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Abstract

The chain-of-though (CoT) prompting methods
were successful in various natural language pro-
cessing (NLP) tasks thanks to their ability to
unveil the underlying complex reasoning pro-
cesses. Such reasoning processes typically ex-
hibit implicitly structured steps. Recent efforts
also started investigating methods to encourage
more explicitly structured reasoning procedures
to be captured (Zhou et al., 2022). In this work,
we propose Tab-CoT, a novel tabular-format
CoT prompting method, which allows the com-
plex reasoning process to be explicitly mod-
elled in a highly structured manner. Despite
its simplicity, we show that our approach is ca-
pable of performing reasoning across multiple
dimensions (i.e., both rows and columns). We
demonstrate our approach’s strong zero-shot
and few-shot capabilities through extensive ex-
periments on a range of reasoning tasks.1

1 Introduction

The chain-of-thought (CoT) prompting method
(Wei et al., 2022) encourages the large language
models (LLMs) to engage in a thought process be-
fore providing the answer to the given question.
Such an approach shows impressive performance
improvements in reasoning tasks. Notably, in the
zero-shot setting, it was shown that a simple prompt
such as “let’s think step by step” could fa-
cilitate the step-by-step thinking process before an-
swering the original question (Kojima et al., 2022).
Such a task-agnostic method unveiled that LLMs
can be descent zero-shot reasoners.

The reasoning process is inherently structured.
This gives rise to some new developments along
this line of work recently. Specifically, Zhou et al.
(2022) suggests an alternative prompting approach
that enables a two-stage structured reasoning pro-
cess. Gao et al. (2022) proposes an approach that

1Our code is available at https://github.com/Xalp/
Tab-CoT

The bakers at the Beverly Hills Bakery baked
200 loaves of bread on Monday morning.
They sold 93 loaves in the morning and 39
loaves in the afternoon. A grocery store
returned 6 unsold loaves. How many loaves
of bread did they have left?

Question

Standard
Prompting

15 words

Zero-shot
CoT

140 words

Zero-shot
Tab-CoT

28 words

Answer: The bakers at the Beverly Hills
Bakery had 62 loaves of bread left on
Monday afternoon. 

 Let's think step by step. The bakers at the
Beverly Hills Bakery baked 200 loaves of bread
on Monday morning. This is our starting point.
[...(another 62 tokens)] Putting all of this
together, we can say that the bakers had 200
loaves to start, sold 132 of them, and had 6
returned, for a total of 62 loaves remaining.

| step | event | answer |
| --- | --- | --- |
| 1 | 200 loaves baked | 200 loaves |
| 2 | 93 loaves sold in morning | 107 loaves |
| 3 | 39 loaves sold in afternoon | 68 loaves |
| 4 | 6 loaves returned | 74 loaves | 

Input Output

Figure 1: A comparison between Tab-CoT with standard
prompting and zero-shot-CoT on the same question.
Chain-of-thought prompts are highlighted in orange.

involves code in the prompt design, allowing struc-
tured information in the form of formal language
to participate in the reasoning process. While ef-
fective, such methods require specific prompt engi-
neering for different domains or defining multiple
variables, which can be difficult to maintain or keep
track of.

Inspired by the fact that state-of-the-art large
language models, such as GPT-3 (Brown et al.,
2020) and CodeX (Chen et al., 2021), have the
capability of reasoning over tabular structured data
(He et al., 2023)2, we propose a novel framework
called Tabular Chain of Thought (Tab-CoT) that
models the structured reasoning process using a
table-filling procedure.

We show that the model can perform
step-by-step reasoning by creating a table

2This is because such models are trained on massive data
collected from the Internet, which contains a large amount of
tabular formed data.
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without further fine-tuning by using a table
header with column names in the form of
“|step|question|response|” as a prompt.
While conventional natural language texts are
generated in a 1-dimensional sequential order,
the table has a 2-dimensional structure, allowing
inference along both columns and rows to be
performed simultaneously. Unlike previous works
which focused on extracting information from
existing tabular structured data (Gong et al., 2020,
He et al., 2023), our approach generates the table
while performing the reasoning process (and
extracts the answer from the generated table at the
end).

Figure 1 shows the results with standard prompt-
ing, conventional zero-shot CoT, and our zero-shot
Tab-CoT. Our method generates a table as the out-
put, which is more organized and concise than the
output from the conventional CoT method. In this
example, while zero-shot CoT generates 140 words,
our method only generates 28. Besides, we found
our method can reason horizontally and vertically
at the same time.3 This demonstrates that our Tab-
CoT method benefits from the 2-dimensional struc-
ture of the table, where the information can flow in
two dimensions.

We summarize our main contributions in this
work as follows:

• We propose a new approach called Tabular
Chain-of-Thought (Tab-CoT) that utilizes a
tabular structured reasoning scheme in com-
bination with state-of-the-art large language
models to generate answers. To the best of our
knowledge, this is the first method that uses
tables in a “chain of thought” process.

• The 2-dimensional tabular structure of Tab-
CoT allows for improved unlocking of the
step-by-step reasoning capabilities of LLMs,
transforming the linear “chain of thought” pro-
cess into a more structured one.

• Extensive experiments have revealed that our
Tab-CoT outperforms traditional CoT tech-
niques in zero and few-shot settings. This
indicates that Tab-CoT has strong potential
as a superior alternative to current chain-of-
thought prompting methods.

3“74 loaves” is the sum of “68 loaves” from the same
row and “6 loaves” from the same column.

2 Related Work

Chain-of-thought prompting (Wei et al., 2022), a
variation of few-shot prompting that adds step-by-
step reasoning in those few-shot examples instead
of just providing answers, has achieved significant
improvements across multiple datasets. The LLMs
can generate solutions following the solution for-
mat of prompts. Compared to traditional prompt-
ing, chain-of-thought prompting decomposes the
task into smaller steps, which makes difficult tasks
easier to solve.

The chain-of-thought prompting method is not
necessarily purely natural language based. Pro-
gram Aided Language Models (PAL) (Gao et al.,
2022) provides few-shot samples that contain exe-
cutable Python code. Such an approach enables the
LLMs to interact with the Python shell, allowing
the model to focus on learning how to do mathemat-
ical reasoning rather than numerical calculations.

These chain-of-thought methods provide the
solution structure and pattern via few-shot sam-
ples, but can these be provided without these few-
shot samples in the zero-shot setting? Zero-shot
CoT (Kojima et al., 2022) is a zero-shot chain-of-
thought prompting method. The prompt phrase
“Let’s think step by step” added after the
question triggers the explicit reasoning process.
However, compared to few-shot CoT (Wei et al.,
2022), zero-shot CoT allows more flexibility in the
structure of the reasoning process.

Recently, Zhou et al. (2022) proposed Least-
to-Most prompting, which is a prompting strat-
egy that reduces a complex problem into a list
of sub-questions, and sequentially solves the sub-
questions. Each sub-question is solved with the
answer to previously solved sub-questions. Com-
pared to zero-shot CoT, this method has more re-
strictions on the structure of reasoning by decom-
posing and sequentially answering. Moreover, im-
porting external tools (like calculator and python
shell) can further aid the math computation within
the arithmetic domain (Gao et al., 2022).

These works reveal the importance of promoting
structures in the chain-of-thought process. How-
ever, the nature of the zero-shot prompting makes
the injection of structures into the generation pro-
cess challenging. This motivates us to devise a
better mechanism to prompt the language mod-
els under the zero-shot setting – a new prompting
scheme that allows highly structured outputs in the
form of tables to be generated.
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Jackson is planting tulips. He can fit 6 red tulips in a row and 8 blue
tulips in a row. If Jackson buys 36 red tulips and 24 blue tulips, how
many rows of flowers will he plant?

Question

|---|---|---|---|
|1|How many rows of red tulips will Jackson plant?|36 ÷ 6 = 6|6|
|2|How many rows of blue tulips will Jackson plant?|24 ÷ 8 = 3|3|
|3|How many rows of flowers will Jackson plant?|6 + 3 = 9|9|

Generated Table

Table Generation Prompt|step|subquestion|procedure|result|

Answer Extraction PromptTherefore, the answer is

9. Generated AnswerInput Output

Figure 2: Overview of our zero-shot Tab-CoT method, which contains two steps: (1) table generation and (2) answer
extraction. Added prompts are highlighted in orange. Texts generated by the LLM are highlighted in green.

step, v1, v2,  v3, v4, v5.
     1,  5,    5,    5,   5,   5.
     2,  4,    5,  10,   6,   5.
     3,  3,    5,  20,   7,   5.
     4,  2,    5,  40,   8,   5.
     5,  1,    5,  80,   9,   5.

Text Format
|step|v1|v2|  v3|v4|v5|
|     1| 5 | 5 |    5| 5 | 5 |
|     2| 4 | 5 |  10| 6 | 5 |
|     3| 3 | 5 |  20| 7 | 5 |
|     4| 2 | 5 |  40| 8 | 5 |
|     5| 1 | 5 |  80| 9 | 5 |
 

Table Format

|     6| 0 | 5 |160|10| 5 |
|     7|-1 | 5 |320|11| 5 |
|     8|-2 | 5 |640|12| 5 |
......

     6,  0,    5,160, 10,  5.
     7,  0,    5,160, 10,  5.
     8,  0,    5,160, 10,  5.
     ......

|step|v1|v2|  v3|v4|v5|
|     1| 5 | 5 |    5| 5 | 5 |
|     2| 4 | 5 |  10| 6 | 5 |
|     3| 3 | 5 |  20| 7 | 5 |
|     4| 2 | 5 |  40| 8 | 5 |
|     5| 1 | 5 |  80| 9 | 5 |
|     6| 0 | 5 |160|10| 5 |
|     7| 0 |

Table Format

  5 |320|11| 5 |

Input Output

|step|v1|v2|  v3|v4|v5|
|     1| 5 | 5 |    5| 5 | 5 |
|     2| 4 | 5 |  10| 6 | 5 |
|     3| 3 | 5 |  20| 7 | 5 |
|     4| 2 | 5 |  40| 8 | 5 |
|     5| 1 | 5 |  80| 9 | 5 |
|     6| 0 | 5 |160|10| 5 |
|     9|-3 |

Table Format

  5 |320|13| 5 |

(A) (B) (C) (D)

Figure 3: Understanding how state-of-the-art LLM (“code-davinci-002”) reason with tabular-structured data.

3 Tab-CoT

Similar to zero-shot CoT (Kojima et al., 2022),
our method involves two prompts that can be used
in large language models (LLMs), one for table
generation and the other for answer extraction. The
details are shown in Figure 2. While our method is
primarily applied in zero-shot settings, it can also
work in few-shot settings.

Tables in LLMs We found that in the offi-
cial “parse unstructured data” demo provided
by OpenAI4, a table header is provided as
part of the prompt, which is as follows:
“|Fruit|Color|Flavor|”. With such a prompt,
the underlying LLM can automatically generate
a table. This suggests possible formatting for ta-
bles in such state-of-the-art LLMs. And “|” is the
recognizable delimiter of tables in OpenAI models.

To validate this observation, we queried the
LLM “code-davinci-002” (Chen et al., 2021) with
the following question: “a=2, b=3, what is
2*a+3*b?”, and provided another table header:
“|step|solution|”5. We found that it completes

4https://beta.openai.com/playground/p/
default-parse-data

5The temperature is set to 0 for reproducibility.

a structured table as follows:
a=2, b=3, what is 2*a+3*b?
|step|solution|
|:---|:---|
|1|2*a+3*b|
|2|2*2+3*3|
|3|4+9|
|4|13|

This experiment essentially unveils how the ta-
bles are represented in such LLMs. The results
also illustrate how the table can potentially be used
for generating a reasoning process. Next, to vali-
date this, we designed several simple experiments
to understand how reasoning over such tabular-
structured data is performed on such LLMs, as
shown in Figure 3. Our first experiment (A) shows
that such LLMs are able to perform potential ver-
tical reasoning. However, if we replace ‘|’ with
‘,’ (B), the LLM fails to capture the patterns in the
data. This tells us that the correct formatting is
crucial when reasoning with tables in such LLMs.

Next, we intentionally insert a mistake into the
partial table and ask the model to continue the
generation process (circled in C). Surprisingly, the
LLM is able to generate the correct entries even
though the mistake occurred in the same row. This
further confirms the LLM’s strong potential in per-
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forming vertical reasoning with tabular-structured
data.

Moreover, to prove both vertical and horizontal
reasoning exists, we increase the difficulty by di-
rectly appending the first two elements from step 9
after step 6 (D). If only vertical reasoning existed,
the value under “v4” would have been “11”. In-
stead, the value generated is “13,” confirming that
the LLMs have the potential to perform a combina-
tion of horizontal and vertical reasoning simultane-
ously.

Table Generation Prompt To make use of the
2-dimensional structure of the table, we replace the
natural language prompt with a table-generation
prompt (e.g., “|step|question|response|”),
which serves as the header of the table. This regu-
lates the context of this table, forcing the LLMs to
conduct step-by-step reasoning by completing the
table. Meanwhile, the choice of columns can be
very specific. If each row of the table is regarded as
a step, the row-by-row table generation process will
become a step-by-step reasoning process. Within
each step (row), we have multiple columns, each of
which contributes certain detail towards the current
reasoning step.

For any text question x, we have a table genera-
tion prompt (all column names) c. Concretely, we
add the table generation prompt in the next row of
the text question:

LLM(x, c) =




c1 c2 · · · cn−1 cn
t1,1 t1,2 · · · t1,n−1 t1,n

...
. . .

...
tm,1 tm,2 · · · tm,n−1 tm,n




(1)
where t1,1 · · · tm,n are the entries within the gener-
ated table, which contains m rows and n columns.

Answer Extraction Prompt After the table con-
tent, denoted as T , is generated from the previous
step, we perform answer extraction. The answer ex-
traction step helps us to extract the answer from the
table, as the final results may not always be in the
last cell of the generated table. Following zero-shot
CoT (Kojima et al., 2022), we add another answer
extraction prompt a: “the answer is” after the
generated table, to extract the final answer from the
table:

Answer = LLM(x, c, T, a) (2)

Structure-Promoting Table Scheme Different
table generation prompts (headers) may result

Reasoning Type Dataset Size Answer Type

M
ai

n

Arithmetic

SingleEq 0,508 Numeral
AddSub 0,395 Numeral

MultiArith 0,600 Numeral
GSM8K 1,319 Numeral
AQUA 0,254 Multiple Choice

SVAMP 1,000 Numeral

A
dd

iti
on

al Symbolic
Coin Flip 1,000 Yes or No

Last Letter 0,254 String

Commonsense
StrategyQA 2,290 Yes or No

CommonsenseQA 1,221 Multiple Choice

Table 1: Tasks and Data

in different tables generated (with different con-
tent). We propose a “structure-promoting scheme”,
which maximally unlocks the reasoning abilities of
LLMs.

We define each row as a reasoning step. A table
containing multiple rows will depict the step-by-
step reasoning procedure leading to the final an-
swer. Thus, our first column is “step”, containing
a number that indicates which reasoning step the
current row represents.

Least-to-most prompting (Zhou et al., 2022) con-
tains two stages: problem reduction and sequential
solving. In problem reduction, they decompose a
question into multiple subquestions. Similarly, we
add “subquestion” as our second column. At the
beginning of each step, the LLMs will generate
a subquestion under this column, which demon-
strates the objective of the current reasoning step.

The conventional zero-shot CoT (Kojima et al.,
2022) shows that allowing the model to gener-
ate some reasoning process before answering can
achieve a better result. Inspired by this observa-
tion, we add a third column, “process”, into our
table. Given a subquestion in the previous column,
we expect to generate the reasoning process in the
current column before answering.

The last column is named “answer”. As the
previous reasoning process under the “process”
column may not necessarily provide an answer,
we hope to use the “answer” column to explicitly
request an (intermediate) answer at the end of each
reasoning step.

With the above considerations, our primary
scheme for the table header is designed as follows,
which serves as our main table generation prompt:

|step|subquestion|process|result|

4 Experimental Setup

Large Language Models We consider two state-
of-the-art large language models under the GPT-
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Method CoT Prompt LLM SingleEq AddSub MultiArith GSM8K AQUA SVAMP Average
Z

er
o-

sh
ot

Standard Prompting —
text 74.6 72.2 17.7 10.4 22.4 58.8 42.7
code 46.3 51.4 07.2 04.1 23.6 29.5 27.0

CoT Let’s think step by step
text 78.0 69.6 78.7 40.7 33.5 62.1 60.4
code 65.6 65.6 64.8 31.8 29.5 39.9 49.5

Tab-CoT |step|subquestion|process|result|
text 74.6 71.9 72.2 39.3 36.6 57.0 58.6
code 81.9 70.9 81.2 44.4 37.0 60.5 62.6

Table 2: Zero-shot results on the arithmetic datasets. All methods use the same answer extraction prompt in these
datasets for a fair comparison. All methods are evaluated under the zero-shot setting.

3 family (Brown et al., 2020) in our exper-
iments, namely “code-davinci-002” and “text-
davinci-002”, whose APIs are made available by
OpenAI6. For brevity, we use “code” to refer to
the model “code-davinci-002” and “text” to refer
to “text-davinci-002” in our experiments.

Tasks and Datasets We primarily focus on math-
ematical reasoning in this work. Thus, we evalu-
ate our method on 6 arithmetic reasoning datasets.
Specifically, they are SingleEq (Koncel-Kedziorski
et al., 2015), AddSub (Hosseini et al., 2014), Mul-
tiArith (Roy and Roth, 2015), GSM8K (Cobbe
et al., 2021), AQUA-RAT (Ling et al., 2017), and
SVAMP (Patel et al., 2021), which are standard
datasets widely used in the community.

We also conducted additional experiments on
datasets involving other types of reasoning tasks.
Specifically, we evaluate our method on two sym-
bolic reasoning tasks: Last letter and Coin Flip7:
the former is the task that asks for the concatena-
tion of the last letters of 4 words, and the latter asks
for the state of the coin after being flipped a few
times. We investigate how the specificity of column
names affects the performance and report in our
ablation study. We also evaluate our method on two
commonsense reasoning tasks: CommonsenseQA
(Talmor et al., 2019) and StrategyQA (Geva et al.,
2021).

Following zero-shot CoT (Kojima et al., 2022),
we set the first generated number as the numeral
answer, the first capitalized letter as the answer for
multiple-choice questions, and the first “yes” or
“no” as the answer for “Yes or No” questions.

5 Results

5.1 Main Results

Our main experiments are conducted on arithmetic
reasoning tasks under the zero-shot setting.
We tested the performance of both text-based
and code-based LLMs on all methods. The

6https://openai.com/api/
7We use the file generated by Kojima et al. (2022).

results are shown in Table 2. Under the scheme
“|step|subquestion|process|result|”, our
zero-shot Tab-CoT approach significantly out-
performed the standard prompting in all tasks.
Furthermore, our best-performing Tab-CoT model
(using code-based LLM) outperforms the best
conventional CoT model in 5 out of 6 tasks (with
an average improvement of 2.2%).

When the standard prompting method is consid-
ered, using the text-based LLM leads to signifi-
cantly better results than the code-based counter-
part (15.7% on average). Similarly, when zero-shot
CoT is considered, using the former also outper-
forms the latter by 10.9% on average. However, for
our Tab-CoT approach, “code” outperforms “text”
by 4.0%, leading to the best overall performance
among all configurations.

From such results, we can see that the conven-
tional CoT method responds differently from our
Tab-CoT method with different types of underlying
LLMs involved. The conventional CoT method
(and the standard prompting method) strongly fa-
vors a text-based LLM under the zero-shot setting.
In contrast, our approach works well with both
types of LLMs, but the code-based version can give
it an additional boost in performance. Compared
with “text”, the “code” model is further fine-tuned
on code (Chen et al., 2021). We conjecture that
table generation resembles the code generation pro-
cess – both involve structured procedures that are
highly organized and follow a step-by-step process.
Comparing our Tab-CoT approach with conven-
tional CoT, we can conclude that our proposed
table-generation prompt is able to significantly bet-
ter unlock the strong reasoning abilities within the
code-based LLM.

Based on the above main experiments, we
choose to use “code” as the default LLM for all
subsequent experiments unless otherwise specified.

5.2 Importance of Scheme Design

To understand the significance of our proposed ta-
ble scheme design, we evaluate the performance of

10263

https://openai.com/api/


Scheme SingleEq AddSub MultiArith GSM8K AQUA SVAMP Average

Z
er

o-
sh

ot

Standard Prompting 46.3 51.4 7.2 4.1 23.6 29.5 27.0

|step|subquestion|process|result| 81.9 70.9 81.2 44.4 37.0 60.5 62.6
|step|subquestion|procedure|result| 83.7 69.1 77.8 43.4 38.2 60.4 62.1
|step|question|response| 77.6 73.9 79.0 38.1 34.3 63.9 61.1
Self-consistency (using above) 86.4 78.2 85.2 48.2 44.1 66.9 68.2

Table 3: Zero-shot performance comparison between the three schemes (and with self-consistency).

Scheme Average

Z
er

o-
sh

ot

|subquestion|process|result| 54.3
|step|process|result| 57.2
|step|subquestion|result| 61.3
|step|subquestion|process| 60.9

|step|subquestion|process|result| 62.6

Table 4: Performance if a column is removed from the
scheme (detailed results are in Appendix A).

Method
Standard

CoT Tab-CoTPrompting

Fe
w

-s
ho

t

SingleEq 86.8 93.1 92.1
AddSub 90.9 89.1 89.1
MultiArith 44.0 96.2 96.3
GSM8K 19.7 63.1 61.6
AQUA 29.5 45.3 46.9
SVAMP 69.9 76.4 82.9

Average 68.2 77.2 78.2

Table 5: Few-shot results on the arithmetic datasets.

“|step|subquestion|process|result|”, along
with four variations, each of which is obtained
by removing one of the four columns as ablation.
The results in Table 4 show that each column of
“|step|subquestion|process|result|” is cru-
cial. From the result, we notice that removing
the column “step” from our scheme results in the
most significant performance drop. This implies
although the step only contains a number indicating
“which step this is”, it organized the table in sequen-
tial order over rows. The column “subquestion”
is also important. Removing “subquestion” from
the scheme also shows an average performance
drop of 5.4%. The “subquestion” column forms
step-by-step instructions vertically, indicating the
subquestion under consideration for each step. The
“step” and “subquestion” columns play impor-
tant roles in maintaining the structure of the table,
building vertical connections across rows.

5.3 Effectiveness of Self-Consistency

The self-consistency (Wang et al., 2022) decoding
strategy was shown to obtain better results by gen-
erating and exploring multiple, diverse reasoning
paths. We also adopt a similar approach here. In
the original self-consistency paper, up to 40 reason-
ing paths were considered. We show the feasibility

of using only 3 paths in our work.8 This is con-
veniently achieved by using 3 different prompts –
we select another two table schemes besides the
standard scheme. One is a highly similar prompt,
which we expect to perform similarly well, and the
other is less similar, which we expect to yield a
worse performance (based on Sec 5.2). They are
shown in Table 3. We then perform majority voting
based on the outputs from these 3 prompts. Interest-
ingly, although a prompt with worse performance is
used in the voting process, the overall performance
improves. This shows the benefits of integrating
different table schemes for such tasks, which helps
improve the overall robustness of the approach.

5.4 Few-shot Tab-CoT
Tab-CoT shows impressive reasoning ability under
the zero-shot setting. It can generate a structured
output in the form of a table that enables the chain-
of-thought reasoning process without few-shot sam-
ples. Tables are capable chain-of-thought carriers,
but can they also serve as good chain-of-thought
teachers? To answer this question, we evaluated
Tab-CoT under the few-shot setting.9

For a fair comparison, we use the same
few-shot sample questions described in Wei
et al. (2022) (listed in Appendix D). We use
“|step|subquestion|process|result|” as the
table scheme when representing few-shot samples.
The results are reported in Table 5, our method out-
performed few-shot CoT by 1% on average. While
the performance difference between Tab-CoT and
CoT on other datasets is below 2%, the perfor-
mance difference on SVAMP is 6.5%. The large
improvement on SVAMP is likely related to the
selection of few-shot samples because Wei et al.
(2022) select 8 sample questions from SVAMP for
all arithmetic reasoning tasks except AQUA10.

8The self-consistency decoding method did not show sig-
nificant improvement when the number of reasoning paths is
below 5 in their paper.

9We did not compare with least-to-most prompting (Zhou
et al., 2022) as it requires task-specific supervision, it only
evaluated on GSM8K and provide task-specific prompt for
GSM8K in the paper.

10AQUA has its own few-shot sample questions as they are
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Question 1: Gretchen has some coins. There are 30 more gold coins than silver coins. If she had 70 gold coins, how many coins did Gretchen have in total? (GT: 110)
CoT: Let’s think step by step. If Gretchen had 70 gold coins, then she would have 30 silver coins (70 - 30 = 40).

So Gretchen would have a total of 100 coins (70 + 30 = 100).
Model Step Subquestion Process Result

text
1 How many silver coins does Gretchen have?

There are 30 more gold coins than silver coins. If she had 70
gold coins, how many coins did Gretchen have in total?

100 coins

2 How many gold coins does Gretchen have?
There are 30 more gold coins than silver coins. If she had 70
gold coins, how many coins did Gretchen have in total?

70 gold coins

Error Analysis: The “text” model overwrites the question in the process, thus answering the wrong question.

code
1 How many gold coins does Gretchen have? 30 more gold coins than silver coins 70 gold coins
2 How many silver coins does Gretchen have? 30 more gold coins than silver coins 40 silver coins
3 How many coins does Gretchen have in total? 70 gold coins + 40 silver coins 110 coins

Question 2: Adam bought 2 boxes of chocolate candy and 5 boxes of caramel candy. If each box has 4 pieces inside it, how much candy did he have total? (GT: 28)
CoT: Adam bought 2 boxes of chocolate candy. That means he has 8 pieces of chocolate candy. Adam bought 5 boxes of caramel candy.

That means he has 20 pieces of caramel candy. To find out how much candy Adam has in total,
we add 8 pieces of chocolate candy and 20 pieces of caramel candy. Adam has 28 pieces of candy in total.

Model Step Subquestion Process Result

text

1 What is the known information?
Adam bought 2 boxes of chocolate candy and 5 boxes of
caramel candy. If each box has 4 pieces inside it, how much
candy did he have total?

2 boxes of chocolate
candy and 5 boxes of
caramel candy, each with
4 pieces inside

2 What is the unknown information? How much candy did he have total? —
3 What information is not needed? — —

4 What is the equation?
boxes of chocolate candy and 5 boxes of caramel candy, each
with 4 pieces inside

2(4)+5(4)

5 What is the answer? — 24 pieces of candy
Error Analysis: The “text” model contains redundant steps in the table and wrong calculation.

code
1 How many pieces of chocolate candy did Adam buy? 2 boxes x 4 pieces per box 8 pieces
2 How many pieces of caramel candy did Adam buy? 5 boxes x 4 pieces per box 20 pieces
3 How many pieces of candy did Adam buy? 8 pieces + 20 pieces 28 pieces

Question 3: A pet store had 102 puppies. In one day they sold 21 of them and put the rest into cages with 9 in each cage. How many cages did they use? (GT: 9)
CoT: We know that the pet store had 102 puppies and that 21 of them were sold. That means we have 81 puppies left.

Now, if 9 puppies fit in each cage, we can divide 81 by 9 to find out how many cages are needed.81 / 9 = 9. So, the pet store used 9 cages.
Model Step Subquestion Process Result

text
1 How many cages are needed for 102 puppies? 102 / 9 = 11.3333 11
2 How many cages are needed for 21 puppies? 21 / 9 = 2.3333 2
3 How many cages are needed in total? 11 + 2 = 13 13

Error Analysis: The “text” model has a wrong reasoning order, and should add up before dividing.

code
1 How many puppies are left? 102 - 21 = 81 81
2 How many puppies are in each cage? 9 9
3 How many cages are needed? 81 / 9 = 9 9

Table 6: Case studies (on MultiArith) of the tables generated from “code-davinci-002”/“text-davinci-002”. The
results returned after applying the answer extraction prompts are in bold. Additional case studies are in Appendix C.

5.5 Case Studies

The main experimental results show that “code”
under-performs “text” with conventional CoT but
yields better results in our Tab-CoT. To understand
this better, we conduct case studies to compare
their generated tables in Table 6.

While “code” only generated short text snippets
or formulas under “process”, the words generated
by “text” under the same column tend to form com-
plete sentences whenever possible. As we men-
tioned earlier, “code” is an LLM that is further
fine-tuned on code (Chen et al., 2021). This ex-
plains why it appears more amenable to the tabular-
structured format of the output. In question 1,
the model with “text” overwrites the generated
“subquestion” by asking another question. Thus,
the “result” fails to answer the “subquestion”
in the same row. In question 2, “text” gener-
ated 5 steps while “code” only took 3. The
“subquestion” generated by “text” is also ambigu-
ous (e.g., “what is the known information?”).
In question 3, “text” presents a wrong reasoning or-
der. Overall, “code” shows better reasoning ability

multiple choice questions. We use the same few-shot samples
following Wei et al. (2022).

by demonstrating a more concise and straightfor-
ward reasoning process.

5.6 Additional Experiments

We further evaluate our methods on symbolic rea-
soning and commonsense reasoning tasks. We also
conducted some new experiments based on the
GPT-3.5 model to understand our approach’s ef-
fectiveness on such newer models 11. With such
additional experiments, we hope to draw further
insights into our approach.

Symbolic Reasoning We evaluate Tab-CoT on
two symbolic reasoning datasets: Coin Flip (CF)12

and Last Letter (LL)13. Unlike the arithmetic rea-
soning tasks, these tasks focus on some specific
problems. This also opens up the opportunity for
us to examine whether the specificity of the table

11GPT-3.5 is released on Mar 2023.
12An example for Coin Flip: “A coin is heads up.

Vinny does not flip the coin. Landon flips the
coin. Miguel flips the coin. Caitlyn does not
flip the coin. Is the coin still heads up? Note
that “flip” here means “reverse”.”

13An example for Last Letter: “Take the Last Letter
of each word in “Vinny Landon Miguel Caitlyn” and
concatenate them.”
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With 2-d reasoningWithout 2-d reasoning
step initial coin state flip or not final coin state

1 heads up flip tails up

2 tails up not flip tails up

3 tails up ... ...

step subquestion process result

1 What is the state of the coin after Franklin's action? Franklin flips the coin. tails up

2 What is the state of the coin after Rochelle's action? Rochelle does not flip the coin. tails up

3 What is the state of the coin after Brent's action? ... ...

Figure 4: The schemes that disable (left) and enable (right) potential 2-dimensional reasoning.

Task Cat Prompt Result

Z
er

o-
sh

ot

CF

let’s think step by step 91.4
1 |step|subquestion|process|result| 85.0
2 |step|initial state|action|next state| 80.4
3 |step|name|flip or not|result| 96.2

LL

let’s think step by step 57.6
1 |step|subquestion|process|result| 25.2
2 |step|original answer|action|updated answer| 50.8
3 |step|word|last letter|answer| 72.8

Table 7: Effect of different specificity of schemes. We
use Zero-shot CoT with the “text” model as our baseline
(as Zero-shot CoT works better with “text” model).

Method CommonsenseQA StrategyQA Avg

Z
er

o-
sh

ot Standard Prompting 69.0 03.3 36.2
CoT 54.6 38.9 46.8
Tab-CoT 68.4 50.4 59.4

Table 8: Results on commonsense reasoning.

scheme may have an impact on the reasoning pro-
cess in such tasks.

To this end, we split table schemes into three
categories: (1) general: the table scheme that
can be generally applied to most text questions.
(2) domain-specific: the table scheme that can be
adapted to a specific domain. (3) task-specific: the
scheme that can only be adopted by a single task.

Our experiments in Table 7 illustrate that the
specificity of the table schemes highly affects the
performance of symbolic reasoning tasks. One
may expect the performance to increase as the ta-
ble scheme becomes more task-specific. Our task-
specific scheme outperformed the zero-shot CoT in
both tasks. However, the increased specificity does
not always lead to higher accuracy. In the Coin Flip
task, we noticed that another task-specific scheme
“|step|initial coin state|flip or not|next
coin state|” only achieves an accuracy of 68.0%.
To understand this, we investigate their reasoning
flows in Figure 4. Although the left scheme is more
task-specific, it largely disabled the vertical reason-
ing in the table. While the right scheme is general,
it effectively enables reasoning along both vertical
and horizontal directions, leading to significantly
better results. 14

14We further evaluate the general scheme under the one-shot
setting, and the results are in Appendix A

Method CoT Tab-CoT

Z
er

o-
sh

ot

SingleEq 85.6 87.8
AddSub 83.3 85.8
MultiArith 90.5 89.3
GSM8K 68.7 78.2
AQUA 50.8 51.2
SVAMP 79.0 81.1

Average 76.3 78.9

Table 9: Results with GPT-3.5.

Task code-cushman-001 code-davinci-002

Z
er

o-
sh

ot

0(13B) (175B)

SingleEq 06.3 81.9
AddSub 06.3 70.9
MultiArith 02.0 81.2
GSM8K 00.9 44.4
AQUA 16.9 37.0
SVAMP 05.0 60.5

Average 06.2 62.6

Table 10: A comparison between the different sizes
of “code”, “Average” is the average score across six
datasets.

Commonsense Reasoning As another set of
additional experiments, we further evaluate our
method on commonsense reasoning, including
CommonsenseQA (Talmor et al., 2019) and Strate-
gyQA (Geva et al., 2021). The results are in Table
8. Tab-CoT obtained the highest average accuracy.
However, the results of our method did not show
significantly improved performance compared with
Standard Prompting in a few-shot setting15. These
results imply that commonsense reasoning tasks do
not have a fixed answering pattern. Therefore, pro-
viding chain-of-thought samples is not enough to
make up for the lack of commonsense knowledge.
For a fair comparison, we use the same few-shot
questions listed in (Wei et al., 2022).

Results on GPT-3.5 We test our method on the
recent model “GPT-3.5-turbo-0301” in Table 916.
We found that our method is applicable to GPT-
3.5, and achieves better performance compared to
conventional Zero-shot CoT. Another interesting
observation is when prompting the GPT-3.5 model
with “Let’s think step by step”, a large number of
the generated texts already contain a table in their

15The few-shot results are in Appendix B.
16Our experiment is conducted in May 2023. The “GPT-

3.5-turbo-0301” may be updated in the future.
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Scheme SingleEq AddSub MultiArith GSM8K AQUA SVAMP Average

Z
er

o-
sh

ot

Standard Prompting 46.3 51.4 07.2 04.1 23.6 29.5 27.0

|subquestion|process|result| 69.9 51.9 84.0 40.1 35 44.7 54.3
|step|process|result| 77.0 55.7 84.2 41.5 37.8 46.9 57.2
|step|subquestion|result| 76.0 77.9 76.8 40.1 36.2 60.6 61.3
|step|subquestion|process| 78.0 75.9 76.3 39.7 34.3 60.9 60.9

|step|subquestion|process|result| 81.9 70.9 81.2 44.4 37.0 60.5 62.6

Table 11: Performance if a column is removed from the scheme.

CoT process. 17

5.7 Ablation Studies

Model Sizes Kojima et al. (2022) evaluated the
family of GPT-3 models of four different sizes:
2.7B, 6.7B, 13B, and 175B parameters. The results
show that only the largest model (“text-davinci-
002”) shows the chain-of-thought reasoning ability.

We compare the performance of the smaller
model “code-cushman-001” (13B) with “code-
davinci-002” (175B). Similar to zero-shot CoT,
smaller models do not show the ability to con-
duct chain-of-thought reasoning. The performance
of “code-cushman-001” cannot reach 10%, except
AQUA (a multiple choice dataset with 5 choices
for each question). The experimental results are
reported in Table 10.

Structure-Promoting Scheme As men-
tioned in Table 4, we compare the perfor-
mance when we remove any column from
“|step|subquestion|process|result|”. The
detailed experimental results are reported in Table
11. Results suggest that each column of our
proposed scheme is important because removing
any column will lead to a drop in performance.

6 Discussion

Our experimental results confirmed the effective-
ness of our proposed tabular chain-of-thought
method under both zero-shot and few-shot settings.
We summarize several advantages of our method
compared to conventional chain-of-thought meth-
ods and list them below.

Tab-CoT generates a table illustrating the reason-
ing process, which is more organized. This nature
of the generated text, as can be seen from Table 6,
makes the reasoning process much easier.

Additionally, from Figure 4, we conclude that
Tab-CoT encourages a more structured reason-

17Based on our observations, those tables generated in con-
ventional Zero-shot CoT under GPT 3.5 can be different from
those generated with our method. They appear to be mostly
used to organize information related to the question but do not
appear to be used for presenting reasoning steps.

ing process to be explicitly modelled. As a 2-
dimensional data structure, tables enable both hori-
zontal reasoning along rows and vertical reasoning
along columns.

Practically, table schemes are also easy to craft.
Designing a specific table generation prompt typi-
cally involves deciding concise header names with-
out concerning grammar. It is thus less cumber-
some than choosing a natural language prompt
from a diverse set of candidates.

Overall, we argue that under current state-of-the-
art LLMs, table schemes are natural prompts that
are well suited for zero-shot learning.

7 Conclusion

In this paper, we propose Tab-CoT, a novel prompt-
ing framework that performs effective zero-shot
reasoning by generating a table.

Tab-CoT shows competitive results on arithmetic
reasoning tasks under both zero-shot and few-shot
settings. We further conducted comprehensive ex-
periments across different reasoning tasks under
different settings. Our comprehensive experiments
revealed some specific benefits of our method and
identify the optimal way to use it. We hope that,
through our work, we can sparkle new ideas and
provide some inspiration to our community.

In the future, we would like to explore meth-
ods to automate the scheme selection process, us-
ing the generated schemes to meet task-specific
requirements. Future work also includes integrat-
ing external calculators (Gao et al., 2022), or task-
specific supervision (Zhou et al., 2022) into the
learning process, under both zero-shot and few-
shot settings.

Our Tab-CoT also provides a straightforward de-
composition of the intermediate thought process.
This highly structured chain of thought produced
by our approach may help people to observe and in-
terpret how large language models decompose com-
plex problems. We believe our proposed method
can help reveal the underlying mechanisms asso-
ciated with the emergence of certain complex be-
haviours associated with large language models.
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Limitations

We identify a few limitations of this work. First,
our approach is applicable to language models pre-
trained with tables, which may not always be in-
cluded in all language models (especially small
ones). Second, our approach’s limited improve-
ment in commonsense reasoning tasks suggests
that its effectiveness may depend on the specific
task and the level of structured reasoning required.
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A One-shot Reasoning on Symbolic
Reasoning

We evaluate our method on Coin Flip (Table 21)
and Last Letter (Table 22) under the one-shot set-
ting. As shown in Table 13, by adding one few-
shot sample, LLMs can gain a significant perfor-
mance boost in both tasks with general scheme
“|step|subquestion|process|result|”.

B Additional Few-shot Results

We evaluate our method on commonsense reason-
ing tasks under a few-shot setting. Our model per-
forms slightly better in terms of average accuracy.
The results are reported in Table 12.

C Additional Case Studies

We show some errors our method made in arith-
metic reasoning tasks through further case studies.
The results are reported in Table 14 and 16.

D Few-Shot Samples

We list our few-shot samples for all arithmetic rea-
soning (Table 17 and Table 18), CommonsenseQA
(Table 19) and StrategyQA (Table 20). We use the
same few-shot sample questions from Wei et al.
(2022)
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Method CommonsenseQA StrategyQA Avg

Fe
w

-s
ho

t Standard Prompting 82.3 67.1 74.7
CoT 77.9 73.2 75.6
Tab-CoT 80.8 72.0 76.4

Table 12: Few-shot results on commonsense reasoning.

Task Prompt Result

Z
er

o-
sh

ot CF |step|subquestion|process|result| 85.0
LL |step|subquestion|process|result| 25.2

O
ne

-s
ho

t CF |step|subquestion|process|result| 100.0
LL |step|subquestion|process|result| 96.0

Table 13: One-shot results on symbolic reasoning.

Case Study

Tom bought a skateboard for $ 9.46 , and spent $ 9.56 on marbles . Tom also spent $ 14.50 on shorts . In total , how much did Tom spend on toys ?

|step|subproblem|process|result|
|—|—|—|—|
|1|How much did Tom spend on a skateboard?|$9.46|$9.46|
|2|How much did Tom spend on marbles?|$9.56|$9.56|
|3|How much did Tom spend on shorts?|$14.50|$14.50|
|4|How much did Tom spend on toys?|$9.46 + $9.56 + $14.50|$33.52| Therefore, the answer (arabic numerals) is $33.52. (GT: 19.02)

Error Analysis: Misleading by redundant information. Regard shorts as toys.
Tom found 15 seashells and Fred found 43 seashells on the beach . When they cleaned them , they discovered that 29 were cracked . How many seashells
did they find together ?

|step|subproblem|process|result|
|—|—|—|—|
|1|How many seashells did Tom find?|15|15|
|2|How many seashells did Fred find?|43|43|
|3|How many seashells were cracked?|29|29|
|4|How many seashells did they find together?|15 + 43|58|
|5|How many seashells did they keep?|58 - 29|29|
Therefore, the answer (arabic numerals) is 29. (GT: 58)

Error Analysis: Misleading by redundant information. Cracked seashells are still seashells.
The grasshopper, the frog and the mouse had a jumping contest. The grasshopper jumped 19 inches. The grasshopper jumped 4 inches farther than the
frog and the mouse jumped 44 inches lesser than the frog. How far did the frog jump?

|step|subproblem|process|result|
|—|—|—|—|
|1|How far did the grasshopper jump?|19|19|
|2|How far did the grasshopper jump farther than the frog?|4|4|
|3|How far did the mouse jump lesser than the frog?|44|44|
|4|How far did the frog jump?|19 - 4|15|
|5|How far did the frog jump?|19 + 44|63|
|6|How far did the frog jump?|63 - 15|48|
Therefore, the answer (arabic numerals) is 48. (GT: 15)

Error Analysis: Misleading by redundant information. The mouse does not matter.

Table 14: Few-shot case studies in arithmetic reasoning datasets.

Case Study

A coin is heads up. Whitney flips the coin. Erika does not flip the coin. Tj does not flip the coin. Benito flips the coin. Is the coin still heads up? Note that
“flip” here means “reverse”.

|step|initial coin state|flip or not|next coin state|
|—|—|—|—|
|1|heads up|no flip|heads up|
|2|heads up|no flip|heads up|
|3|heads up|flip|tails up|
Therefore, the answer (Yes or No) is No. (GT: Yes)

Error Analysis: The Table failed to simulate all 4 steps and was early-stopped.

Table 15: Case studies in symbolic reasoning datasets.
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Case Study

A bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning and half of what is left is sold equally in the afternoon
and evening. How many loaves of bread are sold in the afternoon?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many loaves of bread are produced each day?|60 loaves|60 loaves|
|2|How many loaves of bread are sold in the morning?|2/3 * 60 loaves = 40 loaves|40 loaves|
|3|How many loaves of bread are left?|60 loaves - 40 loaves = 20 loaves|20 loaves|
|4|How many loaves of bread are sold in the afternoon and evening?|1/2 * 20 loaves = 10 loaves|10 loaves|
|5|How many loaves of bread are sold in the afternoon?|10 loaves / 2 = 5 loaves|5 loaves| Therefore, the answer (arabic numerals) is 5.(GT: 10)

Error Analysis: Wrong subquestion in step 4. This result in /2 in step 5.
John hires a driving service to get him to work each day. His work is 30 miles away and he has to go there and back each day. He goes to work 5 days a
week for 50 weeks a year. He gets charged 2permiledrivenandhealsogiveshisdrivera150 bonus per month. How much does he pay a year for driving?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many miles does he drive each day?|30 miles|30 miles|
|2|How many days a week does he go to work?|5 days|5 days|
|3|How many weeks a year does he go to work?|50 weeks|50 weeks|
|4|How many miles does he drive a year?|30 miles * 5 days * 50 weeks = 7,500 miles|7,500 miles|
|5|How much does he pay per mile?|$2|$2|
|6|How much does he pay for driving a year?|$2 * 7,500 miles = $15,000|$15,000|
|7|How much does he pay for the bonus?|$150 * 12 months = $1,800|$1,800|
|8|How much does he pay a year for driving?|$15,000 + $1,800 = $16,800|$16,800|
Therefore, the answer (arabic numerals) is $16,800. (GT: 31800)

Error Analysis: Forget that John need to go there and back, so it is a two-way-trip.
There are four birds at the Caboose. Sally Two is three years older than Granny Red. Granny Red is two times as old as Sally Four. If Sally Four is the
same age as Sally Thirtytwo, and Sally Thirtytwo is 8 years old, what’s the total age of the four birds?

|step|subquestion|process|result|
|—|—|—|—|
|1|How old is Sally Four?|8 years|8 years|
|2|How old is Sally Thirtytwo?|8 years|8 years|
|3|How old is Granny Red?|8 years / 2 = 4 years|4 years|
|4|How old is Sally Two?|4 years + 3 years = 7 years|7 years|
|5|What’s the total age of the four birds?|8 years + 8 years + 4 years + 7 years = 27 years|27 years|
Therefore, the answer (arabic numerals) is 27.(GT: 27)

Error Analysis: Step 3, Granny is 2 times older, so it is *2.
Sam ’s dog had puppies and 8 had spots . He gave 2 to his friends . He now has 6 puppies . How many puppies did he have to start with ?

|step|subproblem|process|result|
|—|—|—|—|
|1|How many puppies did Sam have to start with?|8|8|
|2|How many puppies did he give to his friends?|2|2|
|3|How many puppies does he have now?|6|6|
|4|How many puppies did he have to start with?|8 - 2|6|
Therefore, the answer (arabic numerals) is 6.(GT: 8)

Error Analysis: The question ask for existing value, but the table still do the calculation.
The school is planning a field trip. The school has 87 classrooms. There are 58 students in the school with each classroom having the same number of
students. If there are 2 seats on each school bus. How many buses are needed to take the trip?

|step|subproblem|process|result|
|—|—|—|—|
|1|How many classrooms are in the school?|87|87|
|2|How many students are in the school?|58|58|
|3|How many students are in each classroom?|58 / 87|0.67|
|4|How many seats are on each bus?|2|2|
|5|How many students can fit on each bus?|2 * 0.67|1.34|
|6|How many buses are needed to take the trip?|58 / 1.34|43|
Therefore, the answer (arabic numerals) is 43.(GT: 29)

Error Analysis: Redundant steps by redundant information, 58/2=29 .

Table 16: Additional few-shot Case studies in arithmetic reasoning datasets.
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Few-shot Samples For 5 Arithmetic Reasoning Tasks

There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the
grove workers plant today?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many trees are in the grove?|15|15|
|2|How many trees will be in the grove after the workers are done?|21|21|
|3|How many trees did the workers plant?|21 - 15|6|
Therefore, the answer (arabic numerals) is 6.

If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many cars are in the parking lot?|3|3|
|2|How many cars arrive?|2|2|
|3|How many cars are in the parking lot?|3 + 2|5|
Therefore, the answer (arabic numerals) is 5.

Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many chocolates did Leah have?|32|32|
|2|How many chocolates did her sister have?|42|42|
|3|How many chocolates did they eat?|35|35|
|4|How many chocolates do they have left?|32 + 42 - 35|39|
Therefore, the answer (arabic numerals) is 39.

Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many lollipops did Jason have?|20|20|
|2|How many lollipops does Jason have now?|12|12|
|3|How many lollipops did Jason give to Denny?|20 - 12|8|
Therefore, the answer (arabic numerals) is 8.

Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many toys does Shawn have?|5|5|
|2|How many toys did he get from his mom?|2|2|
|3|How many toys did he get from his dad?|2|2|
|4|How many toys does he have now?|5 + 2 + 2|9|
Therefore, the answer (arabic numerals) is 9.

There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now
in the server room?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many computers were in the server room?|9|9|
|2|How many computers were installed each day?|5|5|
|3|How many computers were installed from monday to thursday?|5 * 4|20|
|4|How many computers are now in the server room?|9 + 20|29|
Therefore, the answer (arabic numerals) is 29.

Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?

|step|subquestion|process|result|
|—|—|—|—|
|1|How many golf balls did Michael have?|58|58|
|2|How many golf balls did he lose on tuesday?|23|23|
|3|How many golf balls did he lose on wednesday?|2|2|
|4|How many golf balls did he have at the end of wednesday?|58 - 23 - 2|33|
Therefore, the answer (arabic numerals) is 33.

Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

|step|subquestion|process|result|
|—|—|—|—|
|1|How much money does Olivia have?|$23|$23|
|2|How much does each bagel cost?|$3|$3|
|3|How many bagels did she buy?|5|5|
|4|How much money did she spend on bagels?|$3 * 5|$15|
|5|How much money does she have left?|$23 - $15|$8|
Therefore, the answer (arabic numerals) is $8.

Table 17: Few-shot samples for 5 arithmetic reasoning tasks, including SingleEq, AddSub, MultiArith, GSM8K,
and SVAMP
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Few-shot Samples For AQUA

John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the numbers is? Answer Choices: (A) 50 (B) 45 (C) 65
(D) 78 (E) 64

|step|subquestion|process|result|
|—|—|—|—|
|1|How much did the new mean change?|If 10 is added to each number, then the mean of the numbers also increases by 10.|10|
|2|What is the new mean?|So the new mean would be 40 + 10 = 50.|50|
Therefore, among A through E, the answer is A.

If a / b = 3/4 and 8a + 5b = 22, then find the value of a. Answer Choices: (A) 1/2 (B) 3/2 (C) 5/2 (D) 4/2 (E) 7/2

|step|subquestion|process|result|
|—|—|—|—|
|1|What equation we have have if we substitute b with a?| a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) = 22.|8a + 5(4a / 3) = 22|
|2|What is the value of a?|8a + 5(4a / 3) = 22 simplifies to 8a + 20a / 3 = 22, which means 44a / 3 = 22. So a is equal to 3/2.|2/3|
Therefore, among A through E, the answer is B.

A person is traveling at 20 km/hr and reached his destiny in 2.5 hr then find the distance? Answer Choices: (A) 53 km (B) 55 km (C) 52 km (D) 60 km (E)
50 km

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the distance this person traveling?|The distance that the person traveled would have been 20 km/hr * 2.5 hrs = 50 km.|50km|
Therefore, among A through E, the answer is E.

How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (A) 1156 (B) 1392 (C) 1480 (D) 1562 (E) 1788

|step|subquestion|process|result|
|—|—|—|—|
|1|How many one-digit numbers are there?|There are 9 one-digit numbers from 1 to 9.|9|
|2|How many two-digit numbers are there?|There are 90 two-digit numbers from 10 to 99.|90|
|3|How many three-digit numbers are there?|There are 401 three-digit numbers from 100 to 500.|401|
|4|How many keystrokes are needed to type the number from 1 to 500?|9 + 90(2) + 401(3) = 1392.|1392|
Therefore, among A through E, the answer is B.

Table 18: Few-shot samples for AQUA
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Few-shot Samples For CommonsenseQA

What do people use to absorb extra ink from a fountain pen? Answer Choices: (A) shirt pocket (B) calligrapher’s hand (C) inkwell (D) desk drawer (E)
blotter

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer must be an item that can absorb ink.|(E)| Therefore, Among A through E, the answer is E.

What home entertainment equipment requires cable? Answer Choices: (A) radio shack (B) substation (C) television (D) cabinet

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer must require cable.|(C)|
Therefore, Among A through E, the answer is C.

The fox walked of city into the forest, what was it looking for? Answer Choices: (A) pretty flowers (B) hen house (C) natural habitat (D) storybook

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer must be something in the forest.|(B)|
Therefore, Among A through E, the answer is B.

Sammy wanted to go to where the people were. Where might he go? Answer Choices: (A) populated areas (B) race track (C) desert (D) apartment (E)
roadblock

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer must be a place with a lot of people.|(A)|
Therefore, Among A through E, the answer is A.

Where do you put your grapes just before checking out? Answer Choices: (A) mouth (B) grocery cart (C)super market (D) fruit basket (E) fruit market

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer should be the place where grocery items are placed before checking out.|(B)|
Therefore, Among A through E, the answer is B.

Google Maps and other highway and street GPS services have replaced what? Answer Choices: (A) united states (B) mexico (C) countryside (D) atlas

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer must be something that used to do what Google Maps and GPS services do, which is to give directions.|(D)|
Therefore, Among A through E, the answer is D.

Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (A) harder (B) anguish (C) bitterness (D) tears (E) sadness

|step|subquestion|process|result|
|—|—|—|—|
|1|What can we know of answer?|The answer should be the feeling of someone getting divorced who was doing all the work.|(C)|
Therefore, Among A through E, the answer is C.

Table 19: Few-shot samples for CommonsenseQA
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Few-shot Samples For StrategyQA

Do hamsters provide food for any animals?

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the evidence?|Hamsters are prey animals. Prey are food for predators.|yes|
Therefore, the answer (yes or no) is yes.

Could Brooke Shields succeed at University of Pennsylvania?

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the evidence?|Brooke Shields went to Princeton University. Princeton University is about as academically rigorous as the University of Pennsylvania.
Thus, Brooke Shields could also succeed at the University of Pennsylvania.|yes|
Therefore, the answer (yes or no) is yes.

Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the evidence?|Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s atomic number squared is less than 5.|no|
Therefore, the answer (yes or no) is no.

Yes or no: Is it common to see frost during some college commencements?

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the evidence?|College commencement ceremonies can happen in December, May, and June. December is in the winter, so there can be frost. Thus, there
could be frost at some commencements.|yes|
Therefore, the answer (yes or no) is yes.

Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the evidence?|The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more than 6 months. Thus, a llama could not
give birth twice during the War in Vietnam.|no|
Therefore, the answer (yes or no) is no.

Yes or no: Would a pear sink in water?

|step|subquestion|process|result|
|—|—|—|—|
|1|The density of a pear is about 0.6g/cm3, which is less than water. Objects less dense than water float. Thus, a pear would float.|no|
Therefore, the answer (yes or no) is no.

Table 20: Few-shot samples for StrategyQA

One-shot Sample Used on Coin Flip

A coin is heads up. Dorian flips the coin. Mayra flips the coin. Freddie does not flip the coin. Magaly flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".

|step|subquestion|process|result|
|—|—|—|—|
|1|Is the coin heads up?|Dorian flips the coin.|The coin is tails up.|
|2|Is the coin heads up?|Mayra flips the coin.|The coin is heads up.|
|3|Is the coin heads up?|Freddie does not flip the coin.|The coin is heads up.|
|4|Is the coin heads up?|Magaly flips the coin.|The coin is tails up.|
Therefore, the answer (Yes or No) is "No".

Table 21: One-shot sample used on Coin Flip

One-shot Sample Used on Last Letter

Take the last letters of each words in L̈ucky Mireya Jj Kcänd concatenate them.

|step|subquestion|process|result|
|—|—|—|—|
|1|What is the last letter of "Lucky"?|"Lucky"[-1] = ’y’|answer = ’y’|
|1|What is the last letter of "Mireya"?|"Mireya"[-1] = ’a’|answer = ’y’ + ’a’ = ’ya’|
|1|What is the last letter of "Jj"?|"Jj"[-1] = ’j’|answer = ’ya’ + ’j’ = ’yaj’|
|1|What is the last letter of "Kc"?|"Kc"[-1] = ’c’|answer = ’yaj’ + ’c’ = ’yajc’|
Therefore, the answer is "yajc".

Table 22: One-shot sample used on Last Letter
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