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Abstract

Previous studies have constantly observed that
a language model repeats itself, creating rep-
etitions in an output sequence. To cope with
the issue, stochastic decoding schemes have
been the de facto approaches; the strategies add
randomness in inference, hence avoiding the
“self-loop”. However, the remedy comes at the
cost of sacrificing output quality due to the ran-
domness involved. In this work, we introduce a
deterministic decoding scheme, local temper-
ature beam search. This inference algorithm
is an embarrassingly simple variant of beam
search, yet it reduces repetition, whose level is
superior to that of a sampling-based decoding
algorithm, while maintaining the level of co-
herence as in beam search. Our idea is rooted
in the concept of model calibration; we view
a repetition as a casualty from overconfidence
in a model. Therefore, our work mitigates the
miscalibration present in the course of infer-
ence with a post-calibration approach applied
in beam-specific manner. Our inference scheme
is validated on text completion tasks, in which
the repetition problem is seen most clearly, and
is exhaustively compared with existing infer-
ence schemes.

1 Introduction

Neural language models have gained much atten-
tion with ground-breaking performances (Vaswani
et al., 2017; Lewis et al., 2020), and accordingly,
decoding algorithms have been studied extensively
along with such models (Holtzman et al., 2020;
Kool et al., 2019; Meister et al., 2021; Fan et al.,
2018). An inference algorithm aims to find an op-
timal hypothesis from a search space, which the
level of optimum is commonly approximated and
mapped by a language model. A choice of de-
coding/search algorithm can result in significant
differences in model outputs, such as in diversity

∗This work was done while Dongkyu was an intern at LG
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and coherence (Ippolito et al., 2019). For this rea-
son, a large body of research has been done to find
an optimal search algorithm (Cho, 2016; Ippolito
et al., 2019; Meister et al., 2022; Holtzman et al.,
2020; Fan et al., 2018).

In a broad view, there are two branches in the
inference algorithm: deterministic and stochastic.
Deterministic branch includes greedy decoding and
beam search which are maximization-based infer-
ence strategies; the methods select tokens that max-
imize a sequence probability, hence generating co-
herent and high quality sequences. However, it
has been constantly reported that the maximization-
based schemes generate highly repetitive outputs
(Welleck et al., 2020; Fu et al., 2021). There-
fore, stochastic decoding algorithms, such as top-p
(Holtzman et al., 2020) and top-k (Fan et al., 2018),
have been the de facto options in an environment
where a language model is likely to repeat itself,
such as text completion. However, with the ran-
domness introduced, the stochastic methods are at
risk of generating incoherent sequence (Holtzman
et al., 2020).

In this work, we view the repetition problem of
a language model from the standpoint of model
calibration. Our intuition is rooted in two inter-
esting findings: 1) a language model assigns high
probabilities to repeating tokens (Holtzman et al.,
2020), but 2) human texts hardly contain repeti-
tion within a sequence (Paulus et al., 2017). In
summary, we hypothesize that a language model is
overconfident when repeating itself, assigning spu-
riously high predictive scores to predictions that
are less likely to appear. The calibration of a lan-
guage model is of importance especially in beam
search (Müller et al., 2019); beam search keeps
only a finite number of “likely” beams, whose like-
lihood is the (log) probabilities mapped by a model
in inference. Therefore, when a probability in a
beam is overestimated due to overconfidence, the
search will be biased towards the overconfident
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beam, leading to the degeneration in text, i.e. repe-
tition.

In this light, we propose local temperature beam
search which is a deterministic algorithm that mit-
igates the long-standing repetition problem in a
deterministic search algorithm while fully enjoying
the strengths of a maximization-based approach.
We mitigate the bias in beams, caused by overconfi-
dence, by introducing local temperature scaling, in
which a temperature value is decided in a context-
specific manner. Accordingly, the repetition prob-
lem of a language model with our decoding scheme
is reduced as much as a sampling-based scheme,
whereas coherence score of generated outputs is
as high as that of a maximization-based strategy.
We attribute such improvement to its connection
to n-gram blocking (Paulus et al., 2017); we illus-
trate how the proposed beam search is an implicit
version of n-gram blocking. In this sense, the pro-
posed idea brings more freedom in a beam search
process while reducing repetition as n-gram block-
ing. The proposed decoding scheme is thoroughly
tested in text completion, in which the stochastic
decoding schemes have been dominant until now.

The contributions are as follows:

• Our work views the repetition problem of a
language model from the standpoint of model
calibration.

• We conduct a preliminary experiment that em-
pirically illustrates the link between overcon-
fidence and repetition.

• Our work bridges n-gram blocking to the
proposed decoding scheme, and we attribute
the success of local beam search to implicit
penalty presents in our algorithm.

• The proposed beam search is robust to a wide
choice of beam width and temperature.

2 Preliminaries

2.1 Neural Sequence Generation
Given a neural language model parameterized with
θ, neural sequence generation is auto-regressively
predicting a sequence of tokens. The following is
an inference procedure at time step t.

ŷt = f(P (y|ŷ<t; θ)) (1)

where P (y|ŷ<t; θ) is the conditional probability
distribution mapped by a model. f is a decod-
ing/search algorithm, and ŷ<t is a series of tokens

preceding time step t. The inference is done in
a left-to-right manner, predicting the next token
given a context. In return, an output is a sequence
of tokens ŷ ∈ V +, where V + is Kleene closure, a
set of all possible strings from the vocabulary set
V .

2.2 Maximization Decoding

A maximization decoding algorithm simply takes
the most “likely” words in a context; a language
model continues generating a sequence by append-
ing tokens that maximize the sequence probability.
Specifically, the log sentence probability, often re-
ferred to a score, is defined as the following:

s(ŷ1:t) =

t∑

i=1

logP (ŷi|y<i; θ)

= logP (ŷt|y<t; θ) + s(ŷ<t)

(2)

The scoring function s intakes the inferred predic-
tions ŷt and computes the log sentence probability
by adding the log probability of the current predic-
tion to the score of preceding inferences. Contin-
uing a sequence with the most probable candidate
is called greedy decoding. When a search space
expands to multiple candidates, it becomes a beam
search.

Beam search is a type of Breadth First Search
that expands and keeps only B probable beams in
the course of inference. The selection of B beams
is based on their scores as follows.

Ŷt = argmax
[ŷb:v]

|Ŷt|=B

{s([ŷb : v])|v ∈ V, ŷb ∈ Ŷt−1}

(3)
[:] denotes concatenation. Ŷt indicates a set of hy-
potheses/beams at time step t and the size of the
set is the beam width B.

The maximization inference schemes excel in
generating a coherent text and the application has
been widely witnessed (Vaswani et al., 2017; Lee
et al., 2021). However, it comes at the expense of
diversity. Numerous studies have reported that a se-
quence generated with an algorithm that maximizes
the likelihood tends to contain repetitive phrases
(Fu et al., 2021; Holtzman et al., 2020).

2.3 Calibration

A model calibration indicates the trustworthiness
of a model prediction (Guo et al., 2017); a well-
calibrated model makes predictions whose predic-
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tive scores match accuracy. Formally,

P (Ŷ = Y |P̂ = p) = p (4)

where Ŷ and P̂ are predictions and probability as-
signed when making the prediction. Therefore, for
instance, when a calibrated model makes a predic-
tion with 0.8 probability, the chance of the predic-
tion to be correct is 0.8. When the predictive score
is greater than the accuracy, a model is overconfi-
dent; in the opposite case, the model is undercon-
fident in making a prediction. There have been
constant efforts to enhance calibration of a model
(Lee et al., 2022), temperature scaling (Guo et al.,
2017) being one of the early and effective attempts.

Temperature Scaling is a post-processing cali-
bration method (Guo et al., 2017), which scales a
logit vector with a single global temperature τ .

P (yi|y<t; τ, θ) =
exp(zi/τ)

∑|V |
j exp(zj/τ)

(5)

P (yi|y<t; τ, θ) refers to a conditional probability
distribution over the output space scaled with a
temperature τ , and z is a logit vector. When τ
is set to ∞, the resulting probability distribution
becomes a uniform distribution. On the contrary,
when the temperature approaches a value close to
0, the distribution is mapped to a one-hot encod-
ing with its whole probability mass assigned to an
argmax index. With this scaling mechanism, the
temperature scaling has been found to mitigate the
overconfidence problem in a neural network by set-
ting the temperature greater than 1.0 (Müller et al.,
2019; Guo et al., 2017).

3 Related Work

Recent studies have introduced decoding schemes
that mitigate such weakness present in the popu-
lar decoding schemes. Diverse beam search (Vi-
jayakumar et al., 2016) adds sequence dissimilarity
between the beams in the score function, expect-
ing diversity in the final outputs of B beams. Di-
verse sibling beam search (Li et al., 2016) penal-
izes beams that have the same root, so that outputs
do not overlap with each other. Delayed beam
search (Massarelli et al., 2020) transits from sam-
pling to maximization, in which the first j time
steps are inferred with a sampling-based scheme
and the rest of the generation is done with beam
search. Stochastic beam search (Kool et al., 2019)
and conditional poisson stochastic beam search

(Meister et al., 2021) bring randomness to beam
search by sampling predictions at each time step.
Cho (2016) proposes adding noise to a hidden state
of a decoder, exploring the data manifold with the
noise. This noise-based decoding has been shown
to mitigate the low diversity in generated text and
has been referred to as Noisy Parallel Approxi-
mate Decoding (NPAD). (Keskar et al., 2019) in-
troduces repetition penalty, in which the penalty
is given to a repeating token by discounting the
corresponding logit value while leaving other logit
values untouched. Lastly, contrastive search (Su
et al., 2022) is a recent attempt that utilizes hidden
representation in order to avoid repetition. The ap-
proach noticeably reduces repetitions, yet the core
weaknesses are 1) high computation costs and 2)
high dependency on isotropy level of an inference
model.

Another popular branch of inference strategy
is sampling. Top-k (Fan et al., 2018) considers
only the k most probable tokens when sampling,
truncating the sampling space to k indexes. Top-
p sampling considers the smallest set of indexes
whose sum amounts up to the p probability. Typical
sampling (Meister et al., 2022) samples a token
based on the expected information content of a
token. For more detailed explanation, please refer
to Appendix A.

4 Approach

4.1 Language Models Make Repetitions with
Overconfidence

We make a connection between repetition and over-
confidence with a preliminary experiment; we find
that a language model is largely overconfident
when making a repetition. We draw such obser-
vations by comparing predictive scores when gen-
erating n-gram repetitions and the probability of
n-gram repetitions to appear in human-written text.

We compute the average predictive score of a lan-
guage model when generating a unigram, bigram,
trigram, and quadgram repetition in the course of
text generation. For the probability of repetitions
appearing, we compute the probability of unigram,
bigram, trigram, and quadgram repetition in human-
generated text. We compare the predictive scores
and probability of such repetitions to appear, which
the result is depicted in Table 1.

It is clear that a language model assigns spu-
riously high probability mass, around 0.9, when
making a repetition, even though there is only a
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Table 1: Preliminary experiment result on WebText
corpus. The n-gram repetitions, dubbed as n-gram-
rep hereafter, and the corresponding predictive scores,
P (ŷ; θ), are obtained from predictions made with beam
search, with beam size set to 10. The likelihood of n-
gram repetition appearing, P (n-gram-rep), is computed
from ground truth, which is human-written text.

n-gram n-gram-rep P (ŷ; θ) P (n-gram-rep)
1-gram 0.66 0.89 0.35
2-gram 0.60 0.90 0.07
3-gram 0.58 0.91 0.03
4-gram 0.57 0.92 0.02

slim chance that such repetition exists. This is a
clear sign of overconfidence as the model illus-
trates a clear gap between the predictive score and
the likelihood of the predictions to be valid. The
problem stands out more clearly in text generation;
the calibration error accumulates along the infer-
ence (Müller et al., 2019), and hence beam search
will be biased towards a beam with repetitions. In
this light, this work proposes reducing the long-
standing repetition problem of a language model
by mitigating overconfidence of a model in the
course of inference.

4.2 Local Temperature Beam Search

We propose an embarrassingly simple approach in
beam search that handles the miscalibration issue
in the course of inference; we apply a calibration
method, namely temperature scaling (Guo et al.,
2017), at every time step when a beam is found to
be overconfident, thereby preventing the accumula-
tion of miscalibration and degeneration in text.

4.2.1 Progressive Local Temperature
As witnessed in Table 1, the chance of n-gram
repetition appearing in human-written text expo-
nentially decreases as n grows, whereas predictive
score of n-gram repetition mapped by a language
model increases linearly. Accordingly, we pro-
pose to apply temperature scaling to handle such
discrepancy in model calibration with progressive
local temperature; a beam is assigned with a high
temperature which is proportional to its level of
overconfidence.

τt,b = max{τ1t,b, τ2t,b, · · · , τnt,b}, where

τnt,b =

{
τ + γ ∗ (n− 1), if ŷmax

t,b =n-gram-rep
τ, Otherwise

(6)

where τ is the global temperature and γ is the tem-
perature increasing factor. ŷmax

t,b is the argmax
prediction of the probability distribution mapped
by the inference model given context ŷ<t,b. There-
fore, Equation 6 is validating whether the addition
of ŷmax

t,b to ŷ<t,b creates an n-gram repetition. If
it is found to be the case of self-loop, the tem-
perature is set according to the level of repetition.
Therefore, the temperature τt,b is both progressive
and local; the beam-specific and time step-specific
temperature value is computed on-the-fly during
an inference. It is worth noting that the proposed
approach does not increase temperature with uni-
gram repetitions, since a word is likely to appear
multiple times in an utterance. In addition, when a
generated text is free of repetition, then probability
distributions over the inference remain untouched.
Therefore, the proposed local temperature beam
search becomes a vanilla beam search.

The core rationale behind the use of n-gram-
based checking is to lessen model dependency
within the proposed decoding scheme; recent stud-
ies, i.e. contrastive search (Su et al., 2022), uti-
lize hidden representation to identify signs of rep-
etitions. One major drawback is that such algo-
rithms require a language model to have isotropic
representation (Su and Collier, 2022). However,
some language models, i.e. gpt2-small (Rad-
ford et al., 2019), are found to display anisotropic
representations (Li et al., 2020; Su et al., 2022).
Consequently, decoding schemes that involve hid-
den representations are not model-agnostic. On the
contrary, by utilizing n-gram based matching logic,
the proposed method alleviates the model depen-
dency, and hence local temperature beam search
can be coupled with off-the-shelf language models
with less prerequisites.

4.2.2 Scaling Probability with Local
Temperature

With the local temperature computed for each beam
at each time step, each beam probability distribu-
tion is scaled with the local progressive temperature
obtained.

P (yi|y<t,b; τt,b, θ) =
exp (zi

t,b/τt,b)∑|V |
j exp (zj

t,b/τt,b)
(7)

We see repetition as overconfidence and set a tem-
perature value that surely increases entropy of a
distribution; this practice smooths the distribution,
decreasing spuriously high predictive scores.

9906



Language models are known

to

for

as

repeat

create

generate

itself

a

repetition

to

and

repeat itself to repeat itself to

yet

generate

still

a

poor

[OUTPUT]: Language models are known to repeat itself to repeat iself to repeat iselft to …

but create

and generate

a

common

but

and

(a) Vanilla Beam Search

(b) Local Temperature Beam Search (Ours)

Figure 1: We illustrate inference with (a) vanilla beam search and (b) the proposed local temperature beam search in
a text completion task with a prefix “language models are known”. A vanilla beam search generates a sequence with
a self-overlap pattern, such as “to repeat itself ”. On the contrary, local temperature beam search avoids degeneration
in text as the mechanism penalizes a beam with a sign of repetition, and the penalty is accumulated to subsequent
time steps. Therefore, the output inferred with the proposed decoding scheme is free of repetition, yet in high
quality.

There exists two core differences between our
temperature scaling and the vanilla temperature
scaling (Guo et al., 2017), the first being how a
temperature value is chosen. In (Guo et al., 2017),
a temperature is a learned parameter on valida-
tion dataset, as a model can be both overconfi-
dent or underconfident. However, we remove the
learning process, as repetition indicates overcon-
fidence, thereby leaving the τ as a hyperparame-
ter with the condition, τ ≥ 1.0. The second is
the use of beam-specific progressive temperature.
The proposed local temperature scaling has n num-
ber of multiple temperature options for each beam,
{τ, τ+γ, · · · , τ+γ∗(n−1)}, while vanilla temper-
ature scaling maintains a single global temperature
τ .

4.3 Connection to n-gram Blocking

Local temperature τb contributes more than simply
smoothing a probability distribution; mitigating
overconfidence of a beam with τb is equivalent to
penalizing the overall score of a beam. We con-
nect this aspect to n-gram blocking and illustrate
how our approach is an implicit version of n-gram
blocking.

Let there be a repetitive n-gram at time step t in
a beam b′. We describe the score of the beam in
n-gram blocking (Equation 8) and in our approach

(Equation 9):

s(ŷ1:t,b′) = s(ŷ<t,b′)−∞ (Explicit Penalty) (8)

s(ŷ1:t,b′) =





(1) If n-gram-rep, (Implicit Penalty)
s(ŷ<t,b′)

+ logP (ŷt,b′ |y<t,b′ ; τt,b′ , θ)

(2) Otherwise, (Zero Penalty)
s(ŷ<t,b′)

+ logP (ŷt,b′ |y<t,b′ ; τ, θ)

(9)

The beam with repeating n-gram under n-gram
blocking is explicitly penalized as the score of the
beam is assigned with −∞. Therefore, the beam
is immediately removed from the search bound-
ary due to the argmax operations in Equation
3. On the other hand, local temperature beam
search computes scores with a reduced amount
that is proportional to the τb when the beam is
found to contain repetitions; the beam is im-
plicitly penalized, which the discount amount
is logP (ŷt,b|y<t,b; τ, θ) − logP (ŷt,b|y<t,b; τb, θ)
from the original score s(ŷ1:t,b).

The core driving force of the proposed approach
is not just implicit penalty, but the accumulation
of the penalty in the beam throughout the rest of
the inference. As seen in Equation 2, the scoring
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Table 2: Quantitative evaluation on Webtext and Wikitext-103 test dataset. Following (Holtzman et al., 2020), in
repetition-related metrics, bold numbers indicate scores that are the closest to those of ground-truth. In Sim-CSE
and G-score, a bold number indicates best performance.

Dataset Model Algorithm rep-2 rep-3 rep-4 diversity PPL Sim-CSE G-Score

Webtext

GPT2-Small

Human 7.77 2.93 1.81 87.9 - - -
Greedy 54.48 51.52 49.68 11.1 1.82 55.2 24.7

Beam Search 60.02 58.04 56.67 7.3 1.38 60.3 20.9
Top-p 10.04 5.61 4.095 81.4 4.31 56.4 67.7

Contrastive 50.97 47.59 45.45 1.4 1.91 56.6 28.1
Ours 6.18 2.46 1.53 90.1 2.56 54.5 70.1

GPT2-Medium

Human 7.77 2.93 1.81 87.9 - - -
Greedy 46.11 42.30 40.01 18.6 1.9 57.3 32.6

Beam Search 51.98 49.48 47.84 12.7 1.45 61.6 27.9
Top-p 8.41 4.34 3.0 85 4.1 58.0 70.2

Contrastive 41.86 37.58 35.0 23.6 2.1 58.96 37.3
Ours 4.827 1.52 0.526 93.2 2.6 57.1 72.4

GPT2-Large

Human 7.77 2.93 1.81 87.9 - - -
Greedy 44.04 39.99 37.61 20.9 2.1 57.5 34.7

Beam Search 49.3 46.6 44.8 14.9 1.4 61.7 30.3
Top-p 9.665 5.24 3.765 82.4 3.5 58.3 69.3

Contrastive 4.7 2.1 1.4 91.9 3.69 55.9 71.7
Ours 5.5 1.85 0.9 91.9 2.0 57.1 72.4

Wikitext-103 GPT2-Wiki

Human 3.6 0.85 0.28 95.3 - - -
Greedy 47.63 41.41 37.44 19.2 3.68 54.8 32.4

Beam Search 52.97 47.70 44.20 13.7 2.26 50.3 26.2
Top-p 12.52 5.73 3.27 79.8 5.41 56.5 67.2

Contrastive 9.41 4.22 2.75 84.4 2.90 53.3 67.1
Ours 5.91 1.13 0.30 92.8 3.11 50.5 68.45

function has the shape of recursion; a score of a
previous time step accumulates to following time
steps. This indicates that a penalty in the proposed
approach remains present in a beam along future
decoding. Therefore, the beam with the penalty
is at risk of dropping out from the beam search
boundary. For instance, in Figure 1b, the second
occurrence of the word “itself” receives a penalty
not only within that time step but also from the
previous time step as it is found to be a bi-gram
repetition. Therefore, with such penalty, the beam
is dropped from the beam search group, and thus
other beams are explored in the inference.

5 Experiment

5.1 Dataset

The efficacy of the proposed decoding scheme
is tested in text completion tasks, in which the
self repetition problem has been widely witnessed
(Holtzman et al., 2020). Given a prefix, a language
model coupled with an inference algorithm gen-
erates a sequence of tokens conditioned on the
prefix. We conduct experiments on the popular
Wikitext-103 dataset (Merity et al., 2016) and Web-
Text (Radford et al., 2019). The test datasets are

composed of 2.2k sentences for Wikitext-103 and
5k for WebText1.

5.2 Experiment Details

For the model used in experiments, we have
utilized pretrained language models available at
transformers by huggingface (Wolf et al.,
2020a). To be specific, we have conducted experi-
ments with GPT2-small, GPT-medium, GPT-large,
and GPT2-small finetuned on Wikitext-103. Links
to the model checkpoints are listed in Appendix D
Given the prefix length of 32, a language model
generates a maximum number of 128 tokens that
follows the prefix.

For all of the experiments conducted, we set the
global temperature to 1.0. For Top-p sampling, p
is set to 0.8, and for contrastive search, k and α
are set to 4 and 0.6 respectively. For beam search
and ours, the beam width is set to 10, otherwise
explicitly mentioned. For the hyperparameter n
within the proposed approach, we set the value
to 4, hence checking repetitions from bigram to
quadgram. For the temperature increasing factor

1https://s3.amazonaws.com/research.
metamind.io/wikitext/wikitext-103-v1.zip
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γ, we set the value to 0.3 for WebText and 0.5 for
Wikitext-103.

For evaluation metrics, we report rep-n ratio,
which indicates the average distinct n-gram ratio
in sentences. A high rep-n indicates a sequence is
filled with n-gram repetitions. In addition to the
rep-n score, following (Su et al., 2022), we also
report the diversity score. Aside from the repetition-
related metrics, we report perplexity, Sim-CSE
score for coherence, and G-Score which indicates
the overall quality of the generated text both con-
sidering coherence and diversity. For more details,
please refer to Appendix B.

5.3 Evaluation Result

From Table 2, it is evident that the proposed strat-
egy has the lowest repetitions and the most similar
n-gram frequencies to those of humans across mul-
tiple datasets and with different language models.
Beam search and greedy decoding clearly suffer
from repetition shown with high rep-n, and low
diversity scores. The problem is mitigated to a
certain level in the sampling-based schemes, such
as top-p. However, the most noticeable gain in
handling the problem is seen from the proposed
method. Though our method is a deterministic
algorithm, it outperforms the stochastic decoding
strategies in minimizing the self-loop. Furthermore,
the G-score is higher than other decoding strate-
gies across every dataset tested. This demonstrates
the well-balance of coherence and diversity in the
generated text by the proposed decoding scheme.
Lastly, unlike contrastive search, our approach is
free from the causality brought by the anisotropic
representation of language models. Despite the fact
that contrastive search works well with the GPT2
large model, the decoding scheme makes trivial dif-
ference to vanilla beam search and greedy decoding
when paired with the GPT2 small and medium size
models. This is in sharp contrast to the results
of ours, as the proposed local temperature beam
search fulfills its purpose with any language model.

5.4 Analysis & Ablation Study

5.4.1 Beam Width and Temperature
It has been constantly reported that an increase in
beam width leads to degeneration in generated text,
making the overlap within a generated sequence
bigger (Holtzman et al., 2020). Our experiment
results in Table 3 further support the claim; vanilla
beam search suffers significantly from increased

beam width. For instance, we observe an increase
in every n-rep metric with the increase in beam
width. This clearly shows that vanilla beam search
is vulnerable to the choice of beam width. On the
contrary, our strategy is robust to a choice of beam
size. In fact, we observe a drop on each repetition
metric with increased beam width. Therefore, un-
like vanilla beam search, our search algorithm can
be equipped with a varying size of search boundary.

Furthermore, increasing the global temperature
does not guarantee prevention of repetitions. Beam
search with temperature set to 2.0 achieves mean-
ingful gain in terms of reducing repetition, com-
pared to those of beam search with temperature 1.0.
However, even with the enhanced ability, the diver-
sity score still stays around 29. This implies that
simply increasing the global temperature does not
mitigate the repetition problem of language models,
and incorporating local temperature is necessary in
preventing text degeneration in terms of repetition.

5.4.2 Progressive Temperature
The proposed method applies progressive temper-
ature, higher temperature for beams with longer
n-gram repetitions. In this ablation study, we per-
form non-progressive temperature setting, where
any beam with n-gram repetition or longer receives
the same temperature value. As demonstrated in
Table 3, progressive temperature setting is one of
the core aspects of local temperature beam search;
when temperatures are non-progressive and shared
to the beams with repetitions, we observe clear
drop in diversity scores. We find that outputs with
non-progressive temperatures are filled with short
repetitions, as demonstrated with the increase in
rep-2 scores.

5.4.3 Computation Cost
Identifying and handling overconfident beams in-
evitably adds computation cost, yet the cost is
trivial. The proposed approach computes n-gram
matching for every time step. However, the n-gram
matching is simply counting n-grams of a sentence.
Therefore, the addition of “counting” operations
at each time step does not add much computation
cost to the vanilla beam search.

5.4.4 Broader Application
One major drawback shared among the repetition-
handling decoding schemes is the limited scope of
application; the usage of the schemes have been
mainly confined to open-ended text generation
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Table 3: Ablation study on Wikitext-103 test dataset. ∆ indicates changes in hyperparameters. τn indicates
non-progressive local temperature. B indicates beam width and γ indicates the temperature increasing factor.

Algorithm ∆ rep-2 rep-3 rep-4 diversity PPL Sim-CSE G-Score
Beam Search B=20 57.73 53.02 49.82 10.0 2.29 48.28 21.97

Ours B=20 5.626 1.11 0.31 93.0 3.28 49.38 67.77
Beam Search τ=2.0 39.84 33.23 28.59 28.7 3.53 48.32 37.24

Ours τ2 22.119 15.27 11.49 58.4 2.85 50.19 54.14
Ours τ3 10.637 3.38 1.39 85.1 2.99 50.70 65.68
Ours τ4 11.9 2.89 0.57 85.1 2.92 51.36 66.11

Table 4: BLEU score on four WMT-19 tasks. “EN”,
“RU”, and “DE” denote English, Russian, and German
respectively. Numbers in parenthesis (∆) are the abso-
lute difference compared to the BLEU score of beam
search.

Dataset Beam Top-p Contrastive Ours)
EN-RU 33.4 27.5 (-5.9) 19.9 (-13.5) 33.2 (-0.2)
RU-EN 39.0 32.0 (-7.0) 24.3 (-14.8) 38.9 (-0.1)
EN-DE 42.8 34.7 (-8.1) 29.5(-13.3) 42.6 (-0.2)
DE-EN 41.3 33.9 (-7.4) 26.9(-14.4) 41.2 (-0.1)

(Holtzman et al., 2020; Su et al., 2022). On the
contrary, the proposed idea is a universal decoding
scheme that generalizes well across different tasks.
We illustrate the superior aspect in four machine
translation tasks: WMT19 EN-DE, RU-EN, DE-
EN, and EN-RU (Foundation). More information
regarding translation model, dataset, and inference
setting can be found in Appendix C.

Table 4 depicts how previous repetition-handling
strategies fail to generalize in machine translation
tasks. Top-p sampling faces a severe drop in BLEU
score compared to that of vanilla beam search, with
the drop amounts up to 8.1. The same applies in
contrastive search; BLEU score, on average across
the 4 corpora tested, is down by 14 score compared
to that of beam search. On the contrary, the pro-
posed decoding strategy generates text with the
same level of quality as with beam search. This
empirical finding widens the scope of potential ap-
plication of our inference algorithm and illustrates
its superior generalization ability to the existing
methods.

6 Conclusion & Future Study

In this study, we view the repetition problem of a
language model as a calibration issue; a language
model repeats itself as the model is overconfident in
predictions. In this light, we propose a local temper-

ature scaling in which the post-calibration method
is applied only to the overconfident beams. Our
local temperature beam search is a deterministic
decoding strategy that excels in reducing repetition
while maintaining coherence level; we attribute the
success to the implicit penalty given in the course
of generation. Lastly, unlike existing inference
strategies, the proposed idea is robust to a variety
of choice of temperature and beam width.

The objective of this paper is centered around
reducing the self-overlap in a sequence, and hence
the subject of local temperature scaling is chosen
accordingly. However, the local temperature beam
search can be utilized in tasks with different aims,
as local temperature has a role of implicitly penaliz-
ing a beam. For example, a language model can be
penalized with the proposed idea when the model
generates a sequence with gender bias in it. We
believe that ways to utilize our approach can be
explored in future research.

Limitations

Since the proposed method scales probability distri-
bution, not shift, the proposed idea does not change
an output when coupled with a greedy decoding
strategy. Greedy decoding simply takes argmax
of probability distribution at each time step, and
hence, the output with or without the local tem-
perature scaling will not be changed within greedy.
Therefore, the proposed idea is required to be uti-
lized with a beam search, or a variant of it.
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A Sampling Decoding

Different from the deterministic approaches, a sam-
pling generation scheme requires a stochastic pro-
cess; a prediction is done by sampling a token from
a predicted categorical distribution, exploring a
search space.

ŷt ∼ P (Ṽ |ct; θ) (10)

where Ṽ ⊆ V . When Ṽ = V , it is referred to as
pure sampling. This practice, however, introduces
high randomness in inference as the sampling space
is large (i.e. |V |=32k in WMT14 (Vaswani et al.,
2017)), and thus variants have been introduced; a
sampling space is truncated to a certain subset of
the space. Top-k sampling (Fan et al., 2018) lim-
its the sampling space to top k probable indexes.
However, considering a fixed number of candidates
is found to be suboptimal, such as when dealing
with a flat probability distribution (Holtzman et al.,
2020). Therefore, top-p sampling (nucleus sam-
pling) (Holtzman et al., 2020) is proposed, where
the sampling space is truncated to the smallest set,
such that the sum of their probabilities is equal or
greater than a pre-defined p. Due to its flexibility,
top-p is known to perform well on varying shapes
of distributions.

With randomness injected, the sampling-based
methods have been utilized in a diversity-
promoting environment, such as in dialogue (Tian
et al., 2020), and story generation (Fan et al., 2018).
However, the diversity comes at a price; it has been
reported that the stochastic decoding algorithms
are positively correlated with an increase in hallu-
cination (Dziri et al., 2021). Furthermore, (Ippolito
et al., 2019) witnesses a trade-off between diversity
and quality in such algorithms.

B Metric

Sim-CSE We utilize sim-CSE sentence embed-
ding model (Gao et al., 2021) to measure the co-
herency between prefix and generated text; prefix
and generated text are both fed to sim-CSE model,
and cosine similarity is computed between their
sentence embeddings.
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G-Score In this paper, we compute the geometric
mean between diversity and sim-CSE score. The
reason is that sim-CSE score is highly correlated
with repetitions. If the generated text is repeating a
given prefix, the sentence representation is likely
to be similar. This is empirically seen in Table 2,
where beam search generates sequences with repe-
titions, yet the sim-CSE score is the highest among
those of the baselines. Therefore, we compute the
geometric mean between diversity and coherence
scores, so that G-score indicates the overall quality
of the generated text.

C Translation

We report the datasets used on machine translation
tasks. For inference models, we utilize pretrained
models available on huggingface, which the urls
are provided in the following section. The number
of test instances is around 2k for all four machine
translation datasets.

D Model Checkpoints

We list out the urls to the model checkpoints used
in the experiments.
GPT2-Small: https://huggingface.co/
gpt2
GPT2-Medium: https://huggingface.
co/gpt2-medium
GPT2-Large: https://huggingface.co/
gpt2-large
GPT2-Finetuned on Wikitext-103:
https://huggingface.co/neulab/
gpt2-finetuned-wikitext103
EN-DE Translation Model: https:
//huggingface.co/facebook/
wmt19-en-de
DE-EN Translation Model: https:
//huggingface.co/facebook/
wmt19-de-en
EN-RU Translation Model: https:
//huggingface.co/facebook/
wmt19-en-ru
RU-EN Translation Model: https:
//huggingface.co/facebook/
wmt19-ru-en

E n-gram blocking

n-gram blocking is a simple, yet aggressive, tech-
nique to handle the repetition problem in beam
search. When an n-gram appears more than once

in a beam, the beam is removed from the shortlist.2

Therefore, for instance, with non-repeating n-gram
set to 2, a bi-gram named entity or expression (i.e.
New York) can only appear once in a sequence. De-
spite the uncompromising stand of the technique, it
has been used for blocking repetition and is imple-
mented in popular libraries (Ott et al., 2019; Wolf
et al., 2020b; Klein et al., 2017).

2by setting the logit of the n-gram to − inf .
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