion of translation dif-
ficulty.

3 Assessing word-level translation
difficulty through word alignments

Assume that we have a parallel corpus and a word
aligner and are interested in the translation distri-
bution of word w from a source language, L1, to a
target language, L2. The most natural approach is
a count-based distribution, where counts for words
aligned with w are normalized by the frequency of
w. From here, pal(v|w), the probability of word
w being translated to v, can be computed over
aligned word pairs. In addition to alignment counts,
most word aligners assign a score for each pair
of aligned words. Given two parallel sequences,
x = [x0, ..., xm] and y = [y0, ..., yn], let xi ↔ yj
indicate that the ith token from x is paired with
the jth token from y, and let sxi↔yj denote the
alignment score.2 This allows a weight-based dis-
tribution parallel to the count-based method above.
In general, we calculate pal(v|w) by:

pal(v|w) =
Sw↔v∑

u∈V Sw↔u
. (1)

For the weight-based distribution, Sw↔v represents
the sum of alignment scores of all w ↔ v pairings.
For the count-based distribution, sxi↔yj = 1, i.e.,
Sw↔v is the number of times w is aligned with v in
the entire corpus.3 The final distribution, pal(v|w),
is normalized given the total scores of all possible
alignments with w, where V refers to the vocabu-
lary of L2 in the corpus.

The concept of surprisal in psycholinguistics is
often associated with cognitive workload, which
in translation studies is connected to word transla-
tion information (ITra) (Wei, 2022; Carl, 2021a).

2In Dou and Neubig (2021), sxi↔yj is the harmonic mean
between p(yj |xi) and p(xi|yj), the probability of xi being
aligned to yj over all possible words in y, and vice versa.

3Sw↔v =
∑
x↔y

∑
i,j

sxi↔yj1{w,v}(xi, yj)
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Translation surprisal is defined as:

Ial(v|w) = − log pal(v|w). (2)

Low surprisal values indicate that v is a stable trans-
lation of w, which is expected to require low effort
to produce. The translation uncertainty associated
with a source word w can be formulated as the
entropy (or expected surprisal):

Hal(w) = −
∑

u∈V
pal(u|w) log pal(u|w). (3)

Surprisals derived from count-based and weight-
based distributions are denoted by Ical and Iwal re-
spectively. Likewise, Hc

al and Hw
al will be used

as shorthands for their respective entropy values.
Word pairs with higher surprisal are expected to
be more difficult. Higher translation entropy indi-
cates a greater range of translations for a source
word, which is expected to contribute to translation
difficulty.

4 Experiments

Dataset and pre-processing We obtain parallel
data of English with German (de), Spanish (es),
Japanese (ja), Malay (ms), Dutch (nl) and Chinese
(zh) from OpenSubtitles (Lison et al., 2018). All
sentences are tokenized by the spaCy tokenizer
(Honnibal and Montani, 2017), except Malay, for
which we use Aksara (Hanifmuti and Alfina, 2020).
We choose to preserve word forms in subtitles and
evaluation data, because morphological variation,
as we see in later sections, partly contributes to
translation ambiguity. awesome-align is used to
infer word alignments from the tokenized parallel
sentences.4 We then calculate surprisal and entropy
based on Equations 2 and 3.5

Evaluation. We evaluate our methods against
context-free translations compiled in existing
norms, which include i) the number of unique trans-
lations of a word, and cover Spanish, Japanese,
Malay, Dutch and Chinese (to and from English);
and ii) semantic similarity ratings of paired words
between English and Japanese, Dutch and Chinese
(Tokowicz et al., 2002; Prior et al., 2007; Allen
and Conklin, 2014; Bracken et al., 2017; Lee et al.,
2022; Tseng et al., 2014). Measures of transla-
tion in context are derived from CRITT TPR-DB,
a behavioural data set extracted from translation

4without --train_co option for consistency optimization.
5Other pre-processing steps are described in Appendix B.

es ja ms nl zh

→ en
Memb .300 .341 - .247 -
Hc

al .442 .563 .255 .264 -
Hw

al .451 .570 .266 .270 -

en →
Memb .351 .461 - .358 .284
Hc

al .487 .525 .430 .250 .348
Hw

al .487 .538 .440 .248 .351

Table 1: Pearson correlation (the higher the better) be-
tween alignment distribution entropy and number of
translations in translation norms. All values shown are
significant (p < .001). ‘-’ indicates missing values (e.g.
the Chinese norms do not include English translations).

logs collected using key loggers and eye trackers
(Carl et al., 2016b). We focus on three such process
features:

• Dur specifies the time taken to produce the
target token corresponding to a source word.

• Munit describes the number of micro units,
which are distinct translation activities marked
by pauses of a fixed length. Thus, easier trans-
lations correspond to lower values of Munit.

• HTra refers to translation entropy based on
manual alignments in TPR-DB.

More details about these three features and about
the preprocessing applied are described in Ap-
pendix A. We validate against data sets in Japanese
(ENJA15, Carl et al., 2016a), German (SG12, Carl
et al., 2016b) and Spanish (BML12, Mesa-Lao,
2014), for which information about translation at
the token-level is readily available.

Baselines. We compare Ical and Iwal with Thompson
et al.’s (2020) embedding-based approach, which
has been framed explicitly as an account of trans-
lation difficulty. Following their work we expand
the initial NorthEuraLex translations (Dellert et al.,
2020) to include all translation pairs in the evalua-
tion data and recompute word-pair semantic align-
ments using Common Crawl and Wikipedia fast-
Text embeddings (Grave et al., 2018).

The final values are negated to match the sign of
Ial, and denoted here by Semb.6 Thompson et al.
(2020) do not provide an embedding-based ana-
log of Hc

al and Hw
al that can be used to estimate

6In Appendix C, we include alternative results computed
from OpenSubtitles embedding and translation pairs with ad-
ditional top 3 aligned translations of the initial vocabulary.
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ja nl zh

→ en
Semb -.422 -.302 -.332
Ical -.200 -.587 -.474
Iwal -.194 -.587 -.471

en →
Semb -.422 -.284 -.332
Ical -.474 -.476 -.486
Iwal .-.471 -.474 -.484

Table 2: Pearson correlation with word-pair similarity
ratings (the lower the better). All values presented are
significant (p < .01).

the translation uncertainty associated with a single
source word. We therefore compare Hc

al and Hw
al

with a simple embedding-based measure Memb de-
fined as the highest value of Semb associated with a
source word. We limit all comparisons to the same
set of vocabulary and translation pairs.7

5 Results and Discussion

Context-free translations. Table 1 reports the
Pearson correlation of all methods given transla-
tions to English (→ en) and translations from En-
glish (en →). Both Hc

al and Hw
al achieve moder-

ately high correlations with Spanish and Japanese
norms. Hw

al is a weight-based entropy, which cap-
tures more nuances in its translation distribution
than does the count-based approach, and is, in most
languages, the most predictive of a source word’s
translation difficulty. Table 2 summarizes the cor-
relation of Ical, I

w
al and Semb of word pairs against

semantic similarity ratings.8 The count-based and
weight-based entropy measures achieve similar cor-
relations and outperform the embedding-derived
measure in 5 out of 6 cases.

Context-dependent translations. Table 3 shows
that our corpus-derived entropy measures strongly
correlate with entropies based on TPR-DB (HTra),
and that Ical and Iwal are moderately predictive of
Munit. However, Dur correlates weakly but nega-
tively with Ical, I

w
al and Semb. This finding is sur-

prising — we previously argued that low-surprisal
translations and word pairs with high embedding
alignment have a larger degree of semantic overlap,
which should have contributed to easier transla-

7The vocabulary size, evaluation set and the number of
translations in comparison, are reported in Appendix B.

8Unlike alignment distributions, Semb and similarity judge-
ments (except for Dutch norms) are non-directional, resulting
in the same values in both directions.

de es ja

HTra↑
Memb .322 .298 .273
Hc

al .427 .512 .406
Hw

al .428 .511 .405

Dur (ms) ↑
Semb -.363 -.466 /
Ical -.109 -.195 -.161
Iwal -.120 -.205 -.156

Munit ↑
Semb .067 / /
Ical .269 .269 .176
Iwal .263 .260 .170

Table 3: Correlations (p < .05) between alignment dis-
tribution entropy and behavioural data. Non-significant
values are omitted with ‘/’. ↑ denotes the direction of
increasing difficulty.

tion and shorter production time. The gap between
the embedding and word-alignment approaches for
Munit and Dur is also considerably larger than for
our previous results. We now offer two partial ex-
planations for these observations.

Lexical and morphological variation. Rela-
tive to the embedding-based approach, our word-
alignment approach more accurately captures the
distribution of lexical choices and morphological
variants. Rare and morphologically complex words
have long been known to affect NMT modeling
difficulty (Belinkov et al., 2017; Cotterell et al.,
2018), and have relatively poor representations
in both static and contextual embeddings (Bah-
danau et al., 2017; Conneau et al., 2017; Schick and
Schütze, 2019; Athiwaratkun et al., 2018; Schick
and Schütze, 2020; Anastasopoulos and Neubig,
2020). Word embeddings are also typically opti-
mized to minimize the contribution of frequency
information (Gong et al., 2018; Mu and Viswanath,
2018; Liang et al., 2021; Spliethöver et al., 2022).
Ignoring frequency, however, is problematic for
our task because frequency captures information
about which translation choices are most typical
and natural (Baker, 2018). In our data, varied is
more commonly translated to Spanish feminine
form, variada, than the masculine form variado.
Table 4 suggests that variado took longer to pro-
duce because it appears less frequently in parallel
text together with varied, as indicated by its sur-
prisal value. Another example that reflects lexical
distribution is disliked, where disgustaba is a more
popular translation than detestaba. Here Semb fails
to distinguish the difference in usage.
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en es Dur Semb Ical Iwal

disliked disgustaba 5.90 -.555 2.79 2.71
detestaba 8.53 -.555 4.45 4.37

region región 8.01 -.393 0.21 0.20
zona 7.36 -.391 2.74 2.73

varied

variada 6.70 -.587 1.66 1.64
variado 7.15 -.628 2.05 2.02
diversa 7.11 -.600 5.76 5.73
diverso 6.95 -.586 5.76 5.73

Table 4: Translation examples from English to Spanish,
showing influences of form similarity, morphology and
lexical distribution on production duration.

Effects of form similarity. Our counterintuitive
result for Dur is consistent with previous evidence
that cognates are both produced with high proba-
bility and associated with relatively long produc-
tion times.9 Heilmann and Llorca-Bofí (2021)
show that the cognate status of a source word in-
creases translation duration (particularly cognate-
to-cognate translation), due to hesitation and self-
monitoring. Additional evidence that form overlap
influences translations is provided by Prior et al.
(2011) and Schwartz and Kroll (2006), who found
that context helps facilitate non-cognate alterna-
tives to compete in lexical selection. Consistent
with these results, we found significant negative
correlations between Ical and Iwal with cognate
rating in Spanish norms (Prior et al., 2007) and
Mean Form Sim Rating in Dutch norms (Tokow-
icz et al., 2002), which shows that cognates are
indeed more probable translations.10 For Japanese,
we conducted a t-test on surprisals and found a sig-
nificant difference (p < .001) between borrowings
and non-borrowings (Allen and Conklin, 2014).11

Table 4 shows región as a more common but slower
translation of region. Unlike variada and diversa,
the surprisal differential between variado and di-
verso is not enough to overcome its cognate effect.

6 Conclusion

We developed predictors of translation difficulty
based on word alignment distributions and tested

9Here, we use cognate liberally to include loanwords and
words with high form (orthographical and/or phonological)
similarity.

10On average, the correlations (p < .001) for Ical are -.213
(es) and -.214 (nl), whereas Iwal are -.214 (es and nl).

11Semb is largely uninfluenced by formal similarity.

them using translation norms and translation pro-
cessing data. Compared to the embedding-based
approach, our measures derived from word align-
ment do not depend on lexical databases and more
accurately capture lexical choice distributions and
morphological variation. Our results show im-
proved estimates of translation difficulty, but sug-
gest that a comprehensive account of human trans-
lation difficulty must also consider additional fac-
tors such as form similarity.

7 Limitations

Although form similarity is demonstrably responsi-
ble for slower translation processing, we are unable
to ascertain if it is the primary reason. The work
also reveals one shortcoming of alignment distri-
butions — the measure tends to be biased towards
translations with similar forms and does not always
make accurate predictions about cognates. To ad-
dress this limitation, future work can evaluate more
elaborate models of translation that incorporate
variables (e.g., form overlap, syntactic complex-
ity, and morphological complexity) identified as
relevant by previous empirical work in psycholin-
guistics.
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A Translation behavioural data

We evaluate translation difficulty in context using
CRITT TPR-DB, which includes logs for transla-
tions of the multiLing corpus (six English source
texts) into various languages (Carl et al., 2016b).13

Here we briefly describe all features relevant to
translation difficulty.

HTra is similar to Hc
al in that these methods quan-

tify the degree of uncertainty in a lexical distribu-
tion. Where Hc

al measures the entropy of word
alignments, HTra does the same for source and
target tokens in multiLing translations (Schaeffer
et al., 2016). Words with high HTra have less ob-
vious translation choices, which means that the
lexical decisions of the translator require more cog-
nitive effort. This measure has been shown to affect
total target production duration, First Fixation Du-
ration and Source Token Reading Time (Carl and
Schaeffer, 2017; Schaeffer and Carl, 2017; Schaef-
fer et al., 2016).

Munit refers to the number of micro translation
units, which are units of translation activity sepa-
rated by pauses of a given length, as monitored by a
key logger or an eye tracker (Alves and Vale, 2017).
This records the number of activities involved in
the translation process, where the translator might
read, plan, revise, edit or reconsider a previously
translated token.

Dur refers to the production duration of a target
token given a source token, i.e., the time taken from
the first keystroke to last keystroke in producing
the relevant token.

Following Heilmann and Llorca-Bofí (2021) and
Carl (2021b), we remove all values of Dur smaller
than 20ms and log scale all remaining values.
Across participants and translation sessions, HTra
is averaged by source words, whereas Munit and
Dur are averaged by translation pairs.

B Experiment and data specification

The pre-processing steps before word alignment
include white space cleaning and removal of any
sentence pairs containing non-ASCII-decodable
characters. After word alignment, we exclude en-
tropy values of words that have been aligned fewer
than 20 times, or have frequency lower than 50 in
Worldlex (Gimenes and New, 2016).14

13https://sites.google.com/site/
centretranslationinnovation/tpr-db

14http://www.lexique.org/?page_id=250
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Measure de es ja ms nl zh

Ical
→ en 7.5M 11.8M 1.3M 0.9M 9.0M 5.6M
en→ 7.5M 11.8M 1.3M 0.9M 9.0M 5.6M

Iwal
→ en 7.5M 11.8M 1.3M 0.9M 9.0M 5.6M
en→ 7.5M 11.8M 1.3M 0.9M 9.0M 5.6M

Hc
al

→ en 41.0K 44.5K 13.5K 10.7K 33.1K 24.7K
en→ 34.6K 38.6K 15.6K 13.8K 37.0K 30.7K

Hw
al

→ en 41.0K 44.5K 13.5K 10.7K 33.1K 24.7K
en→ 34.6K 38.6K 15.6K 13.8K 37.0K 30.7K

Memb
→ en 1,973 2,779 2,134 - 1,586 1,834
en→ 1,209 1,883 1,131 - 1,388 1,241

Semb ↔ en 3,011 4,972 4,209 - 1,911 2,004

NoTrans
→ en - 762 193 1,004 550 -
en→ - 670 193 844 562 544

Semsim ↔ en - - 193 - 1,003 1,282

HTra en→ 415 416 415 - - -

Munit en→ 4,419 4,897 12.0K - - -

Dur en→ 4,087 4,240 6,085 - - -

Table 5: Vocabulary size and number of paired words for each measure and evaluation data set. NoTrans and
Semsim refer to number of translations and human semantic similarity ratings of translation norms respectively.
Measures marked with ↔ en are non-directional (except for Dutch semantic similarity ratings, which include ratings
in both directions of the same translation pairs).

Table de es ja ms nl zh

1 → en - 751 162 713 534 -
en→ - 670 187 738 559 540

2 → en - - 184 - 988 1,175
en→ - - 184 - 988 1,175

3
HTra 366 376 246 - - -
Dur 1,330 1,584 809 - - -
Munit 1,400 1,697 1,334 - - -

Table 6: The number of comparisons across measures for each result table in the main text.
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Table 5 reports the vocabulary size and num-
ber of paired words in each measure and evalu-
ation data set. During evaluation, we also limit
our comparisons across methods to the same set of
vocabulary and translation pairs. The number of
comparisons for all result tables in the main text is
summarized in Table 6.

C Additional results for Thompson’s
embedding-based approach

We found the embedding-based method of Thomp-
son et al. (2020) to be highly sensitive to the quality
of the input translation pairs — performance de-
grades with additional word alignment data. Here,
we provide results for two alternative measures.
M+

emb and S+
emb are comparable to Memb and Semb

in the main text, but incorporate the top 3 word
alignments for each word in the initial vocabu-
lary. Another set of measures are M s

emb and Ss
emb,

which are based on the same translation pairs as
Memb/Semb, but are computed with OpenSubtitles
embeddings (subs2vec) (Van Paridon and Thomp-
son, 2021).15

Tables 7a and 7b show the results against context-
free translations, which correspond to Tables 1 and
2 in the main text. For context-dependent transla-
tions, the correlations with translation process fea-
tures are reported in Table 8. Note that some values
are missing from the tables, because subs2vec em-
beddings are not available in Japanese and Chinese.

D Terms for use

For all relevant data, models and code used in the
work, we list licenses permitting research use:

• awesome-align under BSD 3-Clause License

• spaCy tokenizer and subs2vec under MIT Li-
cense

• Aksara tokenizer under GNU Affero General
Public License

• CRITT TPR-DB under CC BY-NC-SA Li-
cense

• fastText embeddings CC BY-SA 3.0 License

• NorthEuraLex translations under CC BY-SA
4.0 License

We use the code of Thompson et al. (2020) from
https://osf.io/tngba/, which can be freely

15https://github.com/jvparidon/subs2vec

es ja nl zh

→ en
M+

emb .215 / / -
M s

emb .351 - .212 -

en→ M+
emb .317 .263 .190 .151

M s
emb .394 - .335 -

(a) Number of translations

ja nl zh

→ en
S+
emb -.316 -.325 -.360

Ss
emb - -.310 -

en → S+
emb -.316 -.295 -.360

Ss
emb - -.302 -

(b) Semantic similarity ratings

Table 7: Alternative results of Memb and Semb using ad-
ditional word alignments, M+

emb / S+
emb, and subs2vec

embeddings, Ms
emb /Ss

emb, against context-free transla-
tion norms (p < .001). The sub-tables correspond to
Tables 1 and 2 in the main text.

de es ja

HTra↑ M+
emb .332 .314 .254

M s
emb .276 .296 -

Dur (ms) ↑ S+
emb -.339 -.401 /

Ss
emb -.352 -.497 -

Munit ↑ S+
emb .110 .075 /

Ss
emb .064 / -

Table 8: Alternative results (p < .05) corresponding to
Table 3 in main text.

used for academic research.16 Lison and Tiede-
mann (2016) explicitly made OpenSubtitles cor-
pora “freely available to the research community”,
whereas translation norms have been created to
facilitate multilingual research (Tokowicz et al.,
2002; Prior et al., 2007; Lee et al., 2022). The
code repository for this project, as referenced from
footnote 1, is available under MIT License.

16https://www.nature.com/
nature-portfolio/editorial-policies/
self-archiving-and-license-to-publish#
terms-for-use
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