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Abstract

Reasoning is a fundamental aspect of human
intelligence that plays a crucial role in activi-
ties such as problem solving, decision making,
and critical thinking. In recent years, large
language models (LLMs) have made signifi-
cant progress in natural language processing,
and there is observation that these models may
exhibit reasoning abilities when they are suf-
ficiently large. However, it is not yet clear to
what extent LLMs are capable of reasoning.
This paper provides a comprehensive overview
of the current state of knowledge on reasoning
in LLMs, including techniques for improving
and eliciting reasoning in these models, meth-
ods and benchmarks for evaluating reasoning
abilities, findings and implications of previous
research in this field, and suggestions on future
directions. Our aim is to provide a detailed and
up-to-date review of this topic and stimulate
meaningful discussion and future work.1

1 Introduction

Reasoning is a cognitive process that involves using
evidence, arguments, and logic to arrive at conclu-
sions or make judgments. It plays a central role in
many intellectual activities, such as problem solv-
ing, decision making, and critical thinking. The
study of reasoning is important in fields like psy-
chology (Wason and Johnson-Laird, 1972), philoso-
phy (Passmore, 1961), and computer science (Huth
and Ryan, 2004), as it helps individuals make deci-
sions, solve problems, and think critically.

Recently, large language models (LLMs)
(Brown et al., 2020; Chowdhery et al., 2022; Chung
et al., 2022; OpenAI, 2022, inter alia) such as Chat-
GPT have made significant advancements in natu-
ral language processing and related fields. It has
been shown that these models exhibit emergent be-
haviors, including the ability to “reason”, when

1Paperlist can be found at https://github.com/
jeffhj/LM-reasoning.

they are large enough (Wei et al., 2022a). For ex-
ample, by providing the models with “chain of
thoughts”, i.e., reasoning exemplars, or a simple
prompt “Let’s think step by step”, these models
are able to answer questions with explicit reason-
ing steps (Wei et al., 2022b; Kojima et al., 2022),
e.g., “all whales are mammals, all mammals have
kidneys; therefore, all whales have kidneys.” This
has sparked considerable interest in the commu-
nity since reasoning ability is a hallmark of human
intelligence that is frequently considered missed
in current artificial intelligence systems (Marcus,
2020; Russin et al., 2020; Mitchell, 2021; Bom-
masani et al., 2021).

However, despite the strong performance of
LLMs on certain reasoning tasks, it remains unclear
whether LLMs are actually reasoning and to what
extent they are capable of reasoning. For exam-
ple, Kojima et al. (2022) claim that “LLMs are de-
cent zero-shot reasoners (p. 1)”, while Valmeekam
et al. (2022) conclude that “LLMs are still far
from achieving acceptable performance on com-
mon planning/reasoning tasks which pose no issues
for humans to do (p. 2).” This limitation is also
stated by Wei et al. (2022b):

“we qualify that although chain of thought emu-
lates the thought processes of human reasoners,
this does not answer whether the neural network
is actually reasoning (p. 9).”

Therefore, in this paper, we aim to provide a
comprehensive overview and engage in an insight-
ful discussion on the current state of knowledge on
this fast-evolving topic. We initiate our exploration
with a clarification of the concept of reasoning (§2).
Subsequently, we turn our attention to the tech-
niques for enhancing/eliciting reasoning in LLMs
(§3), the methods and benchmarks for evaluating
reasoning in LLMs (§4), and the key findings and
implications in this field (§5). Finally, we reflect
on and discuss the current state of the field (§6).
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Figure 1: The structure of the paper.

2 What is Reasoning?

Reasoning is the process of thinking about some-
thing in a logical and systematic way, using evi-
dence and past experiences to reach a conclusion or
make a decision (Wason and Johnson-Laird, 1972;
Wason, 1968; Galotti, 1989; Fagin et al., 2004;
McHugh and Way, 2018). Reasoning involves mak-
ing inferences, evaluating arguments, and drawing
logical conclusions based on available information.
Although “reasoning” is a term that is commonly
used in literature and daily life, it is also an abstract
concept that can refer to many things. To help the
reader better understand this concept, we summa-
rize several main categories of reasoning that are
commonly recognized:

Deductive reasoning. Deductive reasoning is a
type of reasoning in which a conclusion is drawn
based on the truth of the premises. In deductive
reasoning, the conclusion must necessarily follow
from the premises, meaning that if the premises are
true, the conclusion must also be true. For example:

• Premise: All mammals have kidneys.
• Premise: All whales are mammals.
• Conclusion: All whales have kidneys.

Inductive reasoning. Inductive reasoning is a type
of reasoning in which a conclusion is drawn based
on observations or evidence. The conclusion is
likely to be true based on the available evidence,
but it is not necessarily certain. For example:

• Observation: Every time we see a creature
with wings, it is a bird.

• Observation: We see a creature with wings.
• Conclusion: The creature is likely to be a bird.

Abductive reasoning. Abductive reasoning is a
type of reasoning in which a conclusion is drawn

based on the best explanation for a given set of
observations. The conclusion is the most likely
explanation based on the available evidence, but it
is not necessarily certain. For example:

• Observation: The car cannot start and there is
a puddle of liquid under the engine.

• Conclusion: The most likely explanation is
that the car has a leak in the radiator.

Other types of reasoning include analogical reason-
ing, which involves making comparisons between
two or more things in order to make inferences
or arrive at conclusions; causal reasoning, which
involves identifying and understanding the causes
and effects of events or phenomena; and probabilis-
tic reasoning, which involves making decisions or
arriving at conclusions based on the likelihood or
probability of certain outcomes.

Formal Reasoning vs Informal Reasoning. For-
mal reasoning is a systematic and logical process
that follows a set of rules and principles, often used
in mathematics and logic. Informal reasoning is a
less structured approach that relies on intuition, ex-
perience, and common sense to draw conclusions
and solve problems, and is often used in everyday
life. Formal reasoning is more structured and reli-
able, while informal reasoning is more adaptable
and open-ended, but may also be less reliable. We
refer the reader to Galotti (1989); Bronkhorst et al.
(2020) for a detailed distinction between them.

Reasoning in Language Models. The concept of
reasoning in language models has been around for
some time, but there is not a clear definition of
what it entails. In the literature, the term “reason-
ing” is often used to refer to informal reasoning,
although it is not always explicitly stated that it
is informal (Cobbe et al., 2021; Wei et al., 2022b,
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inter alia). Different forms of reasoning may be
used depending on the task, benchmark, or method
being used, e.g., deductive reasoning (Cobbe et al.,
2021; Creswell et al., 2022; Han et al., 2022b, in-
ter alia), inductive reasoning (Yang et al., 2022;
Misra et al., 2022, inter alia) or abductive reason-
ing (Wiegreffe et al., 2022; Lampinen et al., 2022;
Jung et al., 2022, inter alia). In this paper, we
encompass various forms of reasoning, with a par-
ticular focus on “informal deductive reasoning” in
large language models since it is a widely used
form in which the conclusion is guaranteed to be
true as long as the premises are true.

3 Towards Reasoning in Large Language
Models

Reasoning, particularly multi-step reasoning, is of-
ten seen as a weakness in language models and
other NLP models (Bommasani et al., 2021; Rae
et al., 2021; Valmeekam et al., 2022). Recent re-
search has suggested that reasoning ability may
emerge in language models at a certain scale, such
as models with over 100 billion parameters (Wei
et al., 2022a,b; Cobbe et al., 2021). In this paper,
we follow Wei et al. (2022a) in considering rea-
soning as an ability that is rarely present in small-
scale models like GPT-2 (Radford et al., 2019) and
BERT (Devlin et al., 2019), and therefore focus
on techniques applicable to improving or eliciting
“reasoning”2 in LLMs such as GPT-3 (Brown et al.,
2020) and PaLM (Chowdhery et al., 2022).

3.1 Fully Supervised Finetuning
Before discussing reasoning in large language mod-
els, it is worth mentioning there is research work-
ing on eliciting/improving reasoning in small lan-
guage models through fully supervised finetuning
on specific datasets. For example, Rajani et al.
(2019) finetune a pretrained GPT model (Radford
et al., 2018) to generate rationales that explain
model predictions with the built CoS-E dataset,
and find that models trained with explanations
perform better on commonsense question answer-
ing tasks (Talmor et al., 2019). Talmor et al.
(2020) train RoBERTa (Liu et al., 2019) to per-
form reasoning/inference based on both implicit
pre-trained knowledge and explicit free-text state-
ments. Hendrycks et al. (2021) finetune pretrained

2It is important to note that the term “reasoning” in this
paper does not necessarily imply that LLMs are truly capable
of reasoning or that they are able to reason in the same way
that humans do. We will discuss this issue in more detail in §6.

language models to solve competition mathematics
problems by generating full step-by-step solutions,
though the accuracy is relatively low. Nye et al.
(2022) train language models to do multi-step rea-
soning for program synthesis/execution by generat-
ing “scratchpads”, i.e., intermediate computations,
before producing the final answers. We refer the
reader to Helwe et al. (2021); Bhargava and Ng
(2022)’s survey for more studies in this line.

There are two major limitations of fully super-
vised finetuning. First, it requires a dataset contain-
ing explicit reasoning, which can be difficult and
time-consuming to create. Additionally, the model
is only trained on a specific dataset, which limits
its application to a specific domain and may result
in the model relying on artifacts in the training data
rather than actual reasoning to make predictions.

3.2 Prompting & In-Context Learning

Large language models such as GPT-3 (Brown
et al., 2020) have demonstrated remarkable few-
shot performance across a variety of tasks through
in-context learning. These models can be prompted
with a question and a few ⟨input, output⟩ exemplars
to potentially solve a problem through “reasoning”,
either implicitly or explicitly. However, research
has shown that these models still fall short when
it comes to tasks that require multiple steps of rea-
soning to solve (Bommasani et al., 2021; Rae et al.,
2021; Valmeekam et al., 2022). This may be due
to a lack of exploration into the full capabilities of
these models, as recent studies have suggested.

3.2.1 Chain of Thought and Its Variants
To encourage LLMs to engage in reasoning rather
than simply providing answers directly, we may
guide LLMs to generate “reasoning” explicitly.
One approach for doing this is chain-of-thought
prompting, proposed by Wei et al. (2022b). This
approach involves providing a few examples of
“chain of thought” (CoT), which are intermediate
natural language reasoning steps, in the prompt to
LLMs (Figure 2). Specifically, in CoT prompting,
⟨input, output⟩ demonstrations are replaced with
⟨input, chain of thought, output⟩ triples, e.g., “[in-
put] Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How
many tennis balls does he have now? [chain of
thought] Roger started with 5 balls. 2 cans of 3
tennis balls each is 6 tennis balls. 5 + 6 = 11. [out-
put] The answer is 11.” In this way, given a target
question, the model learns to generate explicit ratio-
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LLM

Rationale* 1
Input A, Rationale A, Output A

Output*
Exemplars Input B, Rationale B, Output B

Input C, Rationale C, Output C

Rationale Refinement

Rationale* 2

Rationale* 3

Rationale Exploration

Rationale Verification

[Input] Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now? [Rationale] Roger started with 5 balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. [Output] The answer is 11.

Input*

Figure 2: An illustration of Chain-of-Thought Prompting and Rationale Engineering, where asterisk (*) denotes the
target problem to be solved.

nale before producing the final answer. Experimen-
tal results show that this simple idea can improve
LLMs’ few-shot performance on arithmetic, sym-
bolic, and commonsense reasoning tasks, some-
times to a striking degree.

There are several variants of chain-of-thought
prompting that have been proposed in the literature,
in a different form or to solve a specific problem.

Different Form: Kojima et al. (2022) intro-
duce Zero-shot-CoT, in which LLMs are simply
prompted with the phrase “Let’s think step by step”
after the input, in order to elicit reasoning without
the need for few-shot demonstrations. Madaan et al.
(2022); Gao et al. (2022); Chen et al. (2022) find
that LLMs trained with code, e.g., Codex (Chen
et al., 2021), can achieve better performance on
reasoning tasks by framing reasoning as code gen-
eration. Wang et al. (2022a) propose to iteratively
prompt chain of thought. He et al. (2023) attempt
to retrieve external knowledge in CoT to improve
faithfulness of reasoning.

Specific Problem/Setting: Before chain of
thought, Nye et al. (2022) also try to use intermedi-
ate computations, named “scratchpads”, to improve
language models’ reasoning performance in both
finetuning and few-shot regimes, with a particular
focus on programs. Shi et al. (2022) attempt to
solve multilingual reasoning tasks with CoT in the
native language, CoT in English (regardless of the
problem language), and CoT in English (with the
problem translated to English). Chen (2022) apply
CoT to table-based reasoning, finding that LLMs
can achieve strong performance on table tasks with
only one exemplar. Prystawski et al. (2022) demon-
strate that CoT can improve LLMs’ performance
on paraphrase selection for metaphors. Lu et al.

(2022) apply chain of thought to solve multimodal
science questions.

3.2.2 Rationale Engineering
The original version of chain-of-thought prompting,
proposed by Wei et al. (2022b), relies on manually
crafted examples of intermediate reasoning steps
and applies greedy decoding in the generation. Ra-
tionale engineering aims to more effectively elicit
or utilize reasoning in LLMs. This can be achieved
through rationale refinement, which involves cre-
ating more effective examples of reasoning steps,
or through rationale exploration and rationale ver-
ification, which involve exploring and verifying
the rationales produced by LLMs. A summary of
raltionale engineering is illustrated in Figure 2.

Rationale refinement. The choice of exemplars
can significantly affect the few-shot performance of
LLMs, as demonstrated in research such as Liu et al.
(2022b), which also appears in chain-of-thought
prompting. Rationale refinement aims to create
and refine rationale examples that are better able to
elicit reasoning in LLMs. Fu et al. (2022b) propose
complexity-based prompting to create rationales
with more reasoning steps. Their experiments show
that the performance of LLMs improves with the in-
creased rationale complexity. Similarly, Zhou et al.
(2022c) propose algorithmic prompting, which sug-
gests that providing more thorough examples of
solutions can help improve reasoning performance
on some simple math calculations. Zhang et al.
(2022b) design Auto-CoT to automatically con-
struct exemplars by partitioning questions from
a given dataset into clusters and then using Zero-
Shot-CoT (Kojima et al., 2022) to generate the
rationale for a representative question from each
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cluster. The analysis shows that making exemplars
diverse is important in prompting LLMs to produce
better rationales.

Rationale exploration. In addition to providing
better exemplars, we can allow LLMs to fully ex-
plore various ways of reasoning to improve their
performance on reasoning tasks, named rationale
exploration. Based on the idea that complex prob-
lems often admit multiple ways of thinking that
can lead to their unique correct answer, Wang et al.
(2022c) present a decoding strategy called self-
consistency to improve upon the traditional greedy
decoding used in chain-of-thought prompting. This
strategy involves sampling a diverse set of ratio-
nales, rather than just the greedy one, and selecting
the most consistent answer by marginalizing out
the sampled rationales. The idea is also used in
Fu et al. (2022b) to vote over the top complex ra-
tionales. To further improve performance, Li et al.
(2022b) suggest providing different demonstrations
for each question by sampling exemplars from an
exemplar base, in order to increase the diversity of
the sampled rationales.

Rationale verification. Ensuring that the ratio-
nales produced by LLMs are valid is critical, as in-
correct rationales can lead to incorrect final predic-
tions (Ye and Durrett, 2022). To address this issue,
the process of rationale verification aims to verify
whether the rationales produced by LLMs lead to
the correct final answers. Cobbe et al. (2021) pro-
pose augmenting LLMs with a trained verifier that
assigns a score to each rationale and solution gen-
erated by the LLM, selecting the highest-ranked
solution as the final answer when solving math
word problems. Li et al. (2022b) also use this tech-
nique to guide rationale selection, in conjunction
with the process of rationale exploration. Differ-
ent from the above methods that train an external
verifier to verify the rationales, Weng et al. (2022)
suggest using LLMs themselves as the verifiers.

3.2.3 Problem Decomposition
Chain-of-thought prompting, while effective for
eliciting reasoning in LLMs, can struggle with com-
plex tasks, e.g., tasks that require compositional
generalization (Lake and Baroni, 2018; Keysers
et al., 2020). To solve a complex problem, it is
helpful to first break it down into smaller, more
manageable subproblems. By solving each of these
subproblems, we can effectively solve the complex
problem. This technique is called problem decom-

position or divide and conquer (Talmor and Berant,
2018; Min et al., 2019; Perez et al., 2020).

Based on this idea, Zhou et al. (2022a) pro-
pose least-to-most prompting, which consists of
two steps: decomposing the complex problem into
subproblems and solving these subproblems in a
specific order, with each subproblem being facil-
itated by the answers obtained from previously
solved subproblems. As follow-up work, Droz-
dov et al. (2022) introduce dynamic least-to-most
prompting, which is designed to solve more realis-
tic semantic parsing problems by decomposing the
problems with prompting-based syntactic parsing
and dynamically selecting exemplars based on the
decomposition. In addition, Khot et al. (2022) de-
sign decomposed prompting, which breaks down
a complex problem into subproblems that can be
handled by a shared library of prompting-based
LLMs, each specialized in a particular subprob-
lem. Furthermore, Dua et al. (2022) develop suc-
cessive prompting, which iteratively decomposes a
complex problem into a simple problem, with the
next subproblem prediction having access to the
answers to the previous subproblems. While the
above methods decompose or solve compositional
questions with multiple forward passes, Press et al.
(2022) suggest decomposing and solving the input
question in one forward pass using CoT prompting.
Overall, these techniques show promise for helping
LLMs to solve complex tasks by decomposing the
problem into more manageable subproblems.

3.2.4 Others
There are other techniques that have been devel-
oped to facilitate reasoning in LLMs for specific
tasks or settings. For instance, Creswell et al.
(2022); Creswell and Shanahan (2022) introduce a
selection-inference framework that uses LLMs as
modules to select and infer reasoning steps from
a set of facts that culminate in the final answer.
Kazemi et al. (2022) suggest using backward chain-
ing, i.e., from goal to the set of facts that support
it, instead of forward chaining like Creswell et al.
(2022); Creswell and Shanahan (2022). In addition,
Jung et al. (2022) propose a method for solving
binary questions by prompting LLMs abductively
and recursively to rationalize each option. Zhou
et al. (2022b) design a technique for performing
numerical reasoning on complex numbers by re-
placing the complex numbers with simple numbers
to produce simpler expressions, and then using
these expressions to perform calculations on the
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complex numbers. There are also efforts to distill
reasoning from LLMs into smaller models, such
as the work by Li et al. (2022a); Shridhar et al.
(2022); Magister et al. (2022). Finally, we refer the
reader to Dohan et al. (2022)’s position paper on
language model cascade, which presents a unify-
ing framework for understanding chain-of-thought
prompting and research in this line.

3.3 Hybrid Method
While “prompting” techniques can help elicit or
better utilize reasoning in large language models
to solve reasoning tasks, they do not actually im-
prove the reasoning capabilities of the LLMs them-
selves, as the parameters of the models remain un-
changed. In contrast, the “hybrid approach” aims to
simultaneously improve the reasoning capabilities
of LLMs and make better use of these models in
order to solve complex problems. This approach in-
volves both enhancing the reasoning capabilities of
the LLMs and using techniques such as prompting
to effectively utilize these capabilities.

3.3.1 Reasoning-Enhanced Training and
Prompting

One approach to improving the reasoning capabili-
ties of LLMs is to pretrain or finetune the models
on datasets that include “reasoning”. Lewkowycz
et al. (2022); Taylor et al. (2022) find that LLMs
trained on datasets containing scientific and math-
ematical data can achieve better performance on
reasoning tasks like quantitative reasoning prob-
lems when using CoT prompting3. Pi et al. (2022)
show that continually pretraining with SQL data
can boost the performance of language models, e.g.,
T5 (Raffel et al., 2020), on natural language rea-
soning such as numerical reasoning and logical rea-
soning. Furthermore, Chung et al. (2022) develop
Flan models by finetuning PaLM (Chowdhery et al.,
2022) and T5 (Raffel et al., 2020) with 1.8k fine-
tuning tasks, including CoT data, and find that
CoT data are critical to keeping reasoning abilities.
Similarly, Yu et al. (2022) finetune OPT (Zhang
et al., 2022a) on 10 reasoning datasets and observe
that it can improve some reasoning capabilities of
LLMs. Anil et al. (2022) study the length gener-
alization abilities of LLMs, i.e., whether LLMs
learned with short problem instances can general-
ize to long ones. They discover that the combina-
tion of few-shot scratchpad (or chain of thought)

3This may also be true for models trained with code (Chen
et al., 2021; Fu et al., 2022a).

finetuning and scratchpad prompting results in a
significant improvement in LLMs’ ability to gener-
alize to longer problems, while this phenomenon
is not observed in the standard fully supervised
finetuning paradigm.

3.3.2 Bootstrapping & Self-Improving

Instead of finetuning LLMs on pre-built datasets
that include reasoning, there are studies that have
explored the idea of using LLMs to self-improve
their reasoning abilities through a process known
as bootstrapping. One example of this is the Self-
Taught Reasoner (STaR) introduced by Zelikman
et al. (2022), in which a LLM is trained and refined
on its own output iteratively. Specifically, with CoT
prompting, the model first generates initial ratio-
nales. And then, the model is finetuned on ratio-
nales that lead to correct answers. This process can
be repeated, with each iteration resulting in an im-
proved model that can generate better training data,
which in turn leads to further improvements. As a
follow-up to this work, Huang et al. (2022a) show
that LLMs are able to self-improve their reasoning
abilities without the need for supervised data by
leveraging the self-consistency of reasoning (Wang
et al., 2022c).

4 Measuring Reasoning in Large
Language Models

We summarize methods and benchmarks for evalu-
ating reasoning abilities of LLMs in this section.

4.1 End Task Performance

One way to measure reasoning abilities of LLMs is
to report their performance, e.g., accuracy, on end
tasks that require reasoning. We list some common
benchmarks as follows.

Arithmetic Reasoning. Arithmetic reasoning is
the ability to understand and apply mathemat-
ical concepts and principles in order to solve
problems involving arithmetic operations. This
involves using logical thinking and mathemat-
ical principles to determine the correct course
of action when solving mathematical problems.
Representative benchmarks for arithmetic rea-
soning include GSM8K (Cobbe et al., 2021),
Math (Hendrycks et al., 2021), MathQA (Amini
et al., 2019), SVAMP (Patel et al., 2021), AS-
Div (Miao et al., 2020), AQuA (Ling et al., 2017),
and MAWPS (Roy and Roth, 2015). It is worth
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mentioning that Anil et al. (2022) generate the Par-
ity Datasets and the Boolean Variable Assignment
Dataset for analyzing the length generalization ca-
pabilities of LLMs (§3.3.1).

Commonsense Reasoning. Commonsense Rea-
soning is the use of everyday knowledge and under-
standing to make judgments and predictions about
new situations. It is a fundamental aspect of human
intelligence that enables us to navigate our envi-
ronment, understand others, and make decisions
with incomplete information. Benchmarks that can
be used for testing commonsense reasoning abili-
ties of LLMs include CSQA (Talmor et al., 2019),
StrategyQA (Geva et al., 2021), and ARC (Clark
et al., 2018). We refer the reader to Bhargava and
Ng (2022)’s survey for more work in this domain.

Symbolic Reasoning. Symbolic reasoning is a
form of reasoning that involves the manipulation
of symbols according to formal rules. In symbolic
reasoning, we use abstract symbols to represent
concepts and relationships, and then manipulate
those symbols according to precise rules in order
to draw conclusions or solve problems. Two bench-
marks of symbolic reasoning are presented in Wei
et al. (2022b), including Last Letter Concatenation
and Coin Flip.

Others. In practice, there are many benchmarks
that can be used to evaluate reasoning abilities
of LLMs (indirectly), as long as the downstream
task involves reasoning. BIG-bench (Srivastava
et al., 2022), for example, includes over 200 tasks
that test a range of reasoning skills, including
tasks like Date Understanding, Word Sorting, and
Causal Judgement. Other benchmarks, such as
SCAN (Lake and Baroni, 2018) and the one pro-
posed by Anil et al. (2022), focus on evaluating
generalization ability. LLMs can also be tested on
their table reasoning abilities using benchmarks
such as WikiTableQA (Pasupat and Liang, 2015),
FetaQA (Nan et al., 2022), as suggested by Chen
(2022). In addition, there are benchmarks for eval-
uating LLMs’ generative relational reasoning abil-
ities, such as CommonGen (Lin et al., 2020; Liu
et al., 2022a) and Open Relation Modeling (Huang
et al., 2022b,d).

4.2 Analysis on Reasoning
Although LLMs have demonstrated impressive per-
formance on various reasoning tasks, the extent to
which their predictions are based on true reasoning
or simple heuristics is not always clear. This is

because most existing evaluations focus on their ac-
curacy on end tasks, rather than directly assessing
their reasoning steps. While some error analysis
has been conducted on the generated rationales of
LLMs (Wei et al., 2022b; Kojima et al., 2022, inter
alia), this analysis has often been limited in depth.

There have been some efforts to develop metrics
and benchmarks that enable a more formal/deep
analysis of reasoning in LLMs. Golovneva et al.
(2022) design ROSCOE, a set of interpretable, de-
tailed step-by-step evaluation metrics covering vari-
ous perspectives including semantic alignment, log-
ical inference, semantic similarity, and language
coherence. Saparov and He (2022) create a syn-
thetic dataset called PrOntoQA that is generated
from real or fictional ontologies. Each example
in the dataset has a unique proof, which can be
converted to simple sentences and back again, al-
lowing for a formal analysis of each reasoning step.
Han et al. (2022a) introduce a dataset called FO-
LIO to test the first-order logic reasoning capabil-
ities of LLMs. FOLIO contains first-order logic
reasoning problems that require models to deter-
mine the correctness of conclusions given a set of
premises. In addition, Wang et al. (2022b) conduct
ablation experiments on CoT and find that LLMs
may also perform reasoning while prompting with
invalid rationals. Their study also suggests that be-
ing relevant to the query and correctly ordering the
reasoning steps are important for CoT prompting.

In summary, most existing studies primarily re-
port the performance of the models on downstream
reasoning tasks, without a detailed examination of
the quality of the rationales produced. This leaves
open the question of whether the models are ac-
tually able to reason in a way that is similar to
human reasoning, or whether they are simply able
to achieve good performance on the tasks through
other means. Further research is needed to more
formally analyze the reasoning abilities of LLMs.

5 Findings and Implications

In this section, we summarize the important find-
ings and implications of studies on reasoning in
large language models.

Reasoning seems an emergent ability of LLMs.
Wei et al. (2022a,b); Suzgun et al. (2022) show that
reasoning ability appears to emerge only in large
language models like GPT-3 175B, as evidenced by
significant improvements in performance on rea-
soning tasks at a certain scale (e.g., 100 billion
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parameters). This suggests that it may be more ef-
fective to utilize large models for general reasoning
problems rather than training small models for spe-
cific tasks. However, the reason for this emergent
ability is not yet fully understood. We refer the
reader to Wei et al. (2022a); Fu et al. (2022a) for
some potential explanations.

Chain of thought elicits “reasoning” of LLMs.
The use of chain-of-thought (CoT) prompts (Wei
et al., 2022b) has been shown to improve the per-
formance of LLMs on various reasoning tasks,
as demonstrated in the experiments of Wei et al.
(2022a,b); Suzgun et al. (2022). Additionally,
Saparov and He (2022) (§4.2) find that, when us-
ing CoT prompts, LLMs are able to produce valid
individual proof steps, even when the synthetic on-
tology is fictional or counterfactual. However, they
may sometimes choose the wrong steps when mul-
tiple options are available, leading to incomplete
or incorrect proofs. Moreover, for many reasoning
tasks where the performance of standard prompting
grows smoothly with model scale, chain-of-thought
prompting can lead to dramatic performance im-
provement. In addition to these benefits, the use of
CoT prompts has been shown to improve the out-of-
distribution robustness of LLMs (Wei et al., 2022b;
Zhou et al., 2022a; Anil et al., 2022, inter alia),
an advantage that is not typically observed with
standard prompting or fully supervised finetuning
paradigms.

LLMs show human-like content effects on rea-
soning. According to Dasgupta et al. (2022), LLMs
exhibit reasoning patterns that are similar to those
of humans as described in the cognitive literature.
For example, the models’ predictions are influ-
enced by both prior knowledge and abstract rea-
soning, and their judgments of logical validity are
impacted by the believability of the conclusions.
These findings suggest that, although language
models may not always perform well on reasoning
tasks, their failures often occur in situations that
are challenging for humans as well. This provides
some evidence that language models may “reason”
in a way that is similar to human reasoning.

LLMs are still unskilled at complex reasoning.
Although LLMs seem to possess impressive rea-
soning capabilities with the techniques described
in §3, they still struggle with more complex rea-
soning tasks or those involving implicature, accord-
ing to studies such as Valmeekam et al. (2022);

Han et al. (2022a); Ruis et al. (2022). For in-
stance, Valmeekam et al. (2022) find that even in
relatively simple commonsense planning domains
that humans would have no trouble navigating,
LLMs such as GPT-3 (Brown et al., 2020) and
BLOOM (Scao et al., 2022) struggle to perform
effectively. These findings suggest that existing
benchmarks may be too simple to accurately gauge
the true reasoning abilities of LLMs, and that more
challenging tasks may be needed to fully evaluate
their abilities in this regard.

6 Reflection, Discussion, and Future
Directions

Why reasoning? Reasoning is the process of think-
ing about something in a logical and systematic
way, and it is a key aspect of human intelligence.
By incorporating reasoning capabilities into lan-
guage models, we can enable them to perform tasks
that require more complex and nuanced thinking,
such as problem solving, decision making, and
planning (Huang et al., 2022e,f; Song et al., 2022).
This can improve the performance of these mod-
els on downstream tasks and increase their out-of-
distribution robustness (Wei et al., 2022a,b; Suzgun
et al., 2022; Zhou et al., 2022a; Anil et al., 2022).
In addition, reasoning can make language models
more explainable and interpretable, as it provides
explicit rationales for their predictions.

Right task/application? As Valmeekam et al.
(2022) point out, current benchmarks may not ade-
quately reflect the reasoning capabilities of LLMs.
In addition, tasks such as solving simple math prob-
lems and concatenating letters in strings (§4.1) are
artificial and do not accurately reflect real-world
situations. To truly understand the reasoning ability
of LLMs, it is important to consider more realistic
and meaningful applications such as decision mak-
ing (Edwards, 1954), legal reasoning (Levi, 2013),
and scientific reasoning (Zimmerman, 2000). Our
ultimate goal should not be to enable LLMs to solve
simple math problems, which can be simply done
with other programs. When conducting relevant
research, it is essential to ask whether the specific
task being tackled is meaningful and whether the
proposed method can be generalized to more real-
istic tasks and applications.

Are language models really able to reason?
There are several indications that LLMs are able
to reason, including 1) high performance on vari-
ous tasks requiring reasoning (Suzgun et al., 2022);
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2) the ability to reason step-by-step with chain-
of-thought prompting (Wei et al., 2022b); and 3)
the reflection of human-like content effects on rea-
soning (Dasgupta et al., 2022). However, these
findings are not sufficient to conclude that LLMs
can truly reason. For 1), it is not clear whether the
models are making predictions based on reasoning
or heuristics (Patel et al., 2021). For many existing
benchmarks on reasoning, actually, we can design
a program with heuristic rules to achieve very high
performance. We usually do not think a program
relying on heuristic rules is capable of reasoning.
For 2), although the models seem to reason step-
by-step, the generated rationales may be incorrect
and inconsistent. It is possible that the models are
“generating reasoning-like response” rather than
“reasoning step-by-step”. For 3), while LLMs dis-
play some human-like reasoning patterns, this does
not necessarily mean that they behave like humans.

Additionally, there are several observations that
suggest LLMs may not be capable of reasoning:
1) LLMs still struggle with tasks that require com-
plex reasoning (Valmeekam et al., 2022; Han et al.,
2022a; Ruis et al., 2022). If LLMs are really de-
cent reasoners, they should handle tasks that can
be simply solved by humans through reasoning;
2) LLMs make mistakes in their reasoning, as ex-
plained above; 3)#4 The performance of LLMs on
downstream tasks has been found to be sensitive to
the frequency of certain terms, such as numbers, in
the training data (Razeghi et al., 2022; Jung et al.,
2022), which would not be expected if the models
were solving mathematical problems through rea-
soning; 4)# Language models have been found to
struggle with associating relevant information that
they have memorized (Huang et al., 2022c).

Overall, it is still too early to draw a conclusion
about the proposed question. In fact, there is also an
ongoing debate about whether language models can
actually understand language or capture meaning
(Bender and Koller, 2020; Li et al., 2021; Manning,
2022; Piantasodi and Hill, 2022). Further in-depth
analysis of factors such as training data, model
architecture, and optimization objectives is needed,
as well as the development of better benchmarks
for measuring the reasoning capabilities of LLMs.
However, it is clear that the current models are not
yet capable of robust reasoning.

Improving reasoning capabilities of LLMs.
4 #indicates the finding has not been carefully examined

in language models with more than 100 billion parameters.

While techniques like chain-of-thought prompt-
ing (Wei et al., 2022b) may help to elicit reasoning
abilities in large language models, they cannot en-
able the models to solve tasks beyond their current
capabilities. To truly enhance reasoning in LLMs,
we need to utilize training data, model architecture,
and optimization objectives that are designed to
encourage reasoning. For example, finetuning a
model with a dataset including CoT data has been
shown to improve reasoning (Chung et al., 2022),
and models can also self-improve through the pro-
cess of bootstrapping their reasoning (Zelikman
et al., 2022; Huang et al., 2022a). There is still
much research that needs to be done in this area,
and we look forward to future progress in improv-
ing reasoning in large language models.

7 Conclusion

In this paper, we have provided a detailed and up-
to-date review of the current state of knowledge
on reasoning in large language models. We have
discussed techniques for improving and eliciting
reasoning in LLMs, methods and benchmarks for
evaluating reasoning abilities, and the findings and
implications of previous studies in this topic. While
LLMs have made significant progress in natural
language processing and related fields, it remains
unclear to what extent they are capable of true rea-
soning or whether they are simply using memorized
patterns and heuristics to solve problems. Further
research is needed to fully understand the reason-
ing abilities of LLMs, improve LLMs’ reasoning
capabilities, and determine their potential for use
in a variety of applications. We hope that this paper
will serve as a useful overview of the current state
of the field and stimulate further discussion and
research on this interesting and important topic.

Limitations

In this paper, we provide an overview of the current
state of knowledge on reasoning in large language
models. Reasoning is a broad concept that encom-
passes various forms, making it impractical to sum-
marize all related work in a single paper. Therefore,
we focus on deductive reasoning, as it is the most
commonly studied in the literature. Other forms of
reasoning such as inductive reasoning (Yang et al.,
2022; Misra et al., 2022, inter alia) and abductive
reasoning (Wiegreffe et al., 2022; Lampinen et al.,
2022; Jung et al., 2022, inter alia) may not be dis-
cussed in depth.
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Additionally, given the rapid evolution and sig-
nificance of reasoning within large language mod-
els, it is crucial to note that new contributions may
have emerged in the field concurrent with the writ-
ing of this paper. An additional resource to consider
is a parallel survey by Qiao et al. (2022), which em-
phasizes reasoning via language model prompting.
Our coverage may not extend to papers released
during or after 2023 such as evaluation on Chat-
GPT (Bang et al., 2023; Zheng et al., 2023). As
such, we recommend readers to check the papers
that cite this survey for a more comprehensive and
updated understanding of this field.
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Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Not applicable. Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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