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Abstract

Most existing event causality identification
(ECI) methods rarely consider the event causal
label information and the interaction informa-
tion between event pairs. In this paper, we pro-
pose a framework to enrich the representation
of event pairs by introducing the event causal
label information and the event pair interac-
tion information. In particular, 1) we design
an event-causal-label-aware module to model
the event causal label information, in which we
design the event causal label prediction task
as an auxiliary task of ECI, aiming to predict
which events are involved in the causal rela-
tionship (we call them causality-related events)
by mining the dependencies between events.
2) We further design an event pair interaction
graph module to model the interaction infor-
mation between event pairs, in which we con-
struct the interaction graph with event pairs as
nodes and leverage graph attention mechanism
to model the degree of dependency between
event pairs. The experimental results show
that our approach outperforms previous state-
of-the-art methods on two benchmark datasets
EventStoryLine and Causal-TimeBank.

1 Introduction

Event causality identification (ECI) aims to iden-
tify the causal relationship between pairs of events
in the text. As shown in Figure 1(a), giving text
and events as inputs, the ECI model needs to iden-
tify three causal relationships < e7, cause, e5 >,
< e5, cause, e2 >, and < e7, cause, e2 >. As a
semantic relationship, causality is important for
semantic understanding and discourse analysis.
Moreover, causal knowledge identified from a text
can be useful for many natural language processing
tasks (Fei et al., 2020a,b; Wang et al., 2020; Zhou
et al., 2021; Dalal et al., 2021).

Various approaches have been proposed for ECI,
from the early feature-based methods (Mirza, 2014;
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Figure 1: (a) An example of leveraging the event causal
label information and the interaction information be-
tween event pairs for ECI. (b) The event pairs composed
of seven events in (a), where the dark area denotes the
event pairs composed of causality-related events.

Caselli and Vossen, 2017; Gao et al., 2019) to the
current neural-network-based methods (Liu et al.,
2020; Zuo et al., 2020, 2021a,b; Cao et al., 2021;
Phu and Nguyen, 2021). The existing methods have
achieved impressive performance. However, as far
as we know, they usually improve the performance
of ECI models by introducing commonsense knowl-
edge or generating additional training data through
data augmentation, with less focus on the inherent
characteristics of the data. Specifically, 1) Minimal
use of event causal label information. In the ECI
task, a sentence usually contains multiple events.
However, not all events are involved in causality.
For instance, the sentence shown in Figure 1(a)
has seven events, among which e2, e5, and e7 are
causality-related events, whereas e1, e3, e4, and e6
are causality-unrelated events. In general, there is
a strong semantic correlation between events that
have a causal relationship. If the model can first
identify e2, e5, and e7 as causality-related events
according to the dependencies between events and
contextual semantics, it can limit the identification
scope of causality to some extent, as shown in Fig-
ure 1(b), thereby reducing the interference of unre-
lated events. Furthermore, by performing statistical
analysis on two benchmark datasets, EventStory-
Line and Causal-TimeBank, we find that 55.13%
and 38.63% of the sentences with events in the two
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datassets contained four or more events, where the
average number of the different candidate event
pairs is 13.12 and 10.64, and the average number
of the event pairs with causal relationship is 1.99
and 0.30, respectively. If we can first predict which
events are causality-related events according to the
dependencies between them, the average number of
candidate event pairs composed of causality-related
events is 3.68 and 0.37, respectively, thereby nar-
rowing the range of causality from 13.12 and 10.64
to 3.68 and 0.37, respectively. Therefore, it is nec-
essary to introduce the event causal label informa-
tion to assist the ECI tasks. 2) Little focus on the
interaction between event pairs. The existing
method (Phu and Nguyen, 2021) uses events as
nodes and leverages toolkits to obtain information
(such as dependency parsing tree and coreference)
to construct event graph. However, they are mod-
eled with events as nodes, cannot directly learn
the interaction between event pairs. As shown in
Figure 1(a), e2 and e7 are far from each other in
the text. Thus, directly identifying the causal re-
lationship between them is difficult for the model.
If < e7, cause, e5 > and < e5, cause, e2 > are
known, it is easier to infer the causal relationship
between e2 and e7 according to the transitivity of
the causal relationship (Hall, 2000). Therefore, it
is essential to introduce the interaction information
between event pairs to learn their dependencies.

To address the above limitations, we propose a
framework called ECLEP, which introduces Event
Causal Label information and Event Pair interac-
tion information to enrich the representation of
event pairs. In particular, 1) we design an event-
causal-label-aware module to model the event
causal label information, in which we introduce
the event causal label prediction task as an auxil-
iary task of ECI to mine the dependencies between
events. 2) We further design an event pair inter-
action graph module to model the interaction in-
formation between event pairs. In particular, we
construct the interaction graph with event pairs
as nodes and adopt graph attention mechanism to
model the degree of dependency between event
pairs. The experimental results on two benchmark
datasets show that our overall framework outper-
forms previous state-of-the-art methods.

2 Methodology

In ECI, the goal is to predict whether a causal re-
lationship exists in each event pair (ei, ej)(i ̸= j)

by giving text S = (w1, w2, ..., wn) and events
set E = (e1, e2, ..., em) contained in S as inputs,
where wi denotes the i-th word in S, and ei de-
notes the i-th event in E. The overall framework of
the proposed method is shown in Figure 2, which
mainly includes four modules, we illustrate each
component in detail in the following.

2.1 Encoding Layer
Given an input sentence S, we adopt a pre-trained
language model BERT (Devlin et al., 2019) as
the sentence encoder to extract hidden contextual
representation HS = (hw1 ,hw2 , ...,hwn), where
hwi denotes the hidden representation of the i-
th token in S. Then, the events representation
HE = (he1 ,he2 , ...,hem) can be obtained by sum-
ming the token representation contained in the
event.

2.2 Event-Causal-Label-Aware Module
A sentence usually contains multiple events, how-
ever, not all events are causality-related events.
We design an event-causal-label-aware module to
mine the dependencies between events and help
the model to pay attention to the extraction of the
causal relationship from the event pairs composed
of causality-related events. In general, there is a
strong semantic correlation between events with
causal relationships, so we first adopt the Trans-
former mechanism (Vaswani et al., 2017) to cap-
ture the dependencies between events, and get the
updated event representation via Eq. (1).

HL
E = Transformer(HE) = (hL

e1 ,h
L
e2 , ...,h

L
em).

(1)
Then, we construct a binary classification to pre-

dict the probability pL
ei of each event ei in E as a

causality-related event via Eq. (2).

pL
ei = softmax(W L

eiH
L
ei + bLei), (2)

where W L
ei and bLei are learnable parameters.

To incorporate the event causal label into the
event pair, we introduce a learable label vector set
L = {lij}(lij ∈ {cr, cu}), where cr denotes the
event pairs composed of causality-related events,
cu denotes the event pairs that have at least one
causality-unrelated event. In particular, the embed-
ding vector L is randomly initialized via sampling
from a uniform distribution and is learned together
with the model training process. For the event
pair (ei, ej), if ei and ej are both causality-related
events (i.e. pL

ei ≥ 0.5 and pL
ej ≥ 0.5), the label of

(ei, ej) is lij = cr, else lij = cu.
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Figure 2: The framework of our proposed method.

2.3 Event Pair Interaction Graph Module

To capture the interaction information between
event pairs, we construct the interaction graph with
event pairs as nodes and adopt the graph attention
mechanism to adaptively fuse the information of
neighbor nodes.

• Event Pair Interaction Graph Construction.
Given the event set E, the events are combined
in pairs to form the set of candidate causal event
pairs EP = {epij}(0 < i, j ≤ |E|, i ̸= j)
as nodes. In EP , the epij = [hei ;hej ; rij ; lij ],
where hei and hej ∈ HE and rij denotes the rela-
tive position embedding between event ei and event
ej in the text.

For the edges of the interaction graph, consider
that event pairs in the same row or column are
strongly associated with the current event pair
(Ding et al., 2020). As shown in Figure 1(b), the
relationship of event pair < e7, e2 > can be trans-
mitted through the same row event pair < e7, e5 >
and the same column event pair < e5, e2 >. Thus,
we connect the edges between the event pairs in
the same row or column and add self-loop edges to
fuse the information of their nodes.

• Event Pair Interaction Graph Update. Con-
sidering that different neighbor nodes have differ-
ent importance for each event pair, we leverage
Graph Attention Networks (GAT) (Veličković et al.,
2018) to model the degree of dependency between
event pairs. GAT propagates information among
nodes by stacking multiple graph attention layers.
At the t-th graph attention layer, the representation

of each node can be updated via Eq. (3).

ept
ij = ReLU(

∑

uv∈N (ij)

αt
ij,uvW

tept−1
uv + bt),

(3)
where N (ij) denotes the directly neighboring
nodes of epij ; the attention weight αt

ij,uv is
learned via Eq. (4), which reflects the strength
of aggregation level between the nodes ept−1

ij and
ept−1

uv ; W t, W t
ij , W

t
uv, wt, and btare learnable

parameters.

ept
ij,uv = wttanh([W t

ijep
t−1
ij ;W t

uvep
t−1
uv ]),

αt
ij,uv =

exp(LeakyReLU(ept
ij,uv))∑

st∈N (ij)

exp(LeakyReLU(ept
ij,st))

,

(4)

Therefore, the updated nodes representation
EP I = {epI

ij} can be obtained by stacking T
layers to model the inter-node relationships.

2.4 Prediction and Training

The predicted probability pij of the event pair
(ei, ej) as a causal event pair can be obtained by
performing a binary classification with epI

ij as in-
put via Eq. (5).

pij = softmax(W I
ijep

I
ij + bIij), (5)

where W I
ij and bIij are learnable parameters.

For training, we utilize the cross-entropy func-
tion to supervise the causal event pair prediction
via Eq. (6).
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Lep = −
∑

s∈D

∑

ei,ej∈Es

ei ̸=ej

yij log(pij), (6)

where D denotes the training set; s denotes the
sentence in D; Es denotes the events set in s; yij

denotes the ground truth label of event pair (ei, ej).
We also add an auxiliary supervision for the

event causal label prediction task via Eq. (7).

Le = −
∑

s∈D

∑

ei∈Es

yei log(p
L
ei), (7)

where pL
ei denotes the predicted probability of

event ei as a causality-related event; yei denotes
the ground truth label of event ei, which can be
automatically obtained according to the labels of
event pairs without any manual labeling.

The final loss function is a weighted sum of the
aforementioned terms L = Lep + λeLe, where λe

∈ (0,1).

3 Experiments

3.1 Datasets and Evaluation Metrics

We verify the effectiveness of the proposed
model on two benchmark datasets, EventStoryLine
(Caselli and Vossen, 2017) and Causal-TimeBank
(Mirza, 2014), respectively. Following previous
works (Cao et al., 2021; Zuo et al., 2021a), we per-
form the 5-fold and 10-fold cross-validation on the
two datasets, respectively. In addition, we adopt
Precision (P), Recall (R), and F1-score (F1) as eval-
uation metrics.

3.2 Parameter Settings

We use HuggingFace’s Transformers1 library to
implement the uncased BERT base model. The
Adam algorithm (Kingma and Ba, 2015) is used
as an optimizer, the learning rate is initialized to
2e-5, the batch size is set to 5, the GAT layers
is set to 2, the dropout of GAT is set to 0.3, the
dimensions of the event causal label embedding
and relative position embedding are set to 80 and
40, respectively, and the weight λe is set to 0.2.
Moreover, since the positive samples in the dataset
are sparse, we adopt a negative sampling rate of
0.5 for training.

1https://github.com/huggingface/transformers

3.3 Baselines

We compare our model with the following baseline
methods. Feature-based methods: 1) DD (Mirza
and Tonelli, 2014), a data-driven method. 2) VR-
C (Mirza, 2014), a model with data filtering and
causal signal enhancement. 3) OP (Caselli and
Vossen, 2017), a dummy model to assign causality
for ECI. 4) Seq (Choubey and Huang, 2017), a se-
quence model for ECI. 5) ILP (Gao et al., 2019),
a document-level ECI model. Neural-network-
based methods: 1) KMMG (Liu et al., 2020),
which proposes a knowledge-aware reasoner and
a mention masking reasoner for ECI. 2) KnowDis
(Zuo et al., 2020), a distantly supervised method
for ECI. 3) LSIN (Cao et al., 2021), a method
that utilize the structural commonsense knowledge
for ECI. 4) LearnDA (Zuo et al., 2021a), a learn-
able knowledge-guided data augmentation method
for ECI. 5) CauSeRL (Zuo et al., 2021b), a self-
supervised representation learning enhanced ECI
method. 6) RichGCN (Phu and Nguyen, 2021), a
graph convolutional network with rich information.

Model
EventStoryLine Causal-TimeBank
P R F1 P R F1

DD - - - 67.3 22.6 33.9
VR-C - - - 69.0 31.5 43.2
OP 22.5 22.5 36.6 - - -
Seq 32.7 44.9 37.8 - - -
ILP 37.4 55.8 44.7 - - -
KMMG 41.9 62.5 50.1 36.6 55.6 44.1
KnowDis 39.7 66.5 49.7 42.3 60.5 49.8
CauSeRL 41.9 69.0 52.1 43.6 68.1 53.2
LSIN 47.9 58.1 52.5 51.5 56.2 52.9
LearnDA 42.2 69.8 52.6 41.9 68.0 51.9
RichGCN49.2 63.0 55.2 39.7 56.5 46.7
ECLEP 49.3 68.1 57.1 50.6 63.4 56.3

Table 1: Experimental Results on the EventStoryLine
and Causal-TimeBank Datasets.

3.4 Overall Results

The experimental results are shown in Table 1, we
can observe that our proposed method ECLEP out-
performs all the baselines on the two datasets. In
particular, on the EventStoryLine, compared with
the current best method RichGCN, our method
ECLEP achieves 1.9% improvement in the F1-
score; on the Causal-TimeBank, compared with the
current best method CauSeRL, our method ECLEP
achieves 3.1% improvement in the F1-score. This
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finding indicates that our proposed method is ef-
fective for the ECI task. In addition, we observe
that baseline methods of ECI often require exter-
nal knowledge resources or toolkits to improve the
performance. Our approach achieves the best per-
formance by mining the inherent characteristics of
the data.

3.5 Ablation Study

This section analyzes the contribution of each part
in our model through ablation experiments, as
shown in Table 2. In particular, we examine the fol-
lowing ablated models: 1) -ECL and -EPI denote
the removal of the event causal label information
and the event pair interaction information, respec-
tively. We note that removing any of them degrades
the performance for ECI, indicating that the two
information we introduced are effective. 2) -Le

denote the removal of auxiliary supervision. We
note that removing it degrades overall performance,
because it can help the model more sufficiently
learn the representation of the label vector. 3) -pos
denote the removal of relative position embedding.
The experimental results show that relative position
information is helpful for ECI, because the proba-
bility of causal relationship between events that are
closer is higher than those that are farther apart.

Model P R F1
ECLEP 49.3 68.1 57.1
-ECL 48.1 65.7 55.5
-EPI 48.9 63.2 55.2
-Le 49.4 64.2 55.9
-pos 50.3 64.5 56.5

Table 2: Ablation Results on the EventStoryLine
dataset.

3.6 Visualization Analysis

We visualize the distribution of each module to
explore the effectiveness of our model further. The
following can be observed from Figure 3: 1) The
event causal label information and the event pair
interaction information focus on different aspects
of features to identify the causal relationships and
they share complementary effects. This finding also
provides an explanation on the good performance
of our full model ECLEP. 2) The event causal label
can limit the identification scope of causality to
some extent, and help the model to pay attention to
the extraction of the causal relationship from the

(a) (b)

(c) (d)

Figure 3: (a) Distribution of the label L in the event-
causal-label-aware module, where the shaded areas
denote the event pairs composed of causality-related
events. (b) Distribution of the full model ECLEP. (c)
Distribution that only using the event causal label in-
formation. (d) Distribution that only using the event
pair interaction information. In (b), (c), and (d), the
shaded area denotes the probability of each event pair
is predicted as a causal event pair. In this example, the
ground truth labels are (e1, e2), (e1, e4) and (e1, e5).

event pairs composed of causality-related events.

4 Conclusion

In this paper, we propose a framework to enrich
the representation of event pairs by introducing
event causal label information and event pair in-
teraction information. The experimental results on
two widely used datasets indicate that our approach
is effective for the ECI task. In the future, we aim
to mine other potential causal features for this task
and apply our model to other types of relation ex-
traction tasks, such as temporal relation extraction.

Limitations

In this paper, we only focus on whether or not there
is a causal relationship between the given events,
does not discriminate the specific cause/effect
event. In addition, we only conduct research on
sentence-level ECI, whereas document-level ECI
often present more challenges. These are the focus
of our future research.
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