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Abstract
CLIP (Contrastive Language–Image Pretrain-
ing) is an English multimodal representation
model learned from a massive amount of En-
glish text-image pairs and has achieved great
success in various downstream tasks, includ-
ing image classification, text-to-image retrieval,
and image generation. When extending CLIP
to other languages, the major problem is the
lack of good-quality text-image pairs. In this
work, we present AltCLIP, a simple and low-
resource method to build a strong multilingual
multimodal representation model. Instead of
training a model from scratch on multilingual
text-image pairs, we take the original CLIP
model trained on English text-image pairs and
alter its text encoder with a pre-trained multi-
lingual text encoder (XLM-R). We then align
text and image representations by a two-stage
training schema consisting of teacher learn-
ing and contrastive learning. Our method uti-
lizes the existence of rich parallel text data
and pre-trained multilingual language models.
We present extensive experimental evaluations
to demonstrate the effectiveness of our pro-
posed method. Our model sets new state-of-
the-art zero-shot performances on a wide range
of tasks in multilingual multimodal bench-
marks, including ImageNet-CN/IT/JA/KO se-
rials, Flicker30k-CN, COCO-CN, Multi30k,
and XTD. Further, our model outperforms
the original CLIP model on zero-shot cross-
modal retrieval, Image Classification in the
Wild (ICinW) tasks, and CLIP Benchmark.
We open-source our code, pre-trained model
weights, and evaluation toolkit of multilingual
multimodal tasks, to facilitate research on mul-
tilingual multimodal representation learning.

1 Introduction

Learning a good representation in a joint space
for vision and language has been a long pur-
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†Work done during internship with Beijing Academy of
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‡Corresponding authors.

suit in the research of Artificial Intelligence (AI).
Recently, the milestone work of CLIP (Radford
et al., 2021) from OpenAI demonstrated impressive
zero-shot performances across a number of tasks
such as image classification on ImageNet (Deng
et al., 2009), Image-to-Text and Text-to-Image re-
trieval on Flicker-30k (Young et al., 2014) and
MSCOCO(Lin et al., 2014; Chen et al., 2015).
There has been the pursuit of building contrastive
language-image models in other languages such as
Italian (Bianchi et al., 2021), Korean (Ko and Gu,
2022), Chinese (Changpinyo et al., 2021; Fei et al.,
2021; Wang et al., 2022; Gu et al., 2022; Xie et al.,
2022) or in a cross-lingual and multilingual setting
(Aggarwal and Kale, 2020a).

Training a good language-image representation
model often requires a huge amount of text-image
pairs and vast computational resources. For in-
stance, CLIP used 400M text-image pairs, and
Taiyi (Wang et al., 2022), a recently proposed
Chinese model, used 123M text-image pairs. To
alleviate these problems, several works manage to
take advantage of the existing text-image represen-
tation CLIP and extend its language capabilities
to other languages (Portaz et al., 2019; Aggar-
wal and Kale, 2020a; Gu et al., 2022; Zhai et al.,
2022).CN-CLIP (Yang et al., 2022) aligns a new
Chinese text encoder to the CLIP vision encoder
through 200M Chinese text-image pairs. More re-
cently, M-CLIP (Carlsson et al., 2022) proposed
to use Teacher Learning (a.k.a. Knowledge Dis-
tillation) on the text encoder of the CLIP model
to learn a multilingual text-image representation
model. This method only uses machine-translated
data from English to a target language, without
text-image pairs.

However, existing works in the cross-lingual or
multilingual setting mainly focus on the model’s re-
trieval performance and ignore their generalization
ability. The dataset to evaluate retrieval perfor-
mance is often small, e.g., 1, 000 images in test
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sets for Flickr-30k. The retrieval performance fluc-
tuates acutely with the change in training data dis-
tribution. Although current methods achieve good
performance in retrieval, these methods often do
not perform well on the ImageNet classification
tasks. The ability to accurately predict images over
1, 000 classes often indicates better generalization
ability of the model.

To address the aforementioned problems, we pro-
pose a multilingual model named Alter ego CLIP
(AltCLIP) which achieved strong performances on
ImageNet and multimodal retrieval tasks across
languages. Our proposed method AltCLIP learns a
multilingual text-image representation under a two-
stage framework (see Figure 1 for an overview). In
the first stage, we use Teacher Learning on parallel
text to distill the knowledge learned from CLIP
and align different languages and images. In the
second stage, we further improve the alignment of
text and image via Contrastive Learning (Hadsell
et al., 2006) on a moderate amount of multilingual
text-image pairs. We employ this method to train a
multilingual Vision-Language model that supports
nine languages which we call AltCLIPM9.

We present an extensive experimental compar-
ison over a variety of benchmarks and baseline
methods, to demonstrate the effectiveness of our
method. We show that using recall-based parallel
text data in teacher learning can learn well-aligned
text-image representation in both English and ex-
tended languages, while contrastive learning with
text-image pairs effectively aligns the multilingual
language model to the CLIP vision encoder. The
model trained by this two-step training strategy re-
sults in a very strong performance on a broad range
of multilingual multimodal benchmarks, including
the original English multimodal benchmarks stud-
ied in CLIP (Radford et al., 2021). AltCLIPM9

sets new state-of-the-art results on multilingual
image classification and retrieval tasks. Further-
more, AltCLIPM9 achieves superior cross-modal
performances in Chinese, Korean, Japanese, and
Italian compared to methods trained from scratch
with large-scale text-image pairs. Lastly, we apply
AltCLIPM9 to the task of text-to-image generations
(Ramesh et al., 2021; Rombach et al., 2022) to
show that it enables high-quality image generation
from prompts in different languages.

2 Related Work

CLIP (Radford et al., 2021) provides a strong En-

glish Vision-Language representation. To expand
the language of the CLIP model, there are prior
studies on learning a bilingual text-image represen-
tation (Ko and Gu, 2022; Bianchi et al., 2021), and
multilingual text-image representation (Aggarwal
and Kale, 2020a). In the realm of multi-language
models, MURAL(Jain et al., 2021), a dual-tower
model, employs contrastive learning between multi-
language text and text-image pairs to expand the
paradigm of multi-modal learning. It was trained
on large-scale private data obtained through web
crawling, including more than 6 billion translation
pairs and 1.8 billion image-caption pairs. Carlsson
et al. (2022) proposed a way to utilize Teacher
Learning (a.k.a. Knowledge Distillation) (Hin-
ton et al., 2015) to train a new textual encoder
from the original CLIP model with only machine-
translated parallel data. Although this method
achieves promising cross-lingual retrieval perfor-
mances with only text data, its zero-shot classifi-
cation performance in English drops significantly.
In the domain of Chinese text-image pretraining
models, prior work includes Taiyi (Wang et al.,
2022), CN-CLIP (Yang et al., 2022), Wukong (Gu
et al., 2022), R2D2 (Xie et al., 2022) and BriVL
(Huo et al., 2021; Fei et al., 2021). These meth-
ods often need large-scale Chinese text-image pairs
and suffer from a significant performance decline
in English tasks.

XLM-R (Conneau et al., 2020) is a multilingual
language model that achieves strong performances
on a wide range of cross-lingual tasks. In our work,
we use the XLM-R model as the underlying text
encoder and align it with the image encoder trained
in CLIP, to achieve competitive performances on
cross-lingual and cross-modality tasks.

Knowledge distillation. In knowledge distilla-
tion, the teacher-student architecture is a generic
carrier to form knowledge transfer. The model ca-
pacity gap between a large deep neural network and
a small student neural network can degrade knowl-
edge transfer.(Mirzadeh et al., 2020; Gao et al.,
2021). To effectively transfer knowledge to student
networks, a variety of methods have been proposed
for a controlled reduction of the model complex-
ity(Crowley et al., 2018; Liu et al., 2019; Wang
et al., 2018). In this work, we use a multilingual
model XLM-R as a student model for effectively
transferring multilingual knowledge.
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Figure 1: An illustration of AltCLIP.In the Teacher Learning stage, the student model (XLM-R) learns a well-
aligned multilingual-image representation. The contrastive learning stage further improves alignment using only 7
million text-image pairs per language, making it more resource-efficient than training from scratch.

3 Methodology

We propose a two-stage method to learn a multilin-
gual multimodal representation model. In the first
stage, we follow the work of Carlsson et al. (2022)
to use Teacher Learning to learn a multilingual text
encoder from the CLIP text encoder. In this step,
no image is needed in training and only language
parallel data is used. In the second stage, we use
text-image pairs to further fine-tune the model from
contrastive learning. Our overall training procedure
is summarized in Figure 1.

3.1 Teacher Learning Stage

In this stage, we perform Teacher Learning (Hin-
ton et al., 2015) on text encoders. We use the
text encoder from CLIP (Radford et al., 2021)
as the teacher text encoder, and the XLM-R (Con-
neau et al., 2020) model pretrained on multilingual
data as the student text encoder. A fully-connected
layer is added to transform the output of the XLM-
R model into the same output dimension as the
teacher encoder. We use parallel text data between
English and other languages * to distill the knowl-
edge of text-image alignment.

Given parallel text input (sent1, sent2), the
teacher text encoder generates the learning target
from input sent1, which is the embedding of the
[TOS] token, denoted by xttos. The student text en-
coder generates embedding xscls from input sent2.
We minimize Mean Squared Error (MSE) between
xttos and xscls. After such training, the student text
encoder can keep most of its multilingual capabil-
ity and obtain text-image alignment capability in
both languages. Note that the teacher encoder is
only used at training time. At inference time, only
the student encoder is used as the text encoder.

*We also include English-English text pairs as parallel text

To show that our method is extensible in in-
cluding more languages, we build a multilin-
gual version (AltCLIPM9) and a bilingual version
(AltCLIPM2). AltCLIPM9 supports nine differ-
ent languages: English(EN), Chinese(CN), Span-
ish(ES), French(FR), Russian(RU), Arabic(AR),
Japanese(JA), Korean(KO), and Italian(IT). For the
bilingual version (AltCLIPM2), we align Chinese
with English, with the same concept and architec-
ture as in the multilingual version.

3.2 Contrastive Learning Stage

This stage of training aims to further improve text-
image alignment by contrastive learning on multi-
lingual text-image pairs. As illustrated in Figure 1,
here we use the image encoder from CLIP which
is based on Vision Transformer (ViT) (Dosovit-
skiy et al., 2020) as our image encoder, and use
the student text encoder learned from the Teacher
Learning Stage as our text encoder.

We use Contrastive Loss (Hadsell et al., 2006)
between the output projection of the image encoder
and text encoder, as done similarly in previous
work (Radford et al., 2021). We follow LiT (Zhai
et al., 2022) to freeze the image encoder at train-
ing time and only update the parameters in the text
encoder. We observe that this stage of training fur-
ther improves the model’s performance on various
evaluation benchmarks, as presented in Section 5.

4 Model Training

4.1 Training Datasets

In this section, we describe the training datasets
used in our two-stage training schema.

Teacher Learning Stage We only use the par-
allel corpus to align the original CLIP text
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Figure 2: Experimental results on CLIP Benchmark. AltCLIPM9−T denotes our model after Teacher Learning
Stage while AltCLIPM9 denotes our model after Contrastive Learning Stage. All image encoders are CLIPV iT−L14.

encoder and XLM-R text encoder. The par-
allel corpus consists of a recall-based corpus
and a machine-translated corpus translated by
MBART(Tang et al., 2020). We use the same
amount of data for each language, which con-
tains 5M recall-based parallel data collected
from OPUS(Tiedemann, 2012)†, 10M machine-
translated data from LAION(Schuhmann et al.,
2021)‡ and 3M machine-translated data from Con-
ceptual Captions (CC3M)(Sharma et al., 2018). We
use TSL2019(5M)(Xu, 2019) as parallel data for
the training of AltCLIPM2.

Contrastive Learning Stage We use unfil-
tered text-image pair data in this stage. For
AltCLIPM9, we randomly selected 7 million text-
image pairs for each language from the LAION2B-
Multi(Schuhmann et al., 2022). For AltCLIPM2,
we only employed half a million text-image pairs
for each language in training.

4.2 Implementation details

We initialize our text encoder from XLM-RLarge

and use the text encoder from CLIPV iT−L14 as the
teacher text encoder. We use the image encoder
from CLIPV iT−L14 as our image encoder. In the
Teacher Learning stage, we trained for 27 hours us-
ing 11×8 NVIDIA A100-SXM4-40GB GPUs. In
the Contrastive Learning stage, we continued train-
ing for an additional 12 hours using 8 NVIDIA
A100-SXM4-40GB GPUs. Detailed training set-
tings can be found in Appendix A.3.

†https://opus.nlpl.eu
‡Randomly sampled from LAION and translated into mul-

tiple languages by machine translation.

5 Experiments

We present experimental results in this section. In
Section 5.1, we introduce the datasets and met-
rics used. We comprehensively validate our model
through multilingual multimodal benchmarks in
Section 5.2. In Section 5.3, we conduct an ablation
study on the effects of various design choices in
Teacher Learning and Contrastive Learning. Fi-
nally, in Section 5.4, we apply AltCLIP to text-
image generation, and show that our model is capa-
ble to align text in different languages.

5.1 Evaluation Datasets and Metrics

In this section, we describe the datasets and
metrics used. We use ImageNet (Deng et al.,
2009) and its four out-of-distribution test vari-
ants, i.e. ImageNet Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), ImageNetV2 (Recht
et al., 2019), to evaluate zero-shot image classifica-
tion performances in English(Radford et al., 2021),
Chinese, Japanese, Italain and Korean§. We adapt
templates of manual prompts from CLIP for En-
glish and the corresponding machine translation
templates for Chinese and Korean. For Japanese
and Italian, the templates are collected from the
same sources with the translated class names.

For cross-modal retrieval, we evaluate
AltCLIPM9 on the XTD (Aggarwal and Kale,
2020b) dataset and Multi30k (Elliott et al., 2016).

§The corresponding translations of class names are respec-
tively collected from - Chinese:https://github.com/
ningbonb/imagenet_classes_chinese, Japanese:
https://github.com/rinnakk/japanese-clip,
Italian: Italian CLIP(Bianchi et al., 2021), Korean: machine
translation
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Lan. Method Txt-Img Data IN-Adv. IN-Ren. IN-Ske. IN-1K IN-V2 avg.

E
ng

lis
h M-CLIP - 59.1 81.6 44.2 52.3 47.4 56.9

OpenCLIP 50× 53.9 87.5 63.3 75.3 67.7 69.5
AltCLIPM9 1× 69.8 87.2 58.4 74.0 67.6 71.4(+1.9)

C
hi

ne
se M-CLIP - 50.9 68.4 36.2 43.0 39.6 47.6

CN-CLIP 25× 43.3 78.1 47.3 53.3 48.1 54.0
AltCLIPM9 1× 61.2 82.4 48.4 59.6 54.0 61.1(+7.1)

Ja
pa

ne
se M-CLIP - 21.8 44.5 24.6 26.9 24.2 28.4

JA-CLIP† NA 21.2 50.9 25.1 50.7 43.5 38.3
AltCLIPM9 1× 52.7 75.6 46.7 55.0 50.3 56.1(+17.8)

It
al

ia
n M-CLIP - 51.8 72.9 38.3 43.0 38.9 49.0

IT-CLIP† 0.7× 10.5 27.2 16.5 21.9 19.4 19.1
AltCLIPM9 1× 56.7 78.2 45.9 55.3 50.4 57.3(+8.3)

K
or

ea
n M-CLIP - 20.9 39.3 22.1 25.2 22.8 26.0

KELIP† 100× 19.4 53.1 26.6 33.7 30.3 32.6
AltCLIPM9 1× 51.1 72.9 44.8 55.2 50.5 54.9(+22.5)

Table 1: Results on multilingual Image Classification benchmarks. We compare AltCLIPM9 with the M-CLIP
and a model trained from scratch in five languages. For a fair comparison, the ones with ViT-L are chosen as default
except for the ones with the mark †. The metric reported is zero-shot classification accuracy. We also build datasets
and evaluate our model in the rest four languages with machine translation, details are in Appendix A.1

XTD is built from selecting 1K images from
COCO (Lin et al., 2014), and translating the
corresponding English Captions into 11 languages.
¶. The Multi30k dataset is a collection of multilin-
gual image captions that provides translations of
captions in English, German, French, and Czech
for 29,000 images. We select Flickr30k (Young
et al., 2014), COCO, as well as their corresponding
Chinese datasets, Flickr30kCN (Lan et al., 2017),
COCOCN

|| (Li et al., 2019), to evaluate zero-shot
image-to-text retrieval and text-to-image retrieval
performances on Chinese.

We further evaluated our model on a wide
range of English tasks to compare its perfor-
mance with the original CLIP model. We used
datasets introduced in CLIP and the Open CLIP
benchmark** and "Image Classification in the
Wild (ICinW)" dataset from the ELEVATER
benchmark (Li et al., 2022), including Bird-
snap (Berg et al., 2014), Caltech-101 (Fei-Fei
et al., 2006), Stanford Cars (Krause et al., 2013),
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), Country211 (Rad-
ford et al., 2021), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2019), Facial Emotion
Recognition 2013 (Goodfellow et al., 2013), FGVC
Aircraft (Blaschko et al., 2012), Oxford Flow-

¶English(EN), German(DE), French(FR), Chinese(CN),
Japanese(JA), Italian(IT), Spanish(ES), Russian(RU), Pol-
ish(PL), Turkish(TR), Korean(KO)

||There are two versions: texts in the 1k
version(COCOCNa) are manually written captions while in
the 5k version (COCOCNb) are manually translated captions

**https://github.com/LAION-AI/CLIP_
benchmark

ers 102 (Nilsback and Zisserman, 2008), Food-
101 (Bossard et al., 2014), GTSRB (Stallkamp
et al., 2011), Kinetics400 (Kay et al., 2017), Ki-
netics600 (Carreira et al., 2018), MNIST (Cireşan
et al., 2011), PatchCamelyon (Veeling et al.,
2018), ObjectNet (Barbu et al., 2019), Oxford-IIIT
Pets (Parkhi et al., 2012), Rendered SST2 (Rad-
ford et al., 2021), RESISC45 (Cheng et al., 2017),
STL-10 (Coates et al., 2011), SUN397 (Xiao et al.,
2010), UCF101 (Soomro et al., 2012), Pascal VOC
2007 Classification (Everingham, 2007), Pascal
VOC 2007 Multilabel Classification (Everingham,
2007), KITTI-Distance (Fritsch et al., 2013) and
hateful-memes (Kiela et al., 2020).

The evaluation metrics for image classification
benchmarks are accuracy (default), mean per class
(the average of recall obtained on each category,
for imbalanced datasets, such as FGVC Aircraft,
Oxford-IIIT Pets, Caltech-101, Oxford Flowers
102), 11-point mAP (mean average of 11-pt interpo-
lated precision for each class, for VOC 2007), and
mean(top1, top5) (the mean of acc@1 and acc@5,
for Kinetics400 and Kinetics600). For cross-modal
retrieval benchmarks, we use Recall@K where
K ∈ {1, 5, 10}, and Mean Recall (the average of
Recall@K) for both image-to-text retrieval and text-
to-image retrieval tasks, which are the same as the
setups in CLIP (Radford et al., 2021).

5.2 Zero-shot performance

Image Classification We first present evaluation
results of zero-shot image classification on the
ImageNet dataset and its four out-of-distribution
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Model XTD Multi30K

En Es Fr Zh It Ko Ru Jp En Fr De Cs

Base Model

CLIPV iT−B32 90.3 - - - - - - - - - - -
mUSE PATR 83.6 75.6 76.9 76.1 73.4 64.3 73.6 69.4 - - - -
mUSE m3 85.3 78.9 78.9 76.7 73.6 67.8 76.1 70.7 - - - -
UC2 65.2 56.5 59.7 60.1 57.7 50.2 50.9 50.5 66.6 60.4 62.5 55.1
MLAV iT−B16 76.0 62.8 72.9 73.8 64.7 57.3 58.1 67.2 86.4 80.9 80.8 72.9
ALIGNBASE - 88.8 - 86.5 87.9 76.6 82.3 - 84.3 78.3 78.9 71.1
MURALBASE - 89.6 - 88.3 88.4 82.4 83.6 - 82.4 75.0 76.2 64.6
M-CLIP‡

V iT−B32 91.8 89.1 89.4 89.3 89.8 82.1 86.1 81.0 80.4 71.1 71.4 67.7

Large Model

CLIPV iT−L14 91.8 - - - - - - - 87.7 - - -
M-CLIP‡

V iT−L14 92.4 91 90 89.7 91.1 85.2 85.8 81.9 87.8 82.5 83.1 81.3
MURALLARGE - 92.9 - 89.7 91.8 88.1 87.2 - 89.2 83.1 83.5 77.0
AltCLIPM9 93.3 92.2 91.1 92.2 91.9 91.5 89.2 89.1 89.9 85.2 65.5† 36.6†

Table 2: Results on the multilingual cross-modal retrieval dataset. Recall@10 is reported for Text-to-Image
on XTD and average recall for Text-to-Image and Image-to-Text on Multi30K. † denotes the unseen language in
training AltCLIPM9, such as German and Czech. ‡ denotes the reproduced results. Numbers denotes the good
results of MURALLARGE comes from the large-scale private data: 6 billion translation pairs (up to 100 million per
language) in 109 languages and 1.8 billion image-caption pairs.
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M-CLIP 53.5 81.4 53.5 93.8 72.6 22.5 41.2 62.0 47.7 7.3 26.3 68.8 42.5 53.0 28.7 60.1 51.3 49.9 65.6 62.0 79.7
CLIP 64.9 86.6 77.3 95.6 75.8 31.9 55.4 60.0 49.9 31.9 79.1 93.1 50.6 56.0 21.8 76.4 52.0 93.6 69.0 64.5 77.4

AltCLIP-M9 66.1 87.5 75.2 95.7 79.0 31.7 57.3 60.3 56.8 29.6 71.5 92.3 49.2 57.2 25.5 70.5 63.3 93.8 74.7 69.8 80.5

Table 3: The results on Image Classification in the Wild (ICinW)

variants. For baselines, we compare our model
with OpenCLIP (Radford et al., 2021), CN-CLIP
(Yang et al., 2022), KELIP (Ko and Gu, 2022),
IT-CLIP (Bianchi et al., 2021), JA-CLIP ( , 2022)
and multilingual CLIP (M-CLIP) (Carlsson et al.,
2022). As illustrated in Table 1, AltCLIPM9

outperforms OpenCLIP in English and sets new
state-of-the-art results on ImageNet, ImageNet-
A, ImageNet-R, and ImageNet V2 in Chinese,
Japanese, Korean and Italian. These results demon-
strate the effectiveness of our method in expanding
the language ability of CLIP. Compared to Chi-
nese/Korean baseline models where hundreds of
millions of text-image pairs are used in pretrain-
ing, we only use 18M parallel text data and 7M
text-image pairs (per language) in training.

Multilingual Cross-modal Retrieval We com-
pare our model with CLIP, M-CLIP (Carls-

son et al., 2022), mUSE (Yang et al., 2020),
UC2 (Zhou et al., 2021), MLA (Zhang et al.,
2022), ALIGN (Jia et al., 2021) and MURAL (Jain
et al., 2021). The results of the comparison on
Multi30k(Elliott et al., 2016) and XTD (Ag-
garwal and Kale, 2020b) are shown in Table 2,
where AltCLIPM9 achieves state-of-the-art results
in 7 languages and outperforms the original CLIP
model in English. This superior performance of
our model is likely due to the use of higher-quality
parallel corpora during the Teacher Learning stage,
which effectively eliminates potential bias from
machine translation. Additionally, we utilize con-
trastive learning to further align the text and image
representation, which is crucial for downstream
tasks. We will discuss this in more detail in Sec-
tion 5. We also provide additional cases in Ap-
penix A.4.
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Dataset Method Text-to-Image Retrival Image-to-Text Retrival MR
R@1 R@5 R@10 R@1 R@5 R@10

Fl
ic

kr
30

k CLIP 65.0 87.1 92.2 85.1 97.3 99.2 87.6
Taiyi 25.3 48.2 59.2 39.3 68.1 79.6 53.3

CN-CLIP 49.5 76.9 83.8 66.5 91.2 96.0 77.3
AltCLIP-M2 72.5 91.6 95.4 86.0 98.0 99.1 90.4
AltCLIP-M9 69.8 90.8 94.2 86.6 97.8 99.2 89.7

C
O

C
O

CLIP 36.5 61.1 71.1 56.4 79.5 86.5 65.2
Taiyi 11.7 27.8 37.4 19.8 42.1 54.3 32.2

CN-CLIP 26.1 50.0 61.3 40.9 65.8 76.3 53.4
AltCLIP-M2 42.9 68.0 77.4 58.6 80.6 87.8 69.2
AltCLIP-M9 40.5 65.2 74.9 58.7 81.2 88.3 68.2

Fl
ic

kr
30

k C
N

CLIP 0 2.4 4.0 2.3 8.1 12.6 5.0
Taiyi 53.7 79.8 86.6 63.8 90.5 95.9 78.4

Wukong† 51.7 78.9 86.3 76.1 94.8 97.5 80.9
R2D2† 60.9 86.8 92.7 77.6 96.7 98.9 85.6

CN-CLIP 68 89.7 94.4 80.2 96.6 98.2 87.9
AltCLIP-M2 69.8 89.9 94.7 84.8 97.4 98.8 89.2
AltCLIP-M9 68.6 89.4 94.5 85.8 98.2 99.0 89.2

C
O

C
O

C
N

a

CLIP 0.6 4.1 7.1 1.8 6.7 11.9 5.4
Taiyi 52.0 80.2 89.6 46.6 76.3 88.6 72.2

Wukong† 55.2 81.0 90.6 53.4 80.2 90.1 75.1
R2D2† 63.3 89.3 95.7 56.4 85.0 93.1 80.5

CN-CLIP 63.7 88.7 94.4 61.0 84.7 93.6 81.0
AltCLIP-M2 63.9 87.2 93.9 62.8 88.8 95.5 82.0
AltCLIP-M9 60.6 86.3 93.4 66.2 88.9 96.2 81.9

C
O

C
O

C
N

b CLIP 0.8 3.9 5.8 3.5 8.9 14.4 6.2
Taiyi 46.1 74.9 85.1 58.1 83.9 91.7 73.3

CN-CLIP 58.6 85.3 92.7 72.1 90.9 94.7 82.4
AltCLIP-M2 61.3 86.0 93.2 77.8 94.4 97.5 85.0
AltCLIP-M9 58.9 84.5 92.5 77.7 94.3 97.7 84.3

Table 4: Experimental results on English and Chinese retrieval tasks. All image encoders used in these models
are ViT-L for a fair comparison.† represents we report original results from papers.

Full CLIP benchmark We present the evalua-
tion results for a range of tasks in English in Fig-
ure 2. We compare the effectiveness of multilingual
AltCLIPM9 and AltCLIPM9−T with the original
CLIP. AltCLIPM9 outperforms CLIP, indicating
that our method effectively fuses the abilities of
CLIP and XLMR. We observed that at the Teacher
Learning stage, the model already learns a good
representation of text-image representation, as it
achieves better average results than the original
CLIP model on a range of zero-shot benchmarks.
The Contrastive Learning stage further improves
the model’s performance, particularly on retrieval
tasks such as Flickr30k.

Task-level transferability We evaluated the
transferability of AltCLIP for zero-shot image
classification on the "Image Classification in the
Wild (ICinW)" dataset from the ELEVATER bench-
mark (Li et al., 2022). ICinW is a publicly avail-
able benchmark to evaluate the large-scale task-
level transferability of Vison Language models.
ICinW consists of a series of image classification
datasets such as KITTI-Distance (Fritsch et al.,

2013) and hateful-memes (Kiela et al., 2020). As
shown in Table 3, AltCLIPM9 achieved an aver-
age score of 66.1, outperforming the original CLIP
and achieving a 23.6% improvement compared to
M-CLIP, demonstrating the effectiveness of our
training strategy.

Method Multilingual English

INs IRs TRs INs IRs TRs CinW
MT 47.8 54.2 63.5 71.5 57.6 73.2 66.1
RB 50.2 51.8 60.8 67.2 55.1 71.2 61.5

MT+RB 56.2 56.2 65.6 72.2 57.7 73.1 65.8
MT+RB+CL 58.4 60.6 68.7 71.4 60.8 74.8 66.1

Table 5: Ablation Experiments. For a fair comparison,
all models were trained for 10 epochs and evaluated
using the average results over nine-language ImageNet
series tasks (INs), image-retrieval tasks (IRs), and text-
retrieval tasks (TRs) on XTD and Multi30K for eight
languages (excluding Arabic).

Comparison with models trained from scratch.
We compare our model with the ones trained with
hundreds of millions of text-image pairs: CLIP
in English and R2D2 (Xie et al., 2022), Wukong
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(Gu et al., 2022), Taiyi (Wang et al., 2022) and
CN-CLIP (Yang et al., 2022) in Chinese. The
results are shown in Table 4. AltCLIPM9 outper-
forms all baseline models including models trained
with large-scale text-image pairs on most datasets
and tasks. We notice that AltCLIPM2 outperforms
CLIP on both text-to-image and image-to-text re-
trieval. This could be due to the following rea-
sons: 1). We used a small subset (less than 1M)
of LAION 5B at the Contrastive Learning stage,
which is in a different distribution of the pretrain-
ing data used in CLIP; 2). Our language encoder
initialized from XLM-R provides better language
understanding ability. We elaborate on the detailed
results of Bilingual settings in Appendix A.2.

5.3 Ablation study
We evaluate the effectiveness of our AltCLIPM9 by
analyzing its major components in this section. We
use CL to denote the Contrastive Learning stage,
and MT and RB to denote the Machine-Translated
and Recall-Based parallel data used in the Teacher
Learning stage. We evaluate the variations of our
models in English-only and in multilingual settings.
We use the average score on ImageNet series (INs),
Image Retrieval tasks (IRs), and Text Retrieval
tasks (TRs) as evaluation metrics. Results in Ta-
ble 5 show that excluding machine-translated data
has a significant impact on performance, except
for the multilingual ImageNet series tasks. Com-
bining machine-translated and recall-based parallel
data leads to a significant improvement in most
tasks, indicating that the quality and diversity in
training data are both important. Additionally, the
Contrastive Learning stage significantly improves
the model’s performances on multilingual tasks,
achieving 58.4 on multilingual INs, a 3.9% im-
provement.

5.4 Examples of text-to-image generation
In this section, we apply our model to the task of
text-to-image generation to enable multilingual im-
age generation, and to show the effect of language
alignment in our model. We use the text encoder of
AltCLIPM9 to fine-tune a Stable Diffusion model
(Rombach et al., 2022). We use stable-diffusion
v1-4†† as initialization and AltCLIPM9 as the lan-
guage encoder, and we freeze all parameters in the
diffusion model except for the key and value pro-
jection layers of the cross-attention block during

††https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original

(a) Stable Diffusion

(b) AltCLIP-guided Diffusion EN

(c) AltCLIP-guided Diffusion CN

Figure 3: Examples of text-to-image generation. Text
prompt: "a pretty female druid surrounded by forest
animals, digital painting, photorealistic, in the style
of greg rutkowski, highly detailed, realistic.", "一个由
森林动物环绕的漂亮的女德鲁伊,数字绘画,摄影现
实,格雷格·鲁特科夫斯基风格,高度详细,现实"

fine-tuning. The dataset used for fine-tuning is the
same one used for the Contrastive Learning stage
as described in Section 4.1. As demonstrated in
Fig. 3, our model generates high-quality images
comparable to those generated by Stable Diffusion.
This is likely due to the reason that AltCLIPM9

achieves competitive performance in English with
CLIP, where the latter is used in the original Stable
Diffusion model. Additionally, we observe that
our model generates similar images for translated
English and Chinese prompts, demonstrating the
effect of language alignment. More examples with
images generated from different languages can be
found in Appendix A.5.

6 Conclusion

In this work, we propose an effective two-stage
training method for learning multilingual mul-
timodal representation models, through teacher
learning and contrastive learning. The effective-
ness is demonstrated through extensive experi-
ments on a wide range of tasks in multilingual
multimodal benchmarks. AltCLIPM9 outperforms
the original CLIP model on many tasks in En-
glish and sets new state-of-the-art zero-shot re-
sults on multiple image classification tasks in Chi-
nese/Korean/Italian/Japanese and multilingual re-
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trieval tasks. Meanwhile, our method is highly
data-efficient, which consumes only around 1%
text-image pairs compared to the hundreds of mil-
lions of text-image pairs used by prior work on
vision-language pretraining models.

7 Limitations

It’s worth noting that this study has certain limita-
tions. One of the limitations is the limited scope
of the training data employed. The AltCLIP model
is trained on open-source parallel corpora and pub-
licly available unfiltered text-image pairs. A more
careful study of the training data, i.e. filtering text-
image pairs by relevance and text/image quality
may help to further improve the overall perfor-
mance of the model. Another limitation is the
challenge of evaluating the model in a multilingual
setting. Despite our best efforts to include as many
benchmarks as possible and to translate from En-
glish datasets, the evaluation of the model’s perfor-
mance in other languages is not as comprehensive
as it is in English. For example, there may be fewer
tasks available such as OCR or action recognition
in videos in other languages. In addition, the use
of machine translation may introduce biases that
could affect performance. Future research should
focus on creating a more robust and scientifically
rigorous multilingual evaluation framework.

8 Ethics Statement

The AltCLIP approach presents an innovative way
of building robust multilingual multimodal repre-
sentation models while minimizing the need for
energy-intensive GPU training, promoting a more
sustainable approach. Additionally, it allows for
greater accessibility as it does not require extensive
computational resources to implement. Further-
more, our model was trained using open-sourced
data and our model is open-sourced to promote
transparency and reproducibility. However, we
have not carefully investigated the training data
we used, such as LAION (Schuhmann et al., 2022).
The data may contain unsafe or biased text and/or
images. It is important to note that models pre-
trained on it have the potential to reproduce sensi-
tive training data. It is crucial to use this method
responsibly and ethically to ensure it contributes to
safe applications.
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A Appendix

A.1 Classification on ImageNet series

Lan. Method IN-Adv. IN-Ren. IN-Ske. IN-1K IN-V2 avg.

ES
M-CLIP 54.4 75.4 39.3 41.3 45.7 51.2

Our 58.1 76.8 46.6 52.9 57.9 58.5
Imp. +3.7 +1.4 +7.3 +11.6 +12.2 +7.3

FR
M-CLIP 50.3 71.6 38.3 40.8 44.8 49.2

Our 58.6 78.1 47.9 53.3 58.4 59.2
Imp. +8.3 +6.5 +9.6 +12.5 +13.6 +10.0

RU
M-CLIP 47.4 72.9 36.9 39.5 42.7 47.9

Our 50.7 76.1 44.9 49.4 54.4 55.1
Imp. +3.3 +3.2 +8.0 +9.9 +11.7 +7.2

AR
M-CLIP 46.2 61.7 31.2 32.4 35.7 41.4

Our 53.9 70.7 41.0 44.8 49.4 52.0
Imp. +7.7 +9.0 +9.8 +12.4 +13.7 +10.6

Table 6: Results on ImageNet variants. Due to the lack
of publicly available models or translation datasets for
other languages, we used Google Translate to translate
the class names and prompts of ImageNet from English
to the target language, thus constructing variations of
Imagenet for the other 4 languages.

As shown in Table 6, our proposed AltCLIPM9

outperforms M-CLIP on Spanish, French, Russian,
and Arabic on the ImageNet series datasets.

A.2 Effects of English-English data

We present results from ablation studies on
AltCLIPM2. We show the significance of includ-
ing various parallel data in the Teacher Learning
stage in Table 7. As illustrated in the 3rd and 5th
lines, without English-to-English parallel data, the
accuracy on English ImageNet drastically drops
to 15.47 from 53.8. Similarly, excluding machine-
translated English-to-Chinese data, has a great im-
pact on the performances on Chinese benchmarks,
i.e. ImagenetCN and Flickr30KCN , due to influ-
enced Chinese text-image representation. More-
over, empirical experiments show that introducing
recall-based parallel data leads to a great improve-
ment in ImagenetCN which may be related to the
distribution of the data set. This indicates that the
diversity of training data used for teacher learn-
ing can benefit the language model to gain more
knowledge about entities or concepts.

A.3 Hyper-parameters

As shown in Table 8, we set the hyper-parameters
for bilingual and multilingual AltCLIP training.

E
N

-E
N

E
N

-C
N

M
T

E
N

-C
N

R
B

C
L

Fl
ic

kr
30

K
E
N

Fl
ic

kr
30

K
C
N

Im
ag

eN
et

E
N

Im
ag

eN
et

C
N

! ! ! ! 90.4 89.2 74.5 59.6
! ! ! 88.3 87.2 74.7 58.2
! ! 86.8 85.8 51.6 41.7
! 86.6 53.9 53.8 12.8

! 61.9 85.4 15.5 42.5

Table 7: Ablation Experiments. CL indicates the
use of the Contrastive Learning stage, while EN-EN,
EN-CNMT , EN-CNRB refers to parallel data used in
the Teacher Learning stage. Specifically, EN-EN indi-
cates the use of English-English text pairs; EN-CN indi-
cates the use of English-Chinese parallel text, including
EN-CNMT represents machine translated pairs while
EN-CNRB stands for Recall-Based data, i.e TSL2019.
All compared models are pre-trained for 10 epochs.

Hyper-paramters TL CL
Batch size 11264 1024
Optimizer (AdamW, β) (0.99, 0.999) (0.99, 0.999)
Learning rate 2e-4 2e-6
Weight decay 2e-1 5e-2
Eps 1e-8 1e-8
Warmup steps 500 2000
#Epochs 10 1
Gradient clipping 1.0 5.0
Steps 146500 2000

Table 8: Hyper-parameters setting in Teacher Learning
Stage and Contrastive Learning Stage.

A.4 Examples for multilingual cross-modal
retrival

As illustrated in Tab. 9, our AltCLIPM9 can recall
the accurate results.

A.5 Examples for text-image generation
We show more examples generated from our
AltCLIPM9 guided diffusion model: we use the
same prompt and translate it into different lanu-
gages and present the results in Tab. 10. One can
observe that the model generates similar images
but with subtle differences for different languages.
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Image En Pred.

a vegetarian sandwich , cut in half is on a red plate 83.2
a hoagie sandwich with several vegetables and turkey on it 12.4

the sandwich is in half on the table next to pickle slices 2.8
a plate with salad , chips , and large white bread sandwiches with meat 0.9

soup , a sandwich , a pickle , and some chips are all on a plate 0.4

a cow appears to run while two men on horses wearing hats are seen with lassos 48.9
a man pulling two cows by ropes with a lot of people gathered together 41.3

horses are running with their faces very close to each other 2.7
a man on a horse landing on the backside of an obstacle 2.3
it is always fun to have a good friend along for the ride 1.1

Fr

un sandwich végétarien , coupé en deux est sur une plaque rouge . 84.6
un sandwich hoagie avec plusieurs légumes et dinde sur elle . 8.9

le sandwich est dans la moitié sur la table à côté de tranches de cornichons . 5.7
Une assiette avec de la salade , des chips et d’énormes sandwichs de pain blanc avec de la viande . 0.5

soupe , un sandwich , un cornichon , et certaines puces sont tous sur une plaque . 0.1

two giraffes standing on all fours next to one another with grass ,
bushes and trees around them 63.7

Deux giraffes regardent autour pendant que l’autre se penche pour manger . 23.2
une mère et un bébé girafe dans les arbres bordé d’un parc animalier . 7.6

une girafe est debout à côté d’un arbre comme d’autres girafes marchent derrière eux . 1.5
une girafe dans une enceinte tord sa tête pour manger un peu de feuillage sur un poteau . 1.4

Es

un sándwich vegetariano cortado por la mitad en un plato rojo 57.0
sándwich con verduras y pavo 36.5

sándwich cortado a la mitad sobre la mesa junto a rebanadas de pepinillos 5.3
sándwich con pepinillo, queso, mostaza, ketchup y mahonesa en un plato con un tenedor 0.4

un planto con ensalada, patatas y grandes sándwiches con carne 0.3

tres tortitas con mantequilla en un plato amarillo con forma ovalada 98.2
la comida en el plato en la mesa ya está lista para comerse 1.1

mesa con platos de desayuno y bebidas 0.2
varias personas sentadas a una mesa con platos con comida 0.1

mesa llena de platos de comida y dos vasos con bebida 0.1

It

sandwich vegetariano tagliato a metà su un piatto rosso 86.2
mezzo sandwich sul tavolo accanto a fettine di sottaceto 11.4

piatto con insalata, patatine e grandi sandwich di pane bianco con carne 0.7
panino imbottito con verdure varie e tacchino 0.6

sandwich con sottaceto, formaggio, senape, ketchup e maionese su un piatto con una forchetta 0.5

cavallo bianco e marrone che bruca un prato verde 89.2
cavallo bianco e marrone in piedi su un prato 10.5

mucca bianca e marrone in un pascolo 0.1
cavallo marrone che bruca l’erba in mezzo a un bosco 0.1

cavallo con paraocchi legato a un palo in un parcheggio 0.0

Table 9: A Case Study of multi-lingual retrieval results. We conduct a case study on the XTD dataset, using our
proposed model AltCLIP-M9 for text retrieval in one of four languages (English, French, Italian, Spanish) for each
randomly selected image. Our model demonstrated consistent and satisfactory performance in object recognition
and understanding spatial relationships across languages, with top 5 most similar texts retrieved from the dataset for
each image. Bold text indicates ground truth and prediction (Pred.) value is in %.
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Prompts Generated Image

Table 10: The images generated by AltCLIPM9-guided Diffusion with the same prompt translated to nine languages
and a fixed seed.
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