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Abstract

Randomly masking text spans in ordinary texts
in the pre-training stage hardly allows models
to acquire the ability to generate simple texts. It
can hurt the performance of pre-trained models
on text simplification tasks. In this paper, we
propose a new continued pre-training strategy
to teach the pre-trained model to generate sim-
ple texts. We continue pre-training BART, a
representative model, to obtain SimpleBART.
It consistently and significantly improves the
results on lexical simplification, sentence sim-
plification, and document-level simplification
tasks over BART. At the end, we compare Sim-
pleBART with several representative large lan-
guage models (LLMs).

1 Introduction

Text simplification (TS) is a task in the field of
natural language generation. It aims at rewriting
a complex text into simple text while keeping the
primary meaning intact (Laban et al., 2021).

Recently, several works have leveraged pre-
trained models for TS (Omelianchuk et al., 2021;
Devaraj et al., 2022). However, problems arise
when pre-trained models are applied to TS directly.
In the pre-training stage, the model hardly acquires
the ability to generate simple texts. The improve-
ment of results on simplification tasks relies almost
on the fine-tuning stage. It can hurt the perfor-
mance of pre-trained models, especially for low-
resource sub-tasks like lexical simplification. One
reason for this shortcoming is the pre-training strat-
egy. It randomly masks text spans in ordinary texts,
teaching the model to generate ordinary texts rather
than simple texts.

We are committed to adapting the pre-trained
model to TS in this paper. The pre-trained model
has gained the ability to generate ordinary texts,
and it is costly to start pre-training from scratch.
Therefore, we focus on the continued pre-training
strategy (Gururangan et al., 2020). We first aim to

continue pre-training on simple texts because it con-
tains plenty of simple words. In TS, simple texts
are derived almost from SimpleWiki (Zhang and
Lapata, 2017) and Newsela (Xu et al., 2015). We
identify simple text spans in simple texts and dy-
namically replace them with <mask> tokens. Then,
the pre-trained model will learn by reconstruct-
ing simple words. Meanwhile, we expect the pre-
trained model to learn from ordinary texts. We use
a dictionary to replace complex words in ordinary
texts with simple words. We also ensure the quality
of the replaced sentences.

Based on BART (Lewis et al., 2020), we con-
tinue pre-training to teach it to generate simple
texts and obtain SimpleBART. We then conduct ex-
periments on three main tasks of TS: sentence sim-
plification, lexical simplification, and document-
level simplification. SimpleBART achieves consis-
tent and noticeable improvements across several
datasets on all three tasks over BART and several
other baselines. The results illustrate that our pro-
posed strategy helps the pre-trained model to gain
the ability to generate simple texts.

To summarize, our contributions include: (1)
We propose a new continued pre-training strategy
to teach the pre-trained model to generate sim-
ple texts. (2) We continue pre-training BART, a
representative seq2seq model, to obtain Simple-
BART. It can be used for several simplification
tasks and achieve consistent performance improve-
ment. Code and SimpleBART will be released at
https://github.com/RLSNLP/SimpleBART.

2 Methodology

As illustrated in Figure 1, our strategy is divided
into two parts: learning dynamically to reconstruct
simple words from simple texts and from ordinary
texts where complex words are replaced with sim-
ple ones.
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Figure 1: Overview of our continued pre-training strategy to teach the pre-trained model to generate simple texts.

2.1 Masking Simple Words in Simple Texts

We need to identify the simple words in simple
texts at first. We take advantage of the DeepBlueAl
model (Pan et al., 2021) that achieves state-of-the-
art results on the lexical complexity prediction task
(Shardlow et al., 2021). A text span of length n
consists of n words. The input to the DeepBlueAl
model is a text span and the output is a complex
value between 0 and 1. The closer this value is to
0, the simpler the text span.

Unlike the previous constant mask probability,
in our strategy, the simpler a text span is, the higher
its probability of being masked. This means that
the mask probability is dynamic. We also set a
complexity threshold of T'. If the complexity c of a
text span exceeds 7T', we will not mask this span. In
our experiments, we set 7' to 0.25 as an empirical
value. Following Lewis et al. (2020), we set the
max mask probability to 0.15, and the length of
a text span obeys a Poisson distribution (A = 3).
Finally, the mask probability m is calculated as:

1
0.15X(1—T'C), c<T

m =

(1)
0, c>T

The function to mask the text span is denoted as
g(+). Given a sentence z, the pre-trained model will
learn to reconstruct x from the masked sentence:

I(z) = —logP(x|g(x)) 2)

2.2 Replacing Complex Words in Ordinary
Texts

We also expect the pre-trained model to learn help-
ful information from ordinary texts. However, ordi-
nary texts contain more complex words than sim-
ple ones, making the pre-trained model learn to
reconstruct simple words much less frequently. We

introduce the dictionary SimplePPDB++ (Maddela
and Xu, 2018) to address this issue. It contains
millions of paraphrase rules with readability scores.
Therefore, we can replace the complex words in
ordinary texts with simple words. Then, the pre-
trained model will learn to reconstruct these simple
words as in Eq.(2).

Nevertheless, a word may have different mean-
ings in different sentences. Using a dictionary
to replace complex words may change the mean-
ing of the original sentence. Therefore, we use
BERTScore (Zhang et al., 2019) to calculate the
similarity between the original and replaced sen-
tences to avoid this problem. We will discard the
replaced sentences if the calculated BERTScore is
lower than a similarity threshold. In our experi-
ments, the similarity threshold is set to 0.95 as an
empirical value.

3 Experimental Settings

3.1 Continued Pre-training

We select the BART-Large model to continue pre-
training. It is a representative seq2seq model suit-
able for three main simplification tasks. We follow
the task-adaptive pre-training method (Gururangan
et al., 2020) and continue pre-training on the train-
ing set of the corresponding simplification task,
ensuring that the continued pre-training texts have
no intersection with the test set. We refer to the pre-
trained models obtained by our strategy collectively
as SimpleBART.

3.2 Simplification Tasks

We select three representative tasks for experi-
ments: sentence simplification, document-level
simplification, and lexical simplification. For sen-
tence simplification, we conduct experiments on
Wikiauto (Jiang et al., 2020) and Newsela (Xu et al.,
2015). Wikiauto is only a training set, so we use
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Turkcorpus (Xu et al., 2016) as its validation and
test set. Following Sun et al. (2023), we use SARI
(Xu et al., 2016) and BERTScore (Zhang et al.,
2019) as the evaluation metrics. BLEU and FKGL
have been proven to be unsuitable for evaluating
simplification (Sulem et al., 2018; Tanprasert and
Kauchak, 2021). For document-level simplifica-
tion, we conduct experiments on the D-Wikipedia
dataset (Sun et al., 2021). We use D-SARI (Sun
et al., 2021) as the evaluation metric. For lexical
simplification, we conduct experiments on LexM-
Turk (Horn et al., 2014) and BenchLS (Paetzold
and Specia, 2016). We use precision, recall, and
F1 score as the evaluation metrics. For more hyper-
parameter setting details, please refer to Appendix
B.

4 Results

4.1 Sentence Simplification

To demonstrate the advantages of our strategy, we
develop BART-CP for a fair comparison. It con-
tinues pre-training with the same number of steps
on the same data using the previous pre-training
strategy from Lewis et al. (2020). In the continued
pre-training stage, text spans are masked randomly.

Turkcorpus SARIT Keep Del Add | BSt
EditNTS 379 673 43.1 3.4 | 0.950
T5 37.8 735 356 4.2 | 0982
ControlTS 404 704 445 6.2 | 0959
BART 383 654 440 5.6 | 0973
BART-CP 386 646 459 54 | 0967
SimpleBART | 395 64.6 472 6.6 | 0.972
Newsela SARItT Keep Del Add | BSt
EditNTS 37.1 349 748 1.6 | 0.897
T5 360 418 619 44 | 0905
ControlTS 39.7 376 7173 4.1 | 0.894
BART 40.1 40.5 738 6.2 | 0.904
BART-CP 403 417 726 6.9 | 0.908
SimpleBART | 41.6 405 774 6.9 | 0.902

Table 1: Results on the Turkcorpus test set and the
Newsela test set. We use bold to indicate the best result.

We choose EditNTS (Dong et al., 2019), T5-
base (Raffel et al., 2020), and ControlTS (Maddela
et al., 2021) as baselines. T5-base is close to Sim-
pleBART in size. ControlTS achieves the state-of-
the-art result on the Newsela dataset. Following
Alva-Manchego et al. (2021), BERTScore,ccision
(BS) is also reported. From Table 1, the BS scores
of all outputs are high enough, which means that
the outputs are of high quality. According to SARI,

the most important automatic evaluation metric
for sentence simplification, SimpleBART improves
SARI values over BART by 1.2 points and 1.5
points, respectively. Overall, it achieves compara-
ble results to the advanced model for the sentence
simplification task. We also notice that Simple-
BART outperforms BART-CP, demonstrating the
effectiveness of our proposed strategy. The exam-
ple outputs are given in Appendix D.

4.2 Lexical Simplification

We focus on generating suitable words using the
pre-trained model, which is a critical step in lexical
simplification. We follow Qiang et al. (2020a) and
let the pre-trained models generate several candi-
date words. BenchLS and LexMTurk are just two
test sets, so we continue pre-training on the Wiki-
auto training set. We choose Paetzold-NE (Paet-
zold and Specia, 2017a) and LSBert (Qiang et al.,
2020b) as two baselines. LSBert achieves the state-
of-the-art result in this task.

BenchLS F117 Precision Recall
Paetzold-NE | 23.6 27.0 20.9
LSBert 28.1 24.4 33.1
BART 19.2 19.6 18.9
BART-CP 25.8 26.0 25.7
SimpleBART | 27.8 28.0 27.6

LexMTurk F11T Precision Recall

Paetzold-NE | 19.5 31.0 14.2
LSBert 26.8 30.6 23.8
BART 18.8 19.2 18.3
BART-CP 26.9 27.2 26.6
SimpleBART | 28.5 28.7 28.2

Table 2: Results on the BenchLS test set and the LexM-
Turk test set.

As shown in Table 2, SimpleBART improves
the F1 scores over BART by 8.6 points and 9.7
points, respectively. It achieves comparable results
to LSBert. The results also demonstrate that BART
needs to gain the ability to generate simple words
and the importance of introducing continued pre-
training when training data is scarce.

4.3 Document-level Simplification

SimpleBART also performs well on the document-
level simplification task. = We choose Bert-
Sumextabs (Liu and Lapata, 2019), which achieves
the state-of-the-art result on this task as a baseline.
Compared with BART, SimpleBART improves the
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D-Wikipedia D-SARI?  Dyeep Dger Daaa
BertSumextabs 39.88 3571 72.06 11.87
BART 39.84 3587 70.26 13.40
BART-CP 40.13 36.21 7154 12.64
SimpleBART 41.64 3791 7196 15.04

Table 3: Results on the D-Wikipedia test set

D-SARI value by 1.8 points, making it the new
state-of-the-art result.

5 Analysis

5.1 Human Evaluation

We hire three workers to conduct a human evalu-
ation of the 100 randomly selected outputs of the
sentence simplification task. Following Dong et al.
(2019), workers rate on simplicity (Simp), fluency
(Flu), and adequacy (Ade) on a 5-point Likert scale.
Following Xu et al. (2016), we use simplicity gain
(S+) to demonstrate how many word-level simplifi-
cations occur in sentence simplification.

Simpt Fluf Adet S+7
EditNTS 3.30%  4.65* 3.56% 0.14*
T5 3.16*  4.91* 447* 0.25*
ControlTS 3.39%  4.67° 4.26* 0.60
BART 322% 480 4.31* 0.34*
BART-CP 345% 468 395 0.37*
SimpleBART | 3.62 482 4.01 0.55
Reference 3.74 485 4.03 0.93*

Table 4: Results of the human evaluation. The results
significantly different from those of SimpleBART are
marked as * according to the student ¢-test with p<0.05.

Table 4 shows that SimpleBART achieves the
highest Simp score among all the simplification
models, close to that of the reference. Simple-
BART also significantly makes more word-level
simplifications compared to BART and BART-CP.

5.2 Domain Adaptation

Continued pre-training using our strategy on task-
related data can improve the results. However, we
still want to know if continued pre-training on more
data from the same domain and different domains
will improve the results. We design the following
experiments. 1) Expl: We continue pre-training on
more sentences from Wikipedia and SimpleWiki,
except those contained in the Wikiauto dataset. 2)
Exp2: We continue pre-training on more sentences
in the Newsela corpus, except those contained in
the Newsela dataset. The sizes of the above texts
used for continued pre-training are roughly five

times larger than the simplification training set. 3)
Exp3: We continue pre-training on the Newsela
training set. 4) Exp4: We continue pre-training on
the Wikiauto training set.

SARIT Keep Del Add | BST
Expl | 389 649 457 6.0 | 0.968
Exp2 | 41.1 395 774 6.5 | 0.900
Exp3 | 38.0 392 69.7 5.0 | 0975
Exp4 | 396 421 71.1 57 | 0.907

Table 5: Results of domain adaptation experiments. For
Expl and Exp3, we fine-tune on Wikiauto and test on
Turkcorpus. For Exp2 and Exp4, we fine-tune and test
on the Newsela dataset.

From the results of Expl and Exp2 in Table 5,
continued pre-training on more texts from the same
domain can still enhance the simplification results.
Compared to BART in Table 1, the SARI values
improve by 0.6 and 1 point, respectively. From the
results of Exp3 and Exp4, continued pre-training on
more texts in a different domain can instead harm
the results. Compared to BART, the SARI values
decrease by 0.3 and 0.5 points, respectively. Thus,
we suggest that future researchers use texts within
the same domain (e.g., Wikiauto and Wikipedia)
for continued pre-training in text simplification.

5.3 Generating Complex Texts

There are numerous studies dedicated to simpli-
fying complex texts. Nevertheless, none has at-
tempted to rewrite simple texts into complex ones.
We make such an interesting attempt. We have
changed our strategy to mask complex words and
name the obtained model ComplexBART. When
fine-tuning and testing on the Newsela dataset, we
use simple texts as input and complex texts as ref-
erence.

SARIT Keep Del Add | BST
BART 357 532 505 3.3 | 0901
ComplexBART | 37.2 529 554 3.4 | 0.900

Table 6: Results of generating complex texts.

From Table 6, ComplexBART improves the
SARI value by 1.5 points over the BART model,
indicating that the modified strategy can help the
pre-trained model learn to generate complex texts.
Thus, ComplexBART can serve as a better baseline
for generating complex texts in the future.
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6 Comparing SimpleBART with Large
Language Models

Large language models (LLMs) have received
widespread attention from researchers recently and
have achieved state-of-the-art results on many nat-
ural language generation tasks. In this section, we
select several representative large models to con-
duct experiments on text simplification and com-
pare them with SimpleBART. We hope these results
can serve as baselines for future research.

We choose those LLMs that provide API or
model files to ensure reproducibility. We choose
GPT-3.5-Turbo-0301', FLAN-T5-XL (Chung
etal., 2022), and LLaMA-7B (Touvron et al., 2023)
as LLLM baselines and use zero-shot generation.
Then, we follow the implementation® and fine-tune
FLAN-TS5-base as another baseline. We collect
the training sets of Wikiauto, Newsela, and D-
Wikipedia and conduct instruction fine-tuning.

6.1 Comparison and Analysis

The comparison of SimpleBART results with those
of the LLMs is shown in Tables 7, 8, and 9.

For the sentence-level simplification task,
LLaMA and FLAN-T5-XL seem unable to under-
stand the prompt for simplifying sentences, and
they are inclined to repeat the original text. How-
ever, FLAN-T5-base, only 10% of the parameters
of the above two models, performs better. It illus-
trates fine-tuning phase can improve performance
when the model is not super large. It may be a lit-
tle strange that GPT-3.5 performs worse than Sim-
pleBART. We find that with the zero-shot setting,
GPT-3.5 may not know the “degree of simplifica-
tion” we want. It makes many reasonable changes
to the original text, but it also keeps some of the
complex parts of the original text.

For the document-level simplification task,
LLaMA over-repeats sentences from the original
article, and the generated text is difficult to read.
The shortcomings of GPT-3.5 are similar to those
of the sentence-level simplification task. Besides,
limited by the number of API accesses per minute
of OpenAl, we only select 1000 original documents
for simplification, which takes nearly five hours.

For the lexical simplification task, neither the
LLaMA nor the FLAN-TS model could understand

"https://openai.com/blog/chatgpt

2https ://github.com/philschmid/
deep-learning-pytorch-huggingface/blob/main/
training/deepseed-flan-t5-summarization.ipynb

Turkcorpus SARIt Keep Del Add | BSt
GPT-3.5 324 434 434 104 | 0.896
FLAN-T5 31.5 64.1 29.6 1.0 | 0.892
LLaMA 29.3 693 163 2.3 | 0.873
FL.AN_TS 36.5 744 313 3.8 | 0.901
(Fine-tuned)

SimpleBART | 39.5 646 472 6.6 | 0972
Newsela SARIT Keep Del Add | BSt
GPT-3.5 38.7 32,5 78.1 5.3 | 0.897
FLAN-T5 322 29.7 657 1.3 | 0.891
LLaMA 19.9 358 232 0.8 | 0.822
FLAN-TS 299 403 467 2.7 | 0.902
(Fine-tuned)

SimpleBART | 41.6 405 774 6.9 | 0.902

Table 7: Comparison on the Turkcorpus test set and the
Newsela test set.

D-Wikipedia | D-SARIT Keep Del Add
GPT-3.5 26.68 18.45 59.36 225
FLAN-TS 26.77 15.07 64.83 040
LLaMA / / / /
FL,AN_TS 33.22 25.08 67.50 7.09
(Fine-tuned)

SimpleBART 41.64 3791 7196 15.04

Table 8: Comparison on the D-Wikipedia test set.

BenchLS F17 Precision Recall
GPT-3.5 36.6 36.6 36.6
SimpleBART | 27.8 28.0 27.6
LexMTurk F11 Precision Recall
GPT-3.5 314 31.5 31.4
SimpleBART | 28.5 28.7 28.2

Table 9: Comparison on the BenchLS test set and the
LexMTurk test set.

the instruction to replace complex words with sim-
ple words. However, GPT-3.5 outperforms the
other models substantially. We also find that GPT-
3.5 makes many sensible substitutions not included
in the reference, such as replacing “acquired”with
“earned”. Such results illustrate that LLMs are dom-
inant for this task.

7 Conclusion

In this paper, we are committed to adapting the
pre-trained model to text simplification. We pro-
pose a new pre-training strategy to allow the pre-
trained model to learn to generate simple texts. The
adapted pre-trained model improves the results on
various simplification tasks.
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Limitations

The limitation of our method comes from the re-
quirement to identify simple words in simple texts
in Section 2.1. The DeepBlueAl we have used is a
deep model, meaning it takes much time when in-
ference. In our experiment, it takes 362.78 seconds
to identify simple words from 10,000 sentences
with an average length of 8.12. We expect that
there will be methods with higher identification
accuracy and higher inference speed in the future.

Due to page limitations, we have placed the re-
lated work in Appendix A and the ablation experi-
ments in Appendix C.

Due to time constraints, we do not perform a
human evaluation of the output of LLMs. We hope
to conduct a more comprehensive evaluation of the
performance of LLMs in the future.

Ethics Statement

The texts we have used for continued pre-training
come from Wikipedia dumps and the Newsela Cor-
pus. Using Wikipedia dumps requires following the
CC-BY-SA license and GFDL. Using Newsela Cor-
pus requires authorization, and we have received
it.

This paper contains a human evaluation. We
hire three experienced workers to perform it. In
the recruiting process, we follow a first-come, first-
served order. We pay much more than the local
minimum hourly rate.
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A Related Work
A.1 Text Simplification

Text simplification contains sentence simplifica-
tion, document-level simplification, and lexical
simplification. Sentence simplification is rewrit-
ing a complex sentence into a more straightfor-
ward and semantically identical sentence (Alva-
Manchego et al., 2020). Document-level simplifi-
cation is rewriting an original complex article into
a simple article (Sun et al., 2021). Information not
relevant to the central meaning can be removed to
improve readability. Lexical simplification is to
replace complex words in a sentence with more
straightforward but identical meaning words (Paet-
zold and Specia, 2017b). It is usually framed as

a pipeline consisting of generating multiple candi-
date words and developing rules to select the most
appropriate word from candidate words.

A.2 Lexical Complexity Prediction

The lexical complexity prediction (LCP) task is to
assign a value from a continuous scale to represent
the complexity of a word (Shardlow et al., 2020).
Given a text and a text span in this text, the model
will predict the complexity of this text span. Many
studies have been devoted to improving the accu-
racy of model predictions (Gooding and Kochmar,
2019; Paetzold, 2021). On the latest LCP 2021 task
(Shardlow et al., 2021), the DeepBlueAl model
(Pan et al., 2021) achieves state-of-the-art results.

A.3 Adapting Pre-trained models

Pre-trained models have been widely used in natu-
ral language processing in recent years. However,
Gururangan et al. (2020) observe the gap between
the language model pre-training domain and the
data distribution of the downstream task. Since
then, researchers have focused on how to adapt pre-
trained models to downstream tasks. They have
designed new methods for different tasks. Down-
stream tasks like machine translation (Hu et al.,
2022), sentiment analysis (Gu et al., 2020), and
many understanding tasks (Yu et al., 2022) can
benefit from the adapted pre-trained models.

B Training Parameters

We use the Huggingface transformers (Wolf et al.,
2020) to conduct sentence and lexical simplifica-
tion experiments. For document-level simplifica-
tion, we follow Sun et al. (2021) and use Fairseq
(Ott et al., 2019) to conduct the experiments. We
choose the model that performs best on the valida-
tion set for testing. The specific parameter settings
for each task are shown in Tables 10, 11, and 12. A
detailed description of the dataset sizes is given in
Table 13.

Here are the sources of the auto-
matic evaluation methods we use: SARI
(https://github.com/mounicam/BiSECT/

tree/main/metrics), BERTScore (https:
//github.com/Tiiiger/bert_score), and
D-SARI (https://github.com/RLSNLP/
Document-level-text-simplification).
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Parameter Value Parameter Value
epochs 10 max source length 128
batchsize 64 max target length 128
optimizer Adam dropout 0.1
learning rate  5e-5 weight decay 0
warm up steps 5000 seed 42

Table 10: Training parameters for sentence simplifica-

tion.
Parameter Value Parameter Value
epochs 10 max source length 128
batchsize 64 max target length 128
optimizer Adam dropout 0.1
learning rate  5e-5 weight decay 0
warm up steps 5000 seed 42

Table 11: Training parameters for lexical simplification.

Parameter Value Parameter Value
max update steps  1e5 max source length 512
max tokens 2048 max target length 512
optimizer Adam dropout 0.1
learning rate  le-4 weight decay le-4
warm up steps 2000 seed 42

Table 12: Training parameters for document-level sim-

plification.
Dataset train dev  test
Sentence simplification
Wikiauto 488K \ \
Turkcorpus \ 2000 359
Newsela 94K 1129 1077
Lexical simplification
BenchLS \ \ 929
LexMTurk \ \ 500

Document-level simplification
D-Wikipedia ‘ 133K 3000 8000

Table 13: Sizes of the datasets used in experiments.

SARIT Keep Del Add | BSt
BART 40.1 405 738 6.2 | 0904
BART-S 409 416 742 69 | 0.906
BART-T 409 40.6 749 7.2 | 0.905
SimpleBART | 41.6 405 774 6.9 | 0.902

Table 14: Results of ablation experiments on the
Newsela dataset of the sentence simplification task.

C Ablation Study

We conduct ablation experiments to explore the
different contributions of replacing complex words
in ordinary texts (BART-S) and masking simple
words in simple texts (BART-T). We continue pre-
training and fine-tuning on the Newsela dataset.

From Table 14, both methods in our proposed
strategy allow the model to acquire the ability to
generate simple words. Their contributions are
roughly the same, but the improvement to the SARI
value is less than combining them.

D Example Outputs

Original sentence

gary goddard is the founder of gary goddard
entertainment .

Reference sentence

gary goddard started gary goddard entertainment .
BART

gary is the founder of gary goddard entertainment .
BART-CP

gary goddard is the founder of gary goddard
entertainment .

SimpleBART

gary goddard started a company called gary
goddard entertainment .

Table 15: In this sentence simplification example, Sim-
pleBART replaces the phrase “is the founder of" with a
simpler phrase “started a company", which is similar to
the reference sentence. Both BART and BART-CP do
not simplify the original sentence.
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