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Abstract

Prompting shows promising results in few-
shot scenarios. However, its strength for
multilingual/cross-lingual problems has not
been fully exploited. Zhao and Schiitze (2021)
made initial explorations in this direction by
presenting that cross-lingual prompting out-
performs cross-lingual finetuning. In this pa-
per, we conduct an empirical exploration on
the effect of each component in cross-lingual
prompting and derive language-agnostic Uni-
versal Prompting, which helps alleviate the
discrepancies between source-language train-
ing and target-language inference. Based on
this, we propose DPA, a dual prompt augmen-
tation framework, aiming at relieving the data
scarcity issue in few-shot cross-lingual prompt-
ing. Notably, for XNLI, our method achieves
46.54% with only 16 English training examples
per class, significantly better than 34.99% of
finetuning. Our code is available at https:
//github.com/DAMO-NLP-SG/DPA.

1 Introduction

Although adapting Pre-trained Language Models
(PLMs) (Devlin et al., 2019) to downstream NLP
tasks via finetuning is the de facto mainstream
paradigm under fully supervised settings (Wang
et al., 2018), promptingl (Gao et al., 2021; Rad-
ford et al., 2019; Brown et al., 2020; Schick and
Schiitze, 2021a,b) has demonstrated its superiority
over finetuning in low-resource scenarios. Typi-
cally, prompting reformulates the classification task
as a language modeling problem over manually-
designed natural language prompts.

Despite the effectiveness of prompting on En-
glish tasks, its potential for cross-lingual problems,
which assume the availability of the training data
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in high-resource languages (e.g., English) only, is
still under-explored. Zhao and Schiitze (2021) is
the pioneering work to apply prompting to cross-
lingual NLP. However, their major efforts are spent
on comparing different training strategies for cross-
lingual prompting such as discrete prompting and
soft prompting. They do not fully investigate the
design choice of key components in prompting, i.e.,
prompt template and verbalizer.

To provide a practical guide for designing
cross-lingual prompting, we first conduct an em-
pirical analysis to explore the effects of each
prompting component on the performance of cross-
lingual transfer. Our preliminary study shows that
template-free prompting combined with English-
only inference, dubbed as language-agnostic “Uni-
versal Prompting” (UP) in this paper, generally
performs well across different few-shot settings. In-
tuitively, UP avoids the discrepancies between the
source-language training and the target-language
inference, which intrinsically better fits cross-
lingual tasks.

The derived UP is a concise solution with rea-
sonable performance but does not take advantage
of other available resources in the context of multi-
lingual problems, e.g., the translation of verbalizers
in target languages. Motivated by this fact, we pro-
pose a Dual Prompt Augmentation (DPA) frame-
work to alleviate the data scarcity issue in few-shot
scenarios. Firstly, we introduce multilingual ver-
balizers as answer augmentation for prompting,
where the translated label tokens are treated as ad-
ditional target-language supervision. Secondly, we
propose prompt mixup as prompt input augmen-
tation, which mixes the prompt representations in
each batch. Intuitively, given two prompt repre-
sentations on real data, we can generate a virtual
representation based on their interpolation, which
encodes the semantics in between. Our DPA frame-
work is not task-dependent and does not require
either external unlabeled data (Xie et al., 2020) or
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massive text manipulation efforts (Wei and Zou,
2019) compared with other data augmentation ap-
proaches.

In summary, our contributions are as follows:

* We develop language-agnostic Universal
Prompting, a concise prompting baseline
with competitive performance for cross-lingual
transfer.

* To overcome the data scarcity issue, we propose
Dual Prompt Augmentation for cross-lingual
prompting to perform data augmentation from
the views of prompt answers and prompt inputs.

2 Language-Agnostic Universal
Prompting

In this section, we first empirically investigate the
importance of essential elements, i.e., template and
verbalizer design, in cross-lingual prompting (Zhao
and Schiitze, 2021). Based on our investigation, we
derive a more competitive baseline called Universal
Prompting. It is language-agnostic because it does
not make assumptions about the input language in
template design, and the verbalizer during training
is taken for all other languages. Note that, since
soft prompting (SP) and mixed prompting (MP)
rely on an external bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to create soft prompts
and do not outperform discrete prompting (DP)
significantly, we mainly discuss DP in this work
for a clear comparison.

As illustrated in Table 1, Zhao and Schiitze
(2021) directly utilize the translated templates
and verbalizers for target-language inference, mak-
ing templates and verbalizers language-dependent.
However, the translated templates are not seen and
the translated verbalizers are never modeled by
the PLM during training. This leads to discrepan-
cies between the source-language training and the
target-language inference.

To alleviate such discrepancies, we consider
three possible variants. Specifically, these three
variants are derived by avoiding translation on the
template and verbalizer tokens or removing the
template words, see Table 1 for concrete examples.

We follow the experimental setup (refer to Sec-
tion 4 for details) in Zhao and Schiitze (2021) to
evaluate the impact of the above designs 2. In Ta-
ble 2, we observe that W/O TEMPLATE TRANS-

ZAs we employ a different evaluation method, the repro-

duced results of Zhao and Schiitze (2021) are slightly different
from the original ones. More details can be found in Section 4.

LATION achieves slight but stable improvements
under different shots. W/O TEMPLATE WORDS
simply removes the template words and achieves
more obvious improvements. W/O VERBALIZER
TRANSLATION ? avoids using translation at the
verbalizer end and brings in the most significant
improvements. Therefore, by alleviating discrepan-
cies either in the aspect of verbalizer or template,
the performance of cross-lingual prompting can
be further improved. By combining the advances
of these variants, the Universal Prompting (UP) is
derived to treat various languages in a unified fash-
ion. Specifically, UP alleviates the discrepancy of
prompt templates and verbalizers simultaneously,
which is a much stronger baseline than Zhao and
Schiitze (2021) in multilingual tasks.

Note that the idea of removing template words
in UP is distinct to “null prompt” (IV et al., 2021)
from the perspective of motivation. “Null prompt”
is proposed to simplify the manual prompt de-
sign on monolingual tasks. Compared with “null
prompt”, the primary goal of UP is to alleviate the
source-target discrepancies in cross-lingual trans-
fer. Moreover, besides removing template words,
our UP also involves the design choice for target-
language inference (W/O VERBALIZER TRANS-
LATION), which proves to be a larger contribution
according to the empirical results shown in Table 2.
The effectiveness of using the verbalizer in the
source language is also found in (Lin et al., 2022).

3 Dual Prompt Augmentation

In prompting, the mask token is directly used for
making predictions. In this section, we formalize
a Dual Prompt Augmentation (DPA) framework
based on this crucial element of prompting.

3.1 Prompt Answer Augmentation

In Section 2, we show that directly translating the
verbalizers to the target language for inference is
not helpful. In this subsection, we explore the us-
age of verbalizer translation at the training stage.
Intuitively, their rich semantics could serve as high-
quality paraphrases (Jiang et al., 2021) of the En-
glish verbalizer and provide additional supervision
to train multilingual models. Motivated by this,
we define a multilingual verbalizer for the English

*Note that W/O VERBALIZER TRANSLATION refers to not
applying translated verbalizers during inference. In Section 3
we will show how to exploit the translated verbalizers as an-
swer augmentation during training.



Prompt Templates

Verbalizers

EN (source) Zhao and Schiitze (2021) A . Question: B ? Answer: <mask> . |[Entailment: yes; Contradict: no; Neutral: maybe
Universal Prompting A . B ? <mask> . Entailment: yes; Contradict: no; Neutral: maybe

Zhao and Schiitze (2021) A . Soru: B ? Cevap: <mask> . Entailment: Evet; Contradict: hi¢cbir; Neutral: belki

W/0 TEMPLATE TRANSLATION |A . Question:B ? Answer: <mask> . |Entailment: Evet; Contradict: hi¢cbir; Neutral: belki

TR (target) | W/O TEMPLATE WORDS A . B ? <mask> . Entailment: Evet; Contradict: hicbir; Neutral: belki
W/O VERBALIZER TRANSLATION|A . Soru: B ? Cevap: <mask> . Entailment: yes; Contradict: no; Neutral: maybe
Universal Prompting A . B ? <mask> . Entailment: yes; Contradict: no; Neutral: maybe

Table 1: Prompt templates and verbalizers in English (EN) and Turkish (TR). A and B indicate two sentences of a
sentence pair. For XNLI, A is the premise and B is the hypothesis. With the proposed language-agnostic Universal
Prompting, we could treat source-language training and target-language inference in a unified fashion.

Shots | Method Accuracy
Zhao and Schiitze (2021) 38.811.61
W/0 TEMPLATE TRANSLATION 39.151 73
16 W/0 TEMPLATE WORDS 39.872.94
W/O VERBALIZER TRANSLATION | 42.321 81
Universal Prompting 43.185 77
Zhao and Schiitze (2021) 41.421 66
W/0 TEMPLATE TRANSLATION 41.721 89
32 W/0 TEMPLATE WORDS 43.660.96
W/O VERBALIZER TRANSLATION | 46.501 54
Universal Prompting 48.261 34
Zhao and Schiitze (2021) 46.420 65
W/0 TEMPLATE TRANSLATION 46.750.61
64 W/0 TEMPLATE WORDS 47.601.09
W/O VERBALIZER TRANSLATION | 53.07; 33
Universal Prompting 52.191 53

Table 2: Comparison results between Zhao and Schiitze
(2021) and its variants on XNLI. We calculate the aver-
age accuracy over 15 languages. The standard deviation
over 5 runs is reported as the subscript.

training data, which can be regarded as answer aug-
mentation for the mask token. Formally, given the
pre-built prompt x filled with input sentences, the
training objective is to maximize the likelihood of
verbalized label tokens in multiple languages:

1
arg méaxz iz Z log P( (mask) = V(y)|x; 6) 1)

LcL

where 6 denotes the parameters of the PLM. V
is the verbalizer in a certain language ¢ € £, and
it maps from the gold label to a specific word in
language /. * In comparison, UP only takes £ =
{EN}, which is a monolingual verbalizer.

3.2 Input Augmentation with Prompt Mixup

Previous mixup methods for NLP perform the
whole-sequence interpolation at the input embed-
ding level (Zhang and Vaidya, 2021; Guo et al.,
2019) or hidden representation level (Jindal et al.,
2020; Chen et al., 2020). However, directly apply-
ing previous methods to prompting has been shown

“Please refer to Appx. A for the language set we use

to even lead to a significant performance drop in
Zhou et al. (2021). In prompting-based methods,
the most important hidden space representation for
classification is encoded at the position of mask
tokens. Different training data may have differ-
ent sequence lengths and their mask tokens are
at different positions. The interpolation between
the representation of a mask token and a normal
verbal token would be meaningless in prompting.
Therefore, we propose to interpolate between the
top-most mask token representations to augment
prompt inputs. Then the interpolated representation
is fed into the masked language modeling head.

Formally, let m; = h(x;) and m; = h(x;) be
the top-most hidden representations corresponding
to the mask tokens of two prompts x; and x;, re-
spectively. Then we perform linear interpolation to
produce a virtual representation:

mij = Ah(z;) + (1 — A)h(z;) 2

where A follows a Beta distribution, i.e., A ~
B(a, «). The corresponding answer labels are lin-
early interpolated accordingly:

Yij =\ + (1= Ny, 3)

Considering an augmented multilingual verbalizer
as in Section 3.1, the training objective of this par-
ticular virtual example would be:

1
arg max —— Alog P( (mask) = Vi(y;)|mn;; 6)
+(1 = A) log P((mask) = Vi (y;)|ri;;0) }
The interpolation is performed in a dynamic in-
batch fashion. For a mini-batch drawn from the

training set, we will split it into pairs and generate
a virtual prompt representation based on each pair.

4 Experiments

4.1 Setup

Datasets We conduct experiments on two
sentence-pair classification tasks: XNLI (Conneau



et al., 2018; Williams et al., 2018) for cross-lingual
natural language inference and PAWS-X (Yang
et al., 2019) for multilingual paraphrase identifi-
cation. For these two datasets, while the evaluation
data is human-translated, the golden training data
is only available in English.

Evaluation We conduct our experiments by train-
ing the XLM-R base model (Conneau et al., 2020)
on English. Then the model will be directly
applied to other target languages, without using
any training examples of the target language. To
make a reasonable comparison between finetuning
and prompting, we ensure finetuning to be better
than a random guess on each language. There-
fore, we randomly sample without replacement
K € {16,32,64, 128,256} per class for XNLI and
K € {256,512} per class for PAWS-X to construct
the training set. Then we use the same number of
shots from the validation split to select the best
model (Perez et al., 2021).

The evaluation of few-shot cross-lingual transfer
can be with large variance and depend on data selec-
tion (Zhang et al., 2021a; Zhao et al., 2021; Keung
et al., 2020). In our work, to faithfully reflect the
few-shot performance, separate training/validation
sets are sampled for different runs.

4.2 Results

UP v.s. Finetuning/PCT On the XNLI dataset,
even the simplest prompting method for cross-
lingual transfer, namely UP, consistently outper-
forms the finetuning (FT) method by a large mar-
gin. Besides, our language-agnostic UP also sur-
passes FT on the majority of languages on the
more challenging PAWS-X. These observations
suggest that prompting is indeed a better solution
for few-shot learning in cross-language scenarios
and our UP can serve as a strong baseline for cross-
lingual prompting. We also reproduce PCT (Qi
et al., 2022), another recent cross-lingual prompt-
ing method based on data augmentation and consis-
tency training, with our evaluation method. Table 3
shows that UP outperforms PCT consistently with-
out any data augmentation approach or introducing
additional loss terms.

Dual Prompt Augmentation With the proposed
DPA framework, our prompting method achieves
consistent improvement over UP, indicating that
multilingual verbalizers from the answer view and
prompt mixup from the input view are both ef-
fective ways to enhance cross-lingual prompting.

The comparison results in Table 3 and Table 4 also
exhibit clear superiority of our method over cross-
lingual finetuning. Even in the most resource-rich
settings, compared to FT, our method still obtains
7.1% (256 shots) and 4.9% (512 shots) absolute
gains on XNLI and PAWS-X.

Ablation Study The performance of our prompt-
ing method will become worse when removing ei-
ther prompt mixup or multilingual verbalizer, show-
ing that both prompt input and prompt answer aug-
mentation contribute positively to the improvement.
We also notice that the negative effects brought by
DPA w/0 MYV are generally larger, showing the
necessity of target-language guidance for cross-
lingual prompting.

4.3 Inference Strategy

A natural extension for the DPA framework is to
leverage the multilingual verbalizer in some way
for target-language inference as well. For compar-
isons, we heuristically devise the following infer-
ence strategies :

(1) English Verbalizer The English verbalizer
is still used when transferring to target languages.
This strategy is used to produce results in Table 3
and 4. To formalize:

Yy = arg méxxP( (mask) = Ven (y)|x; 0) 5)

(2) Target Language Verbalizer The verbalizer
in the corresponding target language is used, which
is the practice of Zhao and Schiitze (2021) during
inference time. However, in this case, our DPA
framework has already modeled these words during
the training time. To formalize:

g = arg mz?XP( (mask) = Viarger(y)|2;6) (6)

(3) Taking Maximum over the Multilingual Ver-
balizer In this strategy, we will take the maxi-
mum probability over the whole multilingual ver-
balizer. To formalize:

y = arg rr?ﬂxP( (mask) = V,(y)|z;0) 7

(4) Taking Sum over the Multilingual Verbalizer
In this strategy, we will take the sum of probability
over the whole multilingual verbalizer. To formal-
ize:

Y= argm??xzp( (mask) = V;(y)|x; 0) (8)
el



Shots | Method EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH Avg.
FT 3562 3511 3485 3507 3508 3521 3495 34.89 34.52 3507 34.92 3479 3502 3502 3471 34.99+1.84
PCT 4243 3580 3748 36.02 4023 36.14 3879 3979 37.96 3632 39.01 3741 3546 38.84 3890 38.04+3.52
16 | up 47.68 42.01 4550 44.51 46.68 36.61 46.81 4029 4543 42.06 4421 41.04 40.61 4579 3842 43.18+2.77
DPA 4855 4624 47.95 48.00 47.41 4747 48.61 4436 4676 4435 4595 4583 44.80 47.31 44.55 46.54+1.83
W/OMV 4954 4155 4684 4553 4759 34.63 4855 4239 47.18 4395 4637 4382 4332 4652 40.09 44524215
W/O MIXUP 4838 4559 4774 4772 47.60 4438 47.83 4244 46.69 4438 44.65 4552 4348 46.65 40.83 4559+191
FT 37.62 3682 36.61 37.03 37.07 3739 37.53 3735 36.83 3642 3640 3640 3671 36.84 3696 36.93+1.96
PCT 46.63 41.33 4430 4335 4531 4561 4679 4332 44.13 40.88 42.86 43.19 38.94 44.85 43.81 43.69+2.11
32 |up 5333 4770 50.87 49.74 5141 4148 5109 4497 50.11 4676 49.50 4592 45.64 51.00 4433 48264134
DPA 5279 4937 5148 50.84 5178 50.05 5177 48.08 5046 47.30 4935 50.14 47.44 50.84 4825 49.99+2.21
W/OMV 5375 4842 5071 5057 5176 4198 51.54 4564 5046 4584 49.65 47.42 4558 5056 4754 48.76+1.56
W/0 MIXUP 5238 4929 5139 5076 51.60 5021 51.54 4757 5035 47.56 49.07 49.56 47.02 50.65 46.24 49.68+1.46
FT 4297 4070 4129 41.68 42.09 4246 4223 40.59 40.38 39.96 40.65 40.84 4024 4209 4053 41.25+3.60
PCT 5226 4639 4873 4839 49.64 49.46 5046 4748 4852 4527 4828 48.55 4476 49.81 49.12 48.4742.82
64 | UP 5776 51.67 5485 5499 54.69 51.63 5496 47.97 5332 48.12 5191 49.89 47.86 54.14 49.13 52194154
DPA 59.97 53.18 5651 56.67 55.63 5679 5697 5177 5546 5071 5335 5421 5076 56.05 53.09 54.7440.93
W/OMV 5917 5379 5695 5653 56.18 5535 5648 5217 5572 50.89 54.55 53.35 5162 5643 5442 54.91+118
W/O MIXUP  59.56 53.06 5598 55.65 5516 56.67 56.66 5144 5518 49.99 5290 53.76 49.80 5543 53.70 54.33£0.98
FT 4724 4391 44.13 4396 4438 4525 4448 4238 42.81 42.87 42.87 4293 4236 44.60 42.87 43.80+2.58
PCT 5531 4855 5209 5075 5292 52.69 5279 5043 51.60 47.86 50.88 50.37 48.04 5220 51.79 51.2242.58
128 | UP 60.08 5131 5660 55.10 56.17 5125 5697 49.62 55.18 4871 53.87 5042 49.20 5503 53.15 53.5143.51
DPA 6257 5491 5872 58.81 5825 5947 5876 5293 57.35 5095 5430 5494 5147 57.80 5499 56.42+137
W/OMV 6151 5531 5867 5815 58.12 58.10 5842 5231 5699 50.80 5540 53.88 5174 57.96 5612 56.23+0.90
W/OMIXUP  61.84 5459 5877 58.57 5777 59.13 58.89 5270 5699 5205 54.15 5469 5131 57.27 5559 56.2941.46
FT 5949 52.87 5592 5551 5507 5744 5632 5175 54.19 49.88 5238 53.68 5038 55.37 5395 54.28+2.15
PCT 60.09 5351 57.21 56.60 57.63 58.78 5842 5407 5635 51.80 5457 5462 5056 56.36 56.14 55.78+1.63
256 | UP 6508 5657 61.03 60.65 60.74 5921 6101 55.18 59.41 5373 57.66 57.62 54.08 60.58 58.71 58754192
DPA 67.97 5954 6359 6326 6234 64.80 6393 5839 61.87 5583 5919 60.32 5600 6241 6129 61.38£0.92
W/OMV 6580 5807 6204 6133 6105 63.03 6236 56.16 60.14 5417 5823 57.62 5412 60.52 59.81 59.63+0.92
W/OMIXUP  67.40 58.02 6233 62.18 6135 63.61 6293 56.89 60.75 5468 58.06 59.00 54.74 6117 5933 60.1640.97
Table 3: Zero-shot cross-lingual transfer accuracy on XNLI. FT: finetuning; M'V: Multilingual Verbalizer. Reported

results are averaged with 5 random seeds.

Shots ‘ Method EN DE ES FR JA KO ZH Avg.
FT 63.18 60.81 60.95 61.39 58.60 5848 59.78 60.4614.23
upP 6550 6221 63.24 62.82 54.11 5430 5599 59.74+4.12

256 | DPA 71.87 6859 69.10 69.02 60.41 60.88 62.75 66.09+3.62
w/o MV 69.06 66.26 66.47 6579 59.28 5834 60.77 63.71+4.37

W/0 MIXuP 7095 67.14 67.58 67.63 59.01 6044 61.16 64.844291

FT 77.64 7341 73.19 7433 6555 65.19 6825 71.084581

up 8331 76.18 77.63 7742 6341 6503 68.06 73.01£1.52

512 | DPA 84.97 78.63 79.60 80.48 67.86 68.13 72.34 76.001:1.04
w/o MV 84.81 7856 79.67 79.64 67.04 6834 7150 75.65+0.64

W/0 MIXUP 84.84 77.85 7936 79.69 66.76 68.03 71.03 75.3742.00

Table 4: Zero-shot cross-lingual transfer accuracy on
PAWS-X. FT:finetuning; MV: Multilingual Verbalizer.
Reported results are averaged with 5 random seeds.

(5) Bilingual Verbalizer In this strategy, we will
take the sum of probability over the target language
verbalizer and the English verbalizer. To formalize,
the predicted label g is given by:

g = arg m;mx{P( (mask) = Vegn(y)|x; 0)
)
+P((mask) = Vigrget(y)|z; )}

We use the checkpoint of XLM-R trained by 128
shots on the XNLI dataset and make inference with
different strategies. Table 5 shows the accuracy by
employing different inference strategies. We show
that with our DPA framework, the inference is quite
robust to the utilization of the verbalizer. This can
probably be attributed to answer augmentation via
multilingual verbalizers, which help to model label

Strategy Num.  Accuracy
1 56.421 .37
2 56.311.15
3 56.231.09
4 56.331.11
5 56.391.21

Table 5: Accuracy of different inference strategies, aver-
aged over 15 testing languages of XNLI and 5 random
seeds.

tokens in multiple languages. We choose to simply
employ English-only inference due to its simplicity
and slightly better performance to produce results
in Tables 3 and 4.

5 Conclusion

In this paper, we first derive language-agnostic Uni-
versal Prompting, a concise but competitive base-
line for cross-lingual prompting. The proposed
DPA framework can further enhance cross-lingual
prompting as shown on two sentence-pair classifi-
cation tasks. In the future, we will consider veri-
fying the effectiveness of prompting and the DPA
framework in cross-lingual sequence tagging or
question-answering tasks (Xu et al., 2023).



6 Limitations

Our work mainly focuses on cross-lingual sentence-
pair classification tasks. While it is directly ap-
plicable to single-sentence classification tasks (Li
et al., 2020; Ye et al., 2020) but may require ad-
ditional efforts to adapt our DPA framework to
more complex cross-lingual tasks such as sequence
tagging (Liu et al., 2021; Zhou et al., 2022, 2023;
Zhang et al., 2021b) or question answering (Xu
et al., 2022, 2023). Another limitation is that the
proposed multilingual verbalizer in the DPA frame-
work requires an external machine translator to pro-
duce the translated verbalizers. Finally, we limit
the language set of the multilingual verbalizer to
the set of target languages in a multilingual dataset.
Extending this language set might give us greater
improvement for cross-lingual tasks.
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A Additional Implementation Details

Implementation Package Our implementation
is based on PyTorch (Paszke et al., 2019) and Hug-
gingface Transformer (Wolf et al., 2019) frame-
work.

Model Details XLM-R base model, containing
270M parameters, is pretrained on 2.5TB of filtered
CommonCrawl on 100 languages. It contains 12
Transformer layers with hidden space dimensions
of 768 and 12 attention heads in each layer.

Computing Infrastructure All of our experi-
ments are conducted on a single Tesla VI00-SXM?2
32G. Gradient accumulation steps of 4 is used for
prompting to overcome resource limitations.

Hyperparameter Settings Our major hyperpa-
rameter settings follow Zhao and Schiitze (2021).
A fixed learning rate (le-5) is used for all of our
experiments without any learning rate schedule to
compare finetuning with prompting (Le Scao and
Rush, 2021). We use a smaller batch size of 8
for finetuning and prompting because it achieves
slightly better performance. We use the max se-
quence length of 256. The model is trained for 50
epochs and we select the checkpoint by validation
accuracy for testing as suggested in Mosbach et al.
(2021); Zhang et al. (2021a). The « value for g
distribution in prompt mixup is set to 1.2 for all of
the experiments.

Prompting The language sets £ used for multi-
lingual verbalizers are determined by the language
availability of the dataset. Specifically, for XNLI,
L = {EN, AR, BG, DE, EL, ES, FR, HI, RU, SW,
TH, TR, UR, VI, ZH}. For PAWS-X, £ = {EN,
DE, ES, FR, JA, KO, ZH}

For simplicity, the verbalizers of target lan-
guages are translated by Google Translate. Similar
with XNLI, we use "paraphrase — yes" and "non-
paraphrase — no" as the verbalizer of PAWS-X
in English. Table 6 presents the full multilingual
verbalizer we use for the PAWS-X dataset.

We discuss Universal Prompting across lan-
guages for multilingual sentence-pair classification
tasks in Section 2. Moreover, we believe the same
notion of alleviating source-target discrepancies in
terms of prompt template and verbalizer is gener-
ally applicable for cross-lingual tasks, which is left
for future work.

Language | Verbalizer
Paraphrase — yes
EN
Non-paraphrase — no
DE Paraphrase — Ja
Non-paraphrase — Nein
Paraphrase — si
ES
Non-paraphrase — no
Paraphrase — Oui
FR
Non-paraphrase — non
A Paraphrase — (31>
Non-paraphrase — 7% \?
7H Paraphrase — &
Non-paraphrase — 75
Ko | Paraphrase — o
Non-paraphrase — ©}4

Table 6: The multilingual verbalizer for PAWS-X.

Shots | Method Accuracy
256 Universal Prompting 59.744.12
W/ TEMPLATE WORDS | 57.012.64
512 Universal Prompting 73.011 52
W/ TEMPLATE WORDS | 73.392.54

Table 7: The ablation study of the impact of removing
template words on PAWS-X. We calculate the average
accuracy over 7 languages. The standard deviation over
5 runs is reported as the subscript.

B Generalizability of Prompting Word
Removal

In Section 2, we show that by removing template
words, UP provides a more reasonable baseline for
cross-lingual prompting on XNLI. To see whether
such a removal generalizes to other cross-lingual
sentence-pair classification task, we also investi-
gate the impact of removing template words on
PAWS-X, as shown in Table 7. We find that UP
still performs reasonably well on PAWS-X with-
out template words. It was also shown in IV et al.
(2021) that hand-engineering prompt is less im-
portant when PLMs are finetuned for monolingual
tasks. Our UP generalizes this in cross-lingual
tasks.

C Performance with Standard Deviation

In Table 8 and 9, we show the performance with
standard deviation specifically in every language.
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