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Abstract
Relation extraction (RE) aims to extract rela-
tions from sentences and documents. Existing
relation extraction models typically rely on su-
pervised machine learning. However, recent
studies showed that many RE datasets are in-
completely annotated. This is known as the
false negative problem in which valid relations
are falsely annotated as no_relation. Models
trained with such data inevitably make simi-
lar mistakes during the inference stage. Self-
training has been proven effective in alleviating
the false negative problem. However, tradi-
tional self-training is vulnerable to confirma-
tion bias and exhibits poor performance in mi-
nority classes. To overcome this limitation, we
proposed a novel class-adaptive re-sampling
self-training framework. Specifically, we re-
sampled the pseudo-labels for each class by pre-
cision and recall scores. Our re-sampling strat-
egy favored the pseudo-labels of classes with
high precision and low recall, which improved
the overall recall without significantly compro-
mising precision. We conducted experiments
on document-level and biomedical relation ex-
traction datasets, and the results showed that
our proposed self-training framework consis-
tently outperforms existing competitive meth-
ods on the Re-DocRED and ChemDisgene
datasets when the training data are incom-
pletely annotated1.

1 Introduction

Relation extraction (RE) (Wang et al., 2019; Chia
et al., 2022a) is an important yet highly challeng-
ing task in the field of information extraction (IE).
Compared with other IE tasks, such as named en-
tity recognition (NER) (Xu et al., 2021), semantic
role labeling (SRL) (Li et al., 2021), and aspect-
based sentiment analysis (ABSA) (Li et al., 2018;
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Zhang et al., 2021b), RE typically has a signif-
icantly larger label space and requires graphical
reasoning (Christopoulou et al., 2019). The com-
plexity of the RE task inevitably increases the diffi-
culty and cost of producing high-quality benchmark
datasets for this task.

In recent years, several works that specifically
focus on revising the annotation strategy and qual-
ity of existing RE datasets were conducted (Stoica
et al., 2021; Alt et al., 2020; Tan et al., 2022b). For
example, the DocRED (Yao et al., 2019) dataset is
one of the most popular benchmarks for document-
level relation extraction. This dataset is produced
by the recommend-revise scheme with machine
recommendation and human annotation. However,
Huang et al. (2022) and Tan et al. (2022b) pointed
out the false negative problem in the DocRED
dataset, indicating that over 60% of the relation
triples are not annotated. To provide a more reli-
able evaluation dataset for document-level relation
extraction tasks, Huang et al. (2022) re-annotated
96 documents that are selected from the original
development set of DocRED. In addition, Tan et al.
(2022b) developed the Re-DocRED dataset to pro-
vide a high-quality revised version of the devel-
opment set of DocRED. The Re-DocRED dataset
consists of a development set that contains 1,000
documents and a silver-quality training set that con-
tains 3,053 documents. Nevertheless, both works
on DocRED revision did not provide gold-quality
datasets due to the high cost of annotating the re-
lation triples for long documents. Learning from
incompletely annotated training data is crucial and
practical for relation extraction. Hence, in this
work, we focused on improving the training pro-
cess with incompletely annotated training data.

To tackle the problem of training with incom-
pletely annotated datasets, prior works leveraged
the self-training method to alleviate the detrimen-
tal effects of false negative examples (Feng et al.,
2018; Hu et al., 2021; Chen et al., 2021; Zhou
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Figure 1: Precision and recall scores of each class (ranked by class frequency: left [high] →right [low]) on the
development set of Re-DocRED when the model is trained on DocRED. P Reg. and R Reg. stand for the regression
lines of the scores.

et al., 2023). However, self-training-based meth-
ods are highly susceptible to confirmation bias,
that is, the erroneously predicted pseudo-labels are
likely to deteriorate the model’s performance in
subsequent rounds of training (Arazo et al., 2020;
Tarvainen and Valpola, 2017; Li et al., 2020a).
Furthermore, the label distribution of relation ex-
traction task is highly imbalanced. Therefore, the
predictions made by prior self-training methods
are likely to be of the majority classes. Wei et al.
(2021) proposed a re-sampling strategy based on
class frequencies to alleviate this problem in im-
age classification. In this way, not all generated
pseudo-labels will be used to update the training
datasets. The pseudo labels of the minority classes
have higher probabilities to be preserved than those
of the frequent classes. However, such a sampling
strategy does not specifically address the problems
caused by the erroneously generated pseudo labels.
When a model is trained on incompletely annotated
datasets, minority classes exhibit bad performance
and frequent classes may have low recall scores,
as shown in Figure 1. Merging pseudo labels with
original labels of the training dataset without con-
sidering the correctness of the former potentially
deteriorates performance in subsequent iterations.

In order to overcome confirmation bias in self-
training, we proposed a class-adaptive self-training
(CAST) approach that considers the correctness of
the pseudo labels. Instead of sampling the pseudo
labels based on class frequencies, we introduced a
class-adaptive sampling strategy to determine how
the generated pseudo labels should be preserved.
Specifically, we calculated the precision and re-
call scores of each class on the development set
and used the calculated scores to compute the sam-
pling probability of each class. Through such an
approach, CAST can alleviate confirmation bias
caused by erroneous pseudo labels. Our proposed
approach preserves the pseudo labels from classes

that have high precision and low recall scores and
penalizes the sampling probability for the pseudo
labels that belong to classes with high recall but
low precision scores.

Our contributions are summarized as follows.
(1) We proposed CAST, an approach that considers
the correctness of generated pseudo labels to alle-
viate confirmation bias in the self-training frame-
work. (2) Our approach was evaluated with training
datasets of different quality, and the experimental
results demonstrated the effectiveness of our ap-
proach. (3) Although our approach is not specif-
ically designed for favoring the minority classes,
the minority classes showed more significant per-
formance improvements than the frequent classes,
which is a nice property as the problem of long-
tail performance is a common bottleneck for real
applications.

2 Related Work

Neural Relation Extraction Deep neural mod-
els are successful in sentence-level and document-
level relation extraction. Zhang et al. (2017) pro-
posed position-aware attention to improve sentence-
level RE and published TACRED, which became a
widely used RE dataset. Yamada et al. (2020) devel-
oped LUKE, which further improved the SOTA per-
formance with entity pre-training and entity-aware
attention. Chia et al. (2022b) proposed a data gen-
eration framework for zero-shot relation extraction.
However, most relations in real-world data can only
be extracted based on inter-sentence information.
To extract relations across sentence boundaries, re-
cent studies began to explore document-level RE.
As previously mentioned, Yao et al. (2019) pro-
posed the popular benchmark dataset DocRED for
document-level RE. Zeng et al. (2020) leveraged
a double-graph network to model the entities and
relations within a document. To address the multi-
label problem of DocRE, Zhou et al. (2021) pro-
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posed using adaptive thresholds to extract all rela-
tions of a given entity pair. Zhang et al. (2021a)
developed the DocUNET model to reformulate
document-level RE as a semantic segmentation task
and used a U-shaped network architecture to im-
prove the performance of DocRE. Tan et al. (2022a)
proposed using knowledge distillation and focal
loss to denoise the distantly supervised data for
DocRE and achieved great performance on the Doc-
RED leaderboard. However, all preceding methods
are based on a closed-world assumption (i.e., the
entity pairs without relation annotation are negative
instances). This assumption ignores the presence
of false negative examples. Hence, even the above-
mentioned state-of-the-art methods may not per-
form well when the training data are incompletely
annotated.

Denoising for Relation Extraction RE is sus-
ceptible to noise in the training data. Noisy data
can be categorized into two types: false positives
(FPs) and false negatives (FNs). False positive
examples are mainly caused by misalignment of
knowledge bases. Xiao et al. (2020) proposed a
denoising algorithm that filters FP examples in dis-
tantly supervised data. Wang et al. (2019) tack-
led the class-imbalance problem of RE and NER
by meta-learning. The false negative problem is
also common in information extraction. Li et al.
(2020b); Xu et al. (2023) used simple negative sam-
pling strategies to alleviate the detrimental effects
of FN examples on NER. Most recently, Guo et al.
(2023) tackled the multi-label problem in RE by
entropy minimization and supervised contrastive
learning. Given that the FN problem is related to
incomplete annotation, supplementing the annota-
tion by self-training is a viable way to tackle this
problem (Erkan et al., 2007; Sun et al., 2011; Chen
et al., 2021; Hu et al., 2021). However, self-training
is susceptible to confirmation bias; conventional
self-training suffers from the problem of error prop-
agation and makes overwhelming predictions for
frequent classes. Prior research on semi-supervised
image classification (Wei et al., 2021; He et al.,
2021) indicated that re-sampling of pseudo-labels
can be beneficial to class-imbalanced self-training.
However, existing re-sampling strategies are de-
pendent only on the frequencies of the classes and
do not consider the actual performance of each
class. Our method alleviates confirmation bias by
employing a novel re-sampling strategy that con-
siders the precision and recall of each class on the
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Figure 2: Illustration of training dataset update of CAST,
and Algorithm 1 describes its full details.

development set. In this way, we can downsample
the predictions for popular classes and maintain
high-quality predictions for long-tail classes.

3 Methodology

3.1 Problem Definition

Document-level relation extraction (DocRE) is de-
fined as follows: given a text T and a set of n
entities {e1, ..., en} appearing in the text, the ob-
jective of the document-level RE is to identify the
relation type r ∈ C ∪{no_relation} for each entity
pair (ei, ej). Note that ei and ej denote two differ-
ent entities, and C is a predefined set of relation
classes. The complexity of this task is quadratic
in the number of entities, and the ratio of the NA
instances (no_relation) is very high compared with
sentence-level RE. Therefore, the resulting anno-
tated datasets are often incomplete. The setting of
this work is to train a document-level RE model
with an incompletely labeled training set, and then
the model is evaluated on a clean evaluation dataset,
such as Re-DocRED (Tan et al., 2022b).

We denote the training set as ST and the develop-
ment set as SD. Two types of training data are used
in this work, each representing a different annota-
tion quality. The first type is the training split of
the original DocRED data (Yao et al., 2019), which
we refer to as bronze-level training data. This data
is obtained by a recommend-revise scheme. Even
though the annotation of this bronze level is precise,
there are a significant number of missing triples in
this dataset. On the other hand, the training set of
the Re-DocRED dataset has added a considerable
number of triples to the bronze dataset, though a
small number of triples might still be missed. We
refer to this Re-DocRED dataset as silver-quality
training data.
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3.2 Our Approach
3.2.1 Overview
The main objective of our approach is to tackle
the RE problem when the training data ST is in-
completely annotated. We propose a class-adaptive
self-training (CAST) framework, as shown in Fig-
ure 2, to pseudo-label the potential false negative
examples within the training set. First, we split the
training set into N folds and train an RE model
with N − 1 folds. The remaining fold STk

is used
for inference. Next, we use a small development
set SD to evaluate the models and calculate the
sampling probability for each relation class (Eq.
1). The predicted label set YTk

is obtained by con-
ducting inference on STk

. Then, we re-sample the
predicted labels based on the computed probability,
which is calculated based on the performance of
each class. The re-sampled label set is denoted as
Y

′
Tk

. Lastly, Y
′
Tk

will be merged with the initial la-
bels of STk

. The details of the proposed framework
are discussed in the following subsections.

3.2.2 Self-Training
In traditional self-training, models are trained on a
small amount of well-annotated data and pseudo-
labels are generated on unlabeled instances (Zhu
and Goldberg, 2009). However, we do not have
access to well-annotated training data, and our
training data contains false negative examples.
Therefore, we need to construct an N -fold cross-
validation self-training system. Given a set of train-
ing documents ST with relation triplet annotation,
these documents are divided into N folds. The
first N − 1 folds will be used for training an RE
model. Then, the trained model will be used to
generate pseudo-labels for the held out N -th fold.
The pseudo-labels will be merged with the original
labels, and the merged data will be used to train a
new model. The N -fold pseudo labeling process
will be repeated for multiple rounds until no per-
formance improvement is observed on the final RE
system. However, because the class distribution of
the document-level RE task is highly imbalanced,
pseudo-labeling may favor the popular classes dur-
ing prediction. This inevitably introduces large
confirmation bias to popular classes, which is simi-
lar to the “rich-get-richer” phenomenon (Cho and
Roy, 2004).

3.2.3 Intuition
When the annotation of the training set is incom-
plete, the model trained on such data typically

shows high precision and low recall scores for most
of the classes. Figure 1 shows the precision and
recall of each class of the model that is trained on
the DocRED dataset and evaluated on the develop-
ment set of Re-DocRED. Among the 96 classes,
most of the classes obtain higher precision scores
than recall scores. Only one class that has a higher
recall score than precision score; some classes have
0 precision and recall scores. Given this empirical
observation, boosting self-training performance by
sampling more pseudo-labeled examples from the
classes that have high precision and low recall is a
good strategy because (1) the pseudo labels of such
classes tend to have better quality and (2) the recall
performance of these classes can be improved by
adding true positive examples. For extreme cases in
which a class has predictions that are all wrong (i.e.
its precision and recall are both 0), the logical ac-
tion is to discard the corresponding pseudo-labels.

3.2.4 Class-Adaptive Self-Training (CAST)
As previously mentioned, traditional self-training
suffers from confirmation bias, especially for RE
task that has a highly imbalanced class distribu-
tion. The pseudo-labels that are generated by such
an approach tend to be biased toward the major-
ity classes. To alleviate this problem, we pro-
pose a class-adaptive self-training framework that
filters the pseudo-labels by the per-class perfor-
mance. Unlike existing self-training re-sampling
techniques (Wei et al., 2021; He et al., 2021) that
take only the class frequencies into account, our
framework samples pseudo-labels based on their
performance on the development sets.

First, we evaluate the model for pseudo-labeling
on the development set SD and calculate the preci-
sion P and recall R for each class. Then, we define
our sampling probability µi for each relation class
i as:

µi = [Pi ∗ (1−Ri)]
β (1)

where Pi and Ri are the precision and recall scores
of class i, respectively, and β is a hyper-parameter
that controls the smoothness of the sampling rates.

Note that all pseudo labels will be used when
the sampling probability equals to 1. Conversely,
all the pseudo labels will be discarded when the
sampling probability equals to 0. If the recall of a
specific class is very small and its precision is close
to 1, the sampling rate of the class will be closer
to 1. On the contrary, if the recall for a certain
class is high, the sampling rate of the class will
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Algorithm 1 Class-Adaptive Self-Training
Input:
M : Number of rounds
N : Number of folds
ST : An incompletely annotated training set
SD : A task-specific development set
θ: A backbone model with parameters
β: Smoothness coefficient

for j ∈ {1, ..,M} do
ST = {ST1

, ..., STN
} ▷ Split ST into N folds

for k ∈ {1, .., N} do
ST− ← ST − STk

θ∗
k ← Optimize θk with (ST− , SD) ▷ Training w/o STk

YTk
← Inference on STk

by θ∗
k ▷ Predict labels of STk

Compute Pi, Ri with θ∗
k and SD, ∀i ∈ C

µi ← [Pi ∗ (1− Ri)]
β , ∀i ∈ C ▷ Eq. 1

Y
′
Tk
← Re-sample YTk

with rates {µi}, ∀i ∈ C

S
′
Tk
←Merge Y

′
Tk

with annotation of STk

ST ← S
′
T1
∪ ... ∪ S

′
TN

▷ Update training set
θ∗
j ←Optimize θ with (ST , SD) ▷ Save model for round j

θ∗ ← evaluate {θ∗
1 , ..., θ

∗
M} on SD

return θ∗

DocRE DocRED Re-DocRED Re-DocRED
Train Train Dev Test

# Documents 3,053 3,053 500 500
Avg. # Entities per Doc 19.4 19.4 19.4 19.6
Avg. # Triples per Doc 12.5 28.1 34.6 34.9
Avg. # Sentences per Doc 7.9 7.9 8.2 7.9
# NA rate 97.0% 94.3% 93.1% 93.1%

BioRE ChemDisGene
Train Dev Test

# Documents 76,544 1,480 523
Avg. # Words 196.6 237.3 235.6
Avg. # Entities per Doc 7.6 9.0 10.0
Avg. # Triples per Doc 2.2 2.2 7.2
Avg. # Sentences per Doc 12.6 14.0 13.2
# NA rate 96.8% 97.7% 93.8%

Table 1: Dataset statistics of our experiments for DocRE
and BioRE.

be low. In this way, our method is able to allevi-
ate confirmation bias toward the popular classes,
which typically have higher recall. The pseudo-
code of our proposed CAST framework is provided
in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Our proposed CAST framework can be applied
with any backbone RE model. For the experi-
ment on DocRED, we adopted the ATLOP (Zhou
et al., 2021) model as the backbone model, which
is a well-established baseline for the DocRE task.
We used BERT-Base (Devlin et al., 2019) and
RoBERTa-Large (Liu et al., 2019) as the encoders.
In addition to DocRED, we conduct experiments
on ChemDisGene (Zhang et al., 2022), a DocRE
dataset for biomedical relation extraction (BioRE).

We used the PubMedBERT (Gu et al., 2021) en-
coder for the BioRE experiments. We use the devel-
opment set of Re-DocRED in the document-level
RE experiments because the Re-DocRED dataset
has a high quality. Moreover, we use the distantly-
supervised development set of ChemDisGene for
the BioRE experiments. Our final models are eval-
uated on the test sets of Re-DocRED and ChemDis-
Gene. Both of the test sets are human-annotated
and have high quality, the statistics of the datasets
can be found in Table 1.

For the hyper-parameters, we set M = 5 (i.e.,
the iteration round in Algorithm 1) and N = 5
for the self-training-based methods because these
methods typically reach the highest performance
before the fifth round and five-fold training is the
conventional practice for cross validation. For β,
we grid searched β ∈ {0.0, 0.25, 0.5, 0.75, 1}. For
evaluation, we used micro-averaged F1 score as the
evaluation metric. We also evaluate the F1 score for
frequent classes and long-tail classes, denoted as
Freq_F1 and LT_F1, respectively. For the DocRED
dataset, the frequent classes include the top 10 most
popular relation types2 in the label space; the rest of
the classes are categorized as the long-tail classes.
Following Yao et al. (2019), we use an additional
metric Ign_F1 on the DocRE task. This metric
calculates the F1 score for the triples that do not
appear in the training data.

4.2 Baselines
Vanilla Baselines This approach trains existing
state-of-the-art RE models on incompletely anno-
tated data and serves as our baseline method. As
stated earlier, we use ATLOP as the backbone
model for the DocRE experiments. In addition to
ATLOP, we compare GAIN (Zeng et al., 2020),
DocuNET (Zhang et al., 2021a), and KD-DocRE
(Tan et al., 2022a) as our vanilla baselines. These
methods are top-performing methods on the Re-
DocRED dataset. However, similar to ATLOP, the
performances of these models deteriorate signifi-
cantly under the incomplete annotation setting.

Negative Sampling (NS) (Li et al., 2020b) This
method tackles the incomplete annotation problem
through negative sampling. To alleviate the effects
of false negatives, this method randomly selects
partial negative samples for training. Such an ap-
proach can help to alleviate the detrimental effect
of the false negative problem.

2They cover 59.4% of the positive instances.
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Model P R F1 Ign_F1 Freq_F1 LT_F1

B
E

R
T

GAIN† 88.11 30.98 45.82 45.57 - -
ATLOP 88.39 ±0.39 28.87 ±0.34 43.52 ±0.25 43.28 ±0.24 45.49 ±0.24 40.46 ±0.28

SSR-PU-ATLOP† 65.10 ±0.90 50.53 ±0.89 56.84 ±0.72 55.45 ±0.59 60.21 ±0.64 51.84 ±0.82

NS-ATLOP 74.79 ±0.31 46.33 ±0.34 57.22±0.25 56.28 ±0.21 59.23 ±0.23 54.13 ±0.24

VST-ATLOP 63.53 ±1.17 56.41 ±0.86 59.56 ±0.16 58.03 ±0.25 63.17 ±0.46 55.61 ±0.25

CREST-ATLOP 69.34 ±1.55 50.58 ±1.35 58.48 ±0.30 57.33 ±0.21 60.31 ±0.64 56.33 ±0.15

CAST-ATLOP (Ours) 70.49 ±1.12 54.34 ±1.07 61.36 ±0.67 60.16 ±0.79 63.66 ±0.44 58.12 ±0.36

R
oB

E
R

Ta

DocuNET† 94.16 30.42 45.99 45.88 - -
KD-DocRE∗ 92.08 32.07 47.57 47.32 - -
ATLOP 92.62 ±0.35 33.61 ±0.48 49.32 ±0.29 49.16 ±0.27 51.49 ±0.51 45.36 ±0.43

SSR-PU-ATLOP† 65.71 ± 0.28 57.01 ±0.47 61.05 ±0.21 59.48 ±0.18 62.85 ±0.10 58.19 ±0.54

NS-ATLOP 68.39 ±2.23 56.05 ±0.98 61.58 ±0.48 60.43 ±0.55 65.35 ±0.12 57.16 ±0.44

VST-ATLOP 62.85 ±0.48 63.58 ±0.62 63.21 ±0.39 61.83 ±0.41 65.68 ±0.43 60.09 ±0.45

CREST-ATLOP 73.09 ±0.79 55.06 ±0.86 62.81 ±0.35 61.90 ±0.33 63.71 ±0.41 61.75 ±0.49

CAST-ATLOP (Ours) 72.83 ±0.50 59.22 ±0.61 65.32 ±0.22 64.25 ±0.15 66.99 ±0.29 63.05 ±0.11

Table 2: Experimental results on the test set of Re-DocRED when trained with DocRED. Model selection is based
on the dev set of Re-DocRED. The reported results are the average of five runs. †: The results are reproduced from
Wang et al. (2022) with the same development set SD. ∗: The results are retrieved from Tan et al. (2022b).

Vanilla Self-Training (VST) (Peng et al., 2019;
Jie et al., 2019) VST is a variant of simple self-
training. In this approach, models are trained with
N folds, and all pseudo-labels are directly com-
bined with the original labels. Then, a new model
is trained on the datasets with combined labels.

Class Re-balancing Self-Training (CREST)
(Wei et al., 2021) This algorithm is the most
advanced baseline of class-imbalanced semi-
supervised training, re-samples the pseudo-labels
generated by models. However, this sampling strat-
egy only considers the frequencies of the training
samples, whereas our CAST considers the per-class
performance on the development set.

SSR Positive Unlabeled Learning (SSR-PU)
(Wang et al., 2022) This method applies a posi-
tive unlabeled learning algorithm for DocRE under
the incomplete annotation scenario. SSR-PU uti-
lizes a shift-and-squared ranking (SSR) loss to ac-
commodate the distribution shifts for the unlabeled
examples.

BioRE Baselines For the BioRE experiments,
we compare our methods with Biaffine Relation
Attention Network BRAN (Verga et al., 2018) and
PubmedBERT (Gu et al., 2021), which is a pre-
trained language model in the biomedical domain.

4.3 Experimental Results

Table 2 presents the experimental results for the
document-level RE. The experimental results on
the original DocRED dataset show that the F1 score
of the ATLOP-RoBERTa model is only 49.32. This

Model P R F1 Ign_F1 Freq_F1 LT_F1

Re-DocRED Training Data

B
E

R
T

ATLOP 86.70 62.46 72.61 71.86 75.92 67.46
NS-ATLOP 77.63 69.17 73.16 72.92 77.28 67.59
VST-ATLOP 72.77 75.55 74.14 72.48 78.47 68.13
CREST-ATLOP 75.94 72.47 74.17 72.77 77.93 68.68

CAST-ATLOP (Ours) 76.59 72.84 74.67 73.32 78.53 69.34

Table 3: Experimental results on the test set of Re-
DocRED when trained on silver quality data.

Model P R F1

BRAN† 41.8 26.6 32.5

Pu
bM

ed
B

E
R

T

PubMedBERT† 64.3 31.3 42.1
BRAN† 70.9 31.6 43.8
ATLOP∗ 76.17 ± 0.36 29.70 ±0.54 42.73 ±0.36

SSR-PU-ATLOP∗ 54.27 ±0.23 43.93 ±0.40 48.56 ±0.32

NS-ATLOP 71.54 ±0.50 35.52 ±0.29 47.47 ±0.37

VST-ATLOP 54.92 ±0.42 48.39 ±0.58 51.24 ±0.30

CREST-ATLOP 59.42 ±1.63 42.12 ±0.65 49.28 ±0.21

CAST-ATLOP (Ours) 66.68 ±2.22 45.48 ±1.27 54.03 ±0.17

Table 4: Experimental results on ChemDisGene. The
results with numeric superscripts are taken from the
respective papers. †: The results are retrieved from
Zhang et al. (2022). ∗: The results are retrieved from
Wang et al. (2022).

finding can be ascribed to the low recall score of
this method, as shown in Figure 1. NS significantly
improves the performance compared with the base-
line. After comparing vanilla self-training with the
baseline, we observe that although the recall score
is the highest for this method, its precision is signif-
icantly reduced. We observe similar trends for all
self-training based methods (i.e., VST, CREST, and
CAST), the recall improved at the expense of pre-
cision. Notably, the performance of the simple NS
baseline exceeds the performance of SSR-PU when
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Figure 3: Comparison of different self-training strategies when training on DocRED.
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Figure 4: Precision and recall scores for each class (ranked by class frequency: left (high)→right (low)) on the dev
set of Re-DocRED of VST and CAST’s best models, which are trained on DocRED. Better view in color.

trained on the DocRED data. Our proposed CAST
framework consistently outperforms the competi-
tive baselines and achieves the highest performance
for both BERT and RoBERTa encoders. Our best-
performing model outperforms the baseline by 16.0
F1 (49.32 vs. 65.32). Moreover, the CAST obtains
the highest precision score among the three self-
training methods, thereby showing that the exam-
ples added by our class-adaptive sampling strategy
have better quality.

The experimental results on the test set of Re-
DocRED (Table 3) depict that the baseline F1 score
is significantly improved due to the large gain in
the recall score when the training data are switched
from bronze-quality to silver-quality. Compared
with baseline approaches, our CAST achieves con-
sistent performance improvements in terms of F1
score. The F1 difference between the baseline and
our CAST is 2.06 (72.61 vs. 74.67). However,
the performance gap between our approach and
the baseline is smaller than the corresponding gap

when both are trained with DocRED. This indi-
cates that the performance of existing state-of-the-
art models for document-level RE is decent when
high-quality training data is provided but declines
when the training data are incompletely annotated.
This finding verifies the necessity of developing
better self-training techniques because preparing
high-quality training data is costly.

Table 4 presents the experiments on biomedical
RE. Our CAST model consistently outperforms
strong baselines, exceeding the performance of
SSR-PU by 5.47 F1 (54.03 vs. 48.56).

On the basis of the results of DocRE and BioRE
experiments, self-training-based methods aim to
improve recall and consistently improve overall
performance when the training data is incompletely
annotated. However, our CAST maintains a better
balance between increasing recall and maintaining
precision.
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Figure 5: F1 scores of frequent and long-tail classes
with respect to rounds when trained on DocRED.
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Figure 6: Effect of different β values.

5 Analysis

5.1 Comparisons of Self-Training Strategies

To further compare different self-training strate-
gies, we illustrate the detailed performance with
respect to the self-training rounds in Figure 3. The
reported scores are on the development set of Re-
DocRED and the training data is from DocRED.
Figure 3b shows that all self-training-based meth-
ods generally have improving recall scores as the
number of self-training rounds increases. On the
contrary, the precision scores decline. From Fig-
ure 3c, we observe that VST outperforms CREST
and CAST in the first two rounds. This is mainly
because VST does not perform re-sampling on the
pseudo-labels and it utilizes all pseudo-labels. At
the beginning stage, these labels are of relatively
good quality. However, the performance of VST
drops after the second round of pseudo-labeling
because as the number of rounds increases, the in-
crease in the number of false positive examples
in the pseudo-labels outweighs the benefit. Mean-
while, the performance gains of CREST and CAST
are relatively stable, and both methods produce
their best-performing models at round 4. Com-
pared with CREST, our CAST maintains higher
precision scores as the number of rounds increases
(Figure 3a).

We also assess the F1 performance of the fre-

quent and long-tail classes with respect to the num-
ber of rounds, and the comparison is shown in Fig-
ure 5. The results reveal that VST suffers greatly
from confirmation bias on both frequent and LT
classes, i.e., Figure 5a and Figure 5b, and its perfor-
mance becomes very poor in round 5. In Figure 5b,
we can see that the performance gains of CAST is
stable across the training rounds and achieved the
best LT performance.

5.2 Detailed Analysis of CAST

In this section, we analyze the performance of our
CAST framework in detail. We first plot the pre-
cision and recall scores of VST and CAST for all
the classes in Figure 4, where the experimental re-
sults are obtained by training with the DocRED
dataset. The formulation of Figure 4 is the same as
Figure 1. Figure 4a demonstrates that VST signifi-
cantly improves the recall scores of many classes
compared with the baseline in Figure 1. However,
the improvements in recall scores are accompanied
by a large decline in precision scores. This obser-
vation shows that the pseudo-labels in VST contain
a considerable amount of erroneous predictions.
By contrast, our CAST framework is able to bet-
ter maintain the precision scores for most of the
classes. The recall scores for most of the classes
are significantly higher compared with those of the
baseline. This observation justifies the improve-
ments of the overall F1 scores in Table 2 despite
the lower recall of CAST model than VST.

5.3 Effect of β

We further analyze the effect of the sampling co-
efficient β on our CAST framework in Figure 6,
the experiments are conducted by training with the
DocRED dataset. When β value is small, CAST
behaves like the VST model, exhibits some F1 im-
provements in the first few rounds, and demon-
strates diminishing positive effects in the later
rounds. Larger β leads to better overall improve-
ments and smaller fluctuations across different
rounds. However, because the term [Pi ∗ (1−Ri)]
in Eq. 1 is smaller than 1, higher β may lead to
lower sampling rates for all the classes. As a result,
the convergence time of self-training may be longer.
The interpretation for other values of β is provided
in the Appendix C.
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6 Conclusions and Future Work

In this work, we study the under-explored prob-
lem of learning from incomplete annotation in rela-
tion extraction. This problem is highly important
in real-world applications. We show that existing
state-of-the-art models suffer in this scenario. To
tackle this problem, we proposed a novel CAST
framework. We conducted experiments on DocRE
and BioRE tasks, and experimental results show
that our method consistently outperforms competi-
tive baselines on both tasks. For future work, we
plan to extend our framework to the distant super-
vision scenario. From the domain perspective, we
plan to apply our framework to image classification
tasks.

7 Limitations

The proposed CAST framework carries the same
limitation of self-training-based methods, which is
the requirement for multiple rounds and multiple
splits of training. As a result, the GPU computing
hours of CAST are longer than those of vanilla
baselines and NS.
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Figure 7: Effect of larger β when training on DocRED.

sentence-level RE. First, there are exactly n = 2
entities for each SentRE example. Second, there is
only one relation type for an entity pair in SentRE,
whereas there can be multiple relation types for
DocRE. Again, we used two types of training data
for the SentRE task. The first set of training data is
from the original TACRED dataset, and the second
set of training data is from Re-TACRED. Com-
pared to the revision of Re-DocRED, which only
resolved the false negative problem3, the revision
of Re-TACRED not only resolved the false nega-
tive problem but also relabeled the false positive
instances.

The experimental results on SentRE are shown
in Table 5. For the TACRED dataset, the top 5
classes4 are included in the frequent classes. We
can also see that when training with bronze-quality
data (i.e., the upper section), our proposed CAST
still achieves the best performance in terms of F1
score. This observation shows that our method is ef-
fective across different relation extraction scenarios
and backbone models. On the other hand, we can
observe that the baseline model achieves the high-
est F1 score when training with the Re-TACRED
dataset (i.e., the lower section). As mentioned in
the section of problem definition, the Re-TACRED
training set has resolved the false negative and false
positive problems of TACRED. Therefore, by sim-
ply using all training samples of Re-TACRED, the
baseline approach achieves the best F1. It is worth
noting that our CAST is very robust and does not
hurt the performance, i.e., achieving slightly worse
F1 but slightly better recall compared with the base-
line.

3The problem of false positive is minor in DocRED.
4They cover 57.5% of the positive instances.

Model P R F1 Freq_F1 LT_F1

TACRED Training Data

Baseline 80.64 40.44 53.87 70.62 36.43
NS 62.37 53.96 57.86 74.49 40.57
VST 67.24 52.83 59.17 80.64 47.25
CREST 67.92 52.48 59.21 80.36 47.64
CAST (Ours) 73.33 51.03 60.18 81.12 48.75

Re-TACRED Training Data

Baseline 88.01 87.82 87.91 89.21 87.37
NS 85.44 88.56 86.97 88.75 86.24
VST 83.71 89.82 86.65 87.94 85.99
CREST 86.46 88.45 87.45 88.64 86.97
CAST (Ours) 87.62 87.96 87.78 89.14 87.31

Table 5: Experimental results on the test set of Re-
TACRED when trained on TACRED and Re-TACRED,
respectively. Model selection is based on the dev set of
Re-TACRED.

B Hyper-Parameters of the Baselines

In this section, we report the hyper-parameters of
the baseline experiments. For the negative sam-
pling experiments, we used sampling rate γ = 0.1
for the DocRED experiment, γ = 0.5 for TACRED
experiment and γ = 0.7 for the Re-TACRED
and Re-DocRED experiments. γ is searched from
γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

From CREST (Wei et al., 2021), the classes are
first ranked by their frequencies, and the sampling
rate for class i is calculated as:

µi = (
X|C|+1−i

X1
)α (2)

where X1 is the count of the most frequent class
among the positive classes. We set the power
α = 0.33 as reported in their paper. For all the
self-training-based experiments (VST, CREST, and
CAST), we trained with 10 epochs per fold. All our
experiments were run on a NVIDIA-V100 GPU.
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Model P R F1 Ign_F1 Freq_F1 LT_F1

DocRED Training Data with Incomplete SD

B
E

R
T

ATLOP 88.39 28.87 43.52 43.28 45.49 40.46
SSR-PU 70.42 46.67 56.14 55.21 59.38 49.24
NS-ATLOP 55.98 55.63 55.78 53.90 58.73 51.92
VST-ATLOP 63.03 51.60 56.71 55.26 60.75 51.52
CREST-ATLOP 72.83 47.81 57.72 56.71 59.05 54.82

CAST-ATLOP (Ours) 70.97 50.70 59.14 58.03 61.20 56.22

Table 6: Experimental results on the test set of Re-
DocRED when trained on DocRED training data and
using the development set of DocRED for model selec-
tion.

C Experiments on larger β

In Figure 7, we show the experimental results when
β is larger than 1.0. Increasing β inevitably reduces
the sampling probability for all the classes, which
is more conservative. Therefore, larger β tends
to have higher precision scores and lower recall
scores. From Figure 7, we see that the optimal
round for F1 scores is 4 for β = 1.0 and 5 for
β = 1.25. When β > 1.5, the F1 score may not
reach the optimal point before the 6th round. Since
CAST would require training MN times, larger β
may lead to significantly longer computation time
to reach the optimal F1 score.

D Experiments with Incomplete SD

In this section, we conducted experiments on Doc-
RED with a development set of lower quality.
Specifically, we used SD from the DocRED dataset
instead of Re-DocRED. The experiment results are
shown in Table 6. We can see that the over perfor-
mances of most methods were decreased. This ob-
servation showed the importance of a high-quality
development set when training with incomplete
data. Nevertheless, our CAST model still achieves
the best overall performance among the compared
methods.
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