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Abstract

Automatic Speech Recognition (ASR) sys-
tems have attained unprecedented performance
with large speech models pre-trained based on
self-supervised speech representation learning.
However, these pre-trained speech models suf-
fer from representational bias as they tend to
better represent those prominent accents (i.e.,
native (L1) English accent) in the pre-training
speech corpus than less represented accents,
resulting in a deteriorated performance for non-
native (L2) English accents. Although there
have been some approaches to mitigate this
issue, all of these methods require updating
the pre-trained model weights. In this paper,
we propose Information Theoretic Adversar-
ial Prompt Tuning (INTapt), which introduces
prompts concatenated to the original input that
can re-modulate the attention of the pre-trained
model such that the corresponding input resem-
bles a native (L1) English speech without up-
dating the backbone weights. INTapt is trained
simultaneously in the following two manners:
(1) adversarial training to reduce accent feature
dependence between the original input and the
prompt-concatenated input and (2) training to
minimize CTC loss for improving ASR per-
formance to a prompt-concatenated input. Ex-
perimental results show that INTapt improves
the performance of L2 English and increases
feature similarity between L2 and L1 accents.

1 Introduction

Self-supervised learning has improved input data
representation without requiring extensive human-
labeled data (He et al., 2019; Zhang et al., 2022).
Based on this advancement, powerful pre-trained
models providing high-performing representations
for various data types (e.g., text, images, and au-
dio) have been proposed. For instance, in speech,
self-supervised pre-trained models such as Hu-
BERT (Hsu et al., 2021) have advanced state-of-the-
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Figure 1: Illustration of a hypothetical accent feature
space (H). Distinctive accent features between native
and L2 accents lead to degraded performance of ASR
systems on L2 accents. INTapt concatenates a prompt
to the input space to reduce this distinction.

art performance of automatic speech recognition
(ASR).

However, one major challenge in using pre-
trained speech models for ASR is the represen-
tational bias towards prominent accents present in
the dataset during pre-training. Consequently, there
will be a disparity in ASR performance between
native and non-native speakers. More specifically,
pre-training using a large dataset such as the Lib-
riSpeech (Panayotov et al., 2015), which comprises
a large proportion of utterances from native (L1)
English speakers, leads to a less satisfactory recog-
nition rate for non-native (L2) English accented
speech. This phenomenon can curtail the effective-
ness of current high-performing ASR systems for
real-world applications.

There have been several ways to address this
issue, including fine-tuning the model on diverse
accents (Winata et al., 2019; Shibano et al., 2021),
having a separate model for each accent (Yang
et al., 2018) or using regularization losses that
guide the fine-tuning process to achieve robustness
to accents (Chen et al., 2020; Gao et al., 2022), all
of which require updating the pre-trained model.

We propose a different solution for improving
L2 speech recognition in transformer-based speech
models that introduces a small number of learn-
able parameters into the input space while keep-
ing the backbone weights of the model untouched.
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Figure 2: Overview of INTapt. INTapt incorporates a two-step training process where the first step involves training
the Accent Module to get the accent feature of a particular input speech and the second step involves training the
Prompt Generator capable of making the non-native (L2) English speech input have a better ASR performance by
re-modulating the attention of the Backbone Model so that it resembles the accent of a native (L1) English speech.

Our approach is guided by Information-Theoretic
Adversarial Learning; thus, we refer to it as IN-
Tapt (Information-Theoretic Adversarial Prompt
Tuning). INTapt aims to introduce auxiliary em-
beddings (i.e., prompt) concatenated to the orig-
inal input, which can re-modulate the attention
and adapt the pre-trained weights so that the cor-
responding input looks like speech with an accent
seen during pre-training (Figure 1). To achieve
this, INTapt incorporates (1) adversarial training,
which tries to minimize the mutual information be-
tween the accent feature of the original input and
that obtained by concatenating the prompt embed-
dings in front of the initial input, and (2) CTC loss
training to improve the ASR performance of the
prompt-concatenated input. Essentially the prompt
is trained such that the accent of the concatenation
is pushed away from the input accent and the con-
catenation achieves native CTC loss performance.
Unlike the previous use-case of prompts in NLP
or Computer vision (CV), where a single prompt
embedding is learned for each discrete task or input
domain, the intensity of an accent is continuous.
Thus, we propose an input-dependent prompt em-
bedding by training a prompt generator that out-
puts an input-specific prompt. Through extensive
experiments, we show that the proposed dual objec-
tives of INTapt not only lead to better performance
on L2 English accents but result in a higher sim-
ilarity between the accent feature of the prompt-
concatenated input and that of L1 English accents.

2 INTapt

Figure 2 depicts the overall process of INTapt. IN-
Tapt incorporates a two-step training process. In
the first step, we train an Accent Module (AM) ca-
pable of isolating the accent feature from a given
audio feature a of an input speech x. In the second
step, we train a Prompt Generator (PG), which out-
puts a prompt p for a given audio feature a, using
two objectives: (1) Minimize the mutual informa-
tion between the accent feature z’ and z, where the
former is obtained using the prompt-concatenated
input (p; a) and the latter is obtained from the orig-
inal audio feature a, (2) Minimize CTC loss to
improve the ASR performance of the input (p; a).

2.1 Accent Module (AM)

Since our method requires direct access to the iso-
lated accent feature of the corresponding audio
feature input, we propose an Accent Module (AM)
capable of extracting the accent feature z from the
input a. The module consists of an accent feature
extractor fg, which is trained with an accent classi-
fication head fy, to isolate the accent feature and
an accent intensity regression head fy, to capture
the intensity of the accent into the obtained feature.

Accent Classification Head The role of the ac-
cent classification head fj, is to isolate the accent
feature of a given speech '. Given the hidden state

'We show in Appendix B that the proposed way effectively
isolate the accent feature from other features.
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representation h of an audio feature input a, the
feature extractor outputs the accent feature (i.e.,
z = fp, (h)) and the accent classification head fy,
tries to assign it to the correct accent label y.

Accent Intensity Regression Head The inten-
sity of an accent could vary among different people
even though there are in the same L2 group, and it
could also vary between utterances from the same
speaker. Thus, an accent intensity regression head
is introduced to incorporate the accent intensity
into the obtained accent feature z. Based on the
assumption that the intensity of the accent affects
ASR performance, making the accent intensity re-
gression head predict the CTC loss 2, obtained by
inputting the corresponding speech into the back-
bone speech model, will allow the extracted accent
feature z to capture the intensity of the accent.

Given a batch B, the training of the Accent Mod-
ule with the two aforementioned heads could be
summarized as:

min —- \B| Z log p(yil fo, (fo, (hi)))+

91 62
(1
)\mln |B\ Z fos(fo, (hi)) — CTC(fUi)]Q

2.2 Prompt Generator (PG)

Building on the success of prompts in NLP (Liu
etal., 2021; Li and Liang, 2021) and CV (Dosovit-
skiy et al.), we introduce a prompt tuning method
to improve the ASR performance for L2 English
speech by efficiently utilizing a pre-trained model
that already shows good performance for L1 En-
glish speech. In contrast to traditional NLP or
CV applications, where a single, discrete prompt
embedding is learned for each specific task or
input domain, the intensity of an accent is con-
tinuous. To address this, we propose an input-
dependent prompt embedding by training prompt
generator PGy, that generates an input-specific
prompt guided by Information-Theoretic Adver-
sarial Learning. More specifically, given a hidden
state h = [hy, ha, ..., hy] with length L we pro-
duce a prompt of length L,

p=P G94(h) ()

Mutual Information Minimization Mutual In-
formation meausures the co-dependence between
2Connectionist Temporal Classification (CTC) (Graves

et al., 2006) is the primary loss used to train deep neural
networks in speech recognition.

two random variables X and Y. Belghazi et al.
(2018) recently proposed a gradient descent based
method for estimating this property, allowing the
use of neural networks for the estimation of mu-
tual information between high dimensional random
variables. The estimation is done using a neural
network parameterized by ¢ as below:

where maximizing /4(X,Y") provides a tight lower
bound of the original mutual information /(X,Y’).
We use this to adversarially train the prompt gener-
ator PGy, to minimize the mutual information be-
tween the accent feature of the original L2 speech
input and the prompt-concatenated input.

CTC Loss Minimization We train the prompt
generator PG, to minimize the CTC loss obtained
for the prompt-concatenated input (p; a).

The two minimization objectives wrt. the prompt
generator, along with the maximization objective
wrt. the Mutual Information Neural Estimator, are
done jointly in the second training step (Equation
4). We show in Section 3.2 and 4 that the afore-
mentioned objectives not only improve the ASR
performance of L2 speech but also effectively make
it resemble the accent feature of the L1 speech.

mmmax P ZCTC Pos;a) + My(zg,, z)
“)
3 Experiments

3.1 Experimental setting

Dataset We use the L2-ARCTIC (Zhao et al.,
2018), which is a speech corpus of non-native (L.2)
English speakers - Mandarin (ZH), Hindi (HI), Viet-
namese (VI), Korean (KO), Spanish (ES), and Ara-
bic (AR). Each L2 group contains two male and
two female speakers, and all the speakers read the
same 1132 texts. The train/dev/test set is config-
ured by dividing the data into 0.8/0.1/0.1 splits with
no overlapping texts between each splits. Addition-
ally, since we would like to simulate a natural data
collection situation where the amount of data varies
across groups (Yoon et al., 2022), we randomly di-
vided the training data into More Frequent Accent
(MFA) (ZH, HI), Less Frequent Accent (LFA) (VI,
KO), and Unseen Accent (UA) (ES, AR) - For MFA
we keep all the training data, for LFA we keep half
of the data, and for UA we remove all the training
data.
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Backbone #.params || Methods ZHMFAHI VI LFAKO ES uA AR ALL
- Backbone 18.71 8.80  25.8 1098 14.12 1492 15.55

HUBERT Loe 315M +Finetune 1546 791 2226 995 1419 1394 1395
12.5M +Prompt.sc 1393 720 2193 9.69 12.64 1238 1296

12.9M +INTapt 13.09 6.64 2125 897 1218 1192 12.34

- Backbone 17.03 748 26.02 1049 13.65 13.52 14.69

HUBERT Loy ge 958M +Finetune 1549 7.53 24.09 10.02 1348 12.56 13.86
19.7M +Prompt.sc 13.02 731 19.26  8.05 1046 1038 11.41

19.9M +INTapt 11.67 6.63 1841 717 1044 1055 11.00

Table 1: Comparison of WER (%) (lower is better) on the created subset of L2-ARCTIC (MFA, LFA, UA). #.params
denote the number of parameters that were updated for training. The std. are reported in Table 3 of Appendix C.2.

Models For the backbone  pre-trained
speech models we try two different settings,
HuBERT 4,9 and HuBERT x 14,4 (Hsu et al.,
2021). We consider three different training situa-
tions: 1) Finetune denotes a standard finetuning
method where we update the pre-trained model
weights to minimize the CTC loss, 2) Prompt,;,. is
the case of training the prompt generator without
the minimization of mutual information, and
3) INTapt trains the prompt generator with our
proposed objective in equation 4. We include the
training details in Appendix A.

3.2 Results

Table 1 shows the Word Error Rate (WER) across
different L2 groups on the ASR task. We find that
the performance improvement of the prompt tun-
ing approaches (Prompt.;. and INTapt) are more
significant compared to standard finetuning despite
updating small number of parameters (2-4%). IN-
Tapt shows the lowest WER on all L2 groups,
obtaining 12.34% for HuBERT 4,-4c and 11.00%
for HuBERT x 1.4-4e On the aggregated all speak-
ers, outperforming the finetuned by 1.62%p and
2.86%p, respectively 3. This conforms to the previ-
ous findings (Lester et al., 2021) that larger model
size can benefit more from prompt tuning methods.

In Table 2, we report the WER on LibriSpeech
(Panayotov et al., 2015) test-clean and test-other,
which consists mainly of .1 speech. Compared
with the backbone model, the WER after finetuning
increased by 5.81%p. However, since Prompt,;.
and INTapt does not change the backbone weights,
the WER on test-all increased only by 0.48%p and
0.37%p, respectively. This shows one of the key

3We show some examples of improved ASR results using
INTapt in Appendix C.1

Methods test-clean test-other test-all
Backbone 2.15 442 3.29
+Finetune 8.10 10.08 9.10
+Promptc¢c 2.56 493 3.77
+INTapt 2.41 4.94 3.66

Table 2: WER (%) (lower is better) on LibriSpeech. test-
all denotes the aggregation of test-clean and test-other.

benefits of prompt tuning methods in that it only
slightly degrades the performance of the backbone
model on tasks it already excels at while improving
performance on others.

" Tsackbone
W prompeac
! D INTapt (ours) ;
" : ____________ !
]
Vi |
]
KO

SP I

ES

T T
0.0 0.2 0.6 0.8

0.4
Cosine Similarity

Figure 3: Cosine similarity between L1 accent feature
and L2 accent features obtained from different methods.

4 Ablation Study

We analyze whether INTapt allows the L2 speech
input to resemble the accent of L1 speech (Figure
3). Using the Accent Module, we extract the L1
accent feature, and L2 accent features obtained
using the Backbone model, Prompt,;., and INTapt.
INTapt showed the highest cosine similarity for all
L2 groups, meaning that INTapt effectively adjusts
the attention of the pre-trained model so that L2
speech resemble L1 speech in terms of accent.
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5 Conclusion

We introduced Information Theoretic Adversarial
Prompt Tuning (INTapt) for improving non-native
ASR performance. To achieve this, INTapt re-
modulates the attention of the pre-trained speech
models by concatenating input-dependent prompt
embeddings to the original input, without updating
the model weights. Throughout the experiment,
we show that INTapt is capable of outperforming
standard finetuning of the pre-trained model on
L2 speech, without degradation on L1 speech, by
allowing the L2 input to resemble a L1 accent.

Limitations

INTapt adopts a prompt tuning method which uti-
lizes the inherent information from pre-trained
models that already shows good ASR performance
on L1 English speakers. Therefore, in order to
apply our method we need a pre-trained model
that already has good performance on a specific
task which might not be available for other lan-
gauges. Also, our method might potentially need
sufficiently large pre-trained model size in order
for prompt to utilize the internal information of the
model.

Ethics Statement

Since pre-trained speech models usually show bet-
ter performance on native (L.1) speech automatic
speech recognition (ASR) due to the nature of the
pre-training data used, this work have contributed
to improve the ASR performance for non-native
(L2) English speakers and mitigating the perfor-
mance gap between them. This has the potential
to construct a fair ASR machine well-operating
not only on L1 English speakers but L2 speakers,
which is an important feature to have for its de-
ployment in real-life. Additionally, since we utilize
the pre-trained model, it is possible to have ethical
issue depending on the pre-trained model.
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A Experiment Details

Model Architecture We use a 3-layer Multi Layer Perceptron (MLP) for the Accent Feature Extractor
and 1-layer, 3-layer MLP for the Accent Classification Head and the Accent Intensity Regression Head in
the Accent Module, respectively. The Prompt Generator (PG) is composed of a single layer transformer.
Since we adopt the transformer architecture for PG, its maximum output length is same as the length L of
the input audio feature a. The specific length of prompt can be set by taking the first " output embeddings
from the front of the transformer output. For the Mutual Information Neural Estimator (MINE), we use a
3-layer MLP as well.

Training Details For pre-processing L2-ARCTIC, we utilized the huggingface resampling tool # to
downsample the audio files from 44.1kHz to 16kHz. The hidden state representation obtained from the
3rd layer of the backbone model is used as the input to the Accent Module and Prompt Generator for
both HuBERT;,,4. and HUuBERT x /,4,4.. The dimension of the accent feature a is set to d = 256, the
length of prompt L’ is 40, and the dimension of the prompt is set to 1024 and 1280, same as that of the
input embedding size for HuBERT ;.4 and HUBERT x .4,4¢, respectively. We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with 51 = 0.9, 52 = 0.999, ¢ = le — 8, and weight decay A = 0.005 with
different learning rates for all trainable model (i.e., AM, PG, MINE, finetuned backbone). The learning
rate used for both AM and MINE is le-3, and Se-6, 1e-4, 1e-4 are used for Fintune, prompt,;., and INTapt,
respectively. For all the methods, the batch size is set to 16 for HuBERT,;.4. and 8 for HUBERT x .4rge.-
We use A = 0.5 for Equation 1 and A = 0.003 for Equation 4. The best model is selected by the lowest
WER on the validation set. All experiments was done on NVIDIA Quadro RTX 8000.

B Accent Feature Isolation

We visually analyze the accent feature extracted from AM to validate that the feature does not contain any
other information except accent. We plot the 2-D representation of extracted accent feature using t-SNE
(van der Maaten and Hinton, 2008) with the label for gender for three L2 groups (i.e., HI, KO, ES). Figure
5 shows that the scatter points are distinctive between L2 groups but difficult to distinguish gender, which
means our AM successfully isolates the accent feature from audio.

| HI Male KO Male ES Male
@ HiFemale @ KO Female @ ES Female'

I e e e e e e e e s = - -

Figure 4: Latent space visualization showing that Accent Module extracts isolated accent feature

4https ://huggingface.co/docs/datasets/audio_process
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C Results of INTapt
C.1 Examples

In Figure 5, we show some examples of improved speech recognition results using INTapt. HUBERT 1,4-g¢
is used as backbone model for both cases and the INTapt having lowest WER on val set is selected to
predict samples. Red represents wrong transcription output from the backbone pre-trained HUBERT 1,4 ge,

and
attention.

Ground Truth
Then he shouted shut up

You live on an income which your father
earned

Straight out they swam their heads
growing smaller and smaller

Seventeen no eighteen days ago
This is my fifth voyage

But they make the mistake of ignoring
their own duality

The mob came on but it could not
advance

The big eyed clucking moose birds were
most annoying

Philip dropped back into his chair

Would you be satisfied with that one
hundredth part of me

He moved his position and the illusion
was gone

Backbone Prediction
Then he shouldered shut up

You live on an income which your father
owrned

Straight out they swam their hats growing
smaller and smaller

Seventeen no eighteen days acle
This is my fit for yet

But they make the mistake of ignoring
their unduality

The mob came on but it could not at once

The big eyed clucking moose bords were
most annoying

Philip jropped back into his chair

Would you be satisfied wi dhat one
hondref part o me

Removed his position and the evolusion
was gone

represents enhanced recognition through the use of INTapt to re-modulate the backbone

INTapt prediction (ours)
Then he shouted shut up

You live on an income which your father
earned

Straight out they swam their heads
growing smaller and smaller

Seventeen no eighteen days ago
This is my fifth voyage

But they make the mistake of ignoring
their own duality

The mob came on but it could not
advance

The big eyed clucking moose birds were
most annoying

Philip dropped back into his chair

Would you be satisfied with that one
hundredth part of me

He moved his position and the illusion
was gone

Figure 5: Examples of enhanced recognition though the use of INTapt. Red represents the wrong transcription

output prediction from the backbone model and

C.2 Standard Deviation of Results

represents the correct output prediction using INTapt.

Backbone #.params || Methods MFA LFA Unseen Accent Avg.
ZH HI VI KO ES AR
315M +Finetune 031 070 051 050 0.73 0.38 0.36
HUBERT Large 12.5M +Promptctc 0.51 056 099 074 0.78 0.38 0.30
12.9M +INTapt 066 072 073 0.69 0.59 0.27 0.13
958M +Finetune 041 0.21 1.79 0.06 0.33 0.12 0.29
HUBERT x Large 19.7M +Promptctc 0.15 0.64 0.19 051 024 0.56 0.12
19.9M +INTapt 033 031 041 030 025 0.12 0.18

Table 3: Standard deviation values for the experimental results in Table 1. The values were obtained by running the
same experiments with five different random seeds.

In Table 3, we report the standard deviation of the results in Table 1 with five different random seeds.
As the backbone experiment in Table 1 is obtained without any training, we do not contain the standard

deviation for those.
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