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Abstract

Keyphrase generation is the task of summa-
rizing the contents of any given article into a
few salient phrases (or keyphrases). Existing
works for the task mostly rely on large-scale
annotated datasets, which are not easy to ac-
quire. Very few works address the problem
of keyphrase generation in low-resource set-
tings, but they still rely on a lot of additional
unlabeled data for pretraining and on automatic
methods for pseudo-annotations. In this paper,
we present data augmentation strategies specifi-
cally to address keyphrase generation in purely
resource-constrained domains. We design tech-
niques that use the full text of the articles to
improve both present and absent keyphrase
generation. We test our approach compre-
hensively on three datasets and show that the
data augmentation strategies consistently im-
prove the state-of-the-art performance. We
release our source code at https://github.
com/kgarg8/kpgen-lowres-data-aug.

1 Introduction

Keyphrase generation (KG) helps in document
understanding by summarizing the document in
the form of a few salient phrases (or keyphrases).
These keyphrases may or may not appear verba-
tim in the original text and accordingly, they are
referred to as either present or absent keyphrases.
The task has useful applications to many down-
stream tasks, e.g., document clustering (Ham-
mouda et al., 2005), matching reviewers to appro-
priate papers in the conference portals (Augenstein
et al., 2017), recommendation systems (Augenstein
et al., 2017), text classification (Wilson et al., 2005;
Hulth and Megyesi, 2006; Berend, 2011), index
construction (Ritchie et al., 2006) and sentiment
analysis and opinion mining (Wilson et al., 2005;
Berend, 2011).

Prior works for keyphrase generation have
largely focused on using large-scale annotated
datasets for various domains - computer science

(KP20k), news (KPTimes, JPTimes), webpages
(OpenKP), etc. However, such large annotation
datasets are not available in all domains (e.g.,
medicine, law, finance), either due to paucity in
terms of available data or lack of domain exper-
tise among the annotators or even the high anno-
tation costs. This necessitates the focus on the
low-resource domains.

The traditional ways to address low-resource
keyphrase generation have been centered around
using semi-supervised or unsupervised learning
techniques (Ye and Wang, 2018; Wu et al., 2022;
Ray Chowdhury et al., 2022). For these methods,
a lot of unlabeled data is necessary and needs to
be curated for model training. The unlabeled data
is further annotated automatically using keyphrase
extraction methods and is used for pretraining the
model or is used in the auxiliary task for multi-
tasking. There are two limitations to these methods:
(1) they have to still depend on additional large-
scale unlabeled data, which may not be available
always; and (2) the automatic annotation may not
be accurate enough, especially when the off-the-
shelf keyphrase generation or extraction models are
pretrained on a different domain.

In this paper, we develop data augmentation
strategies for purely low-resource domains, which
do not require acquiring unlabeled data for pretrain-
ing or automatic annotation approaches for unla-
beled data (which may introduce errors). Inspired
by Garg et al. (2022) who showed the benefits of
using information beyond the title and abstract for
keyphrase generation, we leverage the full text of
the documents (which is often ignored by prior
works) and present ways for augmenting the text
for improving both present and absent keyphrase
generation performance.

Data augmentation in NLP has recently become
a promising line of research to improve the state-of-
the-art performance (Wei and Zou, 2019; Fadaee
et al., 2017; Li and Caragea, 2021; Sun et al.,

8442

https://github.com/kgarg8/kpgen-lowres-data-aug
https://github.com/kgarg8/kpgen-lowres-data-aug


Methods Excerpts from different data augmentation methods

TITLE || ABSTRACT casesian : a knowledge-based system using statistical and experiential perspectives for improving the

knowledge sharing in the medical prescription process [SEP] objectives : knowledge sharing is crucial for bet-
ter patient care in the healthcare industry

AUG_TA_SR casesian : a knowledge based system using statistical and experiential perspectives for better the knowledge sharing
in the medical examination prescription [SEP] objectives : knowledge sharing is crucial for advantageously patient

role care in the healthcare industry

AUG_TA_BT cassian : a knowledge-based system that uses statistical and experiential perspectives to improve the sharing of

knowledge in the medical prescription process [SEP] objectives : knowledge sharing is essential to improve patient

care in the health sector

AUG_TA_KPD casesian : a [MASK] using statistical and experiential perspectives for improving the [MASK] in the [MASK]
process [SEP] objectives : [MASK] is crucial for better patient care in the healthcare industry

AUG_TA_KPSR casesian : a cognition based system using statistical and experiential perspectives for improving the noesis sharing in

the checkup prescription process [SEP] objectives : noesis sharing is crucial for better patient care in the healthcare
industry

AUG_BODY numerous methods have been investigated for improving the knowledge sharing process in medical prescription

[SEP] case-based reasoning is one of the most prevalent knowledge extraction methods

GOLD KEYPHRASES case-based reasoning , medical prescription , knowledge-based system , knowledge sharing , bayesian theorem

Table 1: An example depicting different augmentation methods used in the paper. The text is highlighted as
follows: DIVERSITY introduced in the augmented samples , ABSENT KEYPHRASES , PRESENT KEYPHRASES
(highlighted only in TITLE || ABSTRACT for brevity). Note that all AUG prefixed methods augment as a separate
article to the original article T || A. For specific details about each method, please refer to §3.2. Best viewed in color.

2020; Xie et al., 2020; Feng et al., 2020; Park and
Caragea, 2022; Yadav and Caragea, 2022). An
ideal data augmentation technique is desirous to
have the following characteristics: (1) to introduce
diversity in training samples but neither too much
(otherwise, training samples fail to represent the
given domain) nor too less (otherwise, it leads to
overfitting); (2) to be easy-to-implement; and (3)
to improve model performance.

Towards this end, we design and experiment
with four data augmentation techniques (the first
two being specifically designed for keyphrase gen-
eration) that remake the body1 of a given article
and then augment it to the training data samples
containing Title and Abstract (T || A): (1) AUG-
BODY-KPD where the new training samples con-
tain masked body (i.e., we drop present keyphrases
with a certain probability from the body), (2) AUG-
BODY-KPSR where all the instances of present
keyphrases (in contrast to random tokens as in the
standard synonym replacement) in the body are re-
placed with their synonyms, (3) AUG-BODY-BT
where the body text is translated to an intermediate
language and then back to the original language, (4)
AUG-BODY-SR where the standard synonym re-
placement is applied to random tokens of the body.

1Body refers to the full text of the article excluding Title
and Abstract.

In addition to augmentation with the body, we also
provide methods for augmentation using T || A. We
depict the representative augmentation strategies in
Table 1.

The intuition is that while augmenting the text if
we further drop some of the present keyphrases,
similar to Masked Language Modeling (Devlin
et al., 2019), that makes the task harder and the
model is forced to learn to generate the keyphrases.
Introducing synonyms and back-translation fur-
ther increases the diversity of the samples in a
much controlled way. Recently, several full-text
datasets have been proposed for the KG task,
e.g., FullTextKP (Garg et al., 2022), LDKP3K
(Mahata et al., 2022), and LDKP10K (Mahata
et al., 2022). We use two of these datasets, i.e.,
LDKP3K and LDKP10K, that contain scientific
papers, along with a third dataset KPTimes (Gal-
lina et al., 2019) which mimics full-text keyphrase
generation datasets but from a different domain,
i.e., news. Through extensive experiments on the
three datasets, we observe that although it is hard
to improve the present keyphrase generation per-
formance without sacrificing the absent keyphrase
generation performance, our proposed augmenta-
tion approaches with the body consistently improve
both. Moreover, the augmentation methods with
body steadily surpass the performance of data aug-
mentation methods that use only Title and Abstract.
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In summary, the main contribution of the pa-
per is to demonstrate data augmentation strategies
for the keyphrase generation task particularly for
purely low-resource domains (which have been
under-explored). We present simple yet effective
data augmentation methods using the full text of
the articles and demonstrate large improvements
over the state-of-the-art methods.

2 Related Work

Meng et al. (2017) first proposed to solve
Keyphrase Generation as a sequence-to-sequence
task using deep learning (encoder-decoder) meth-
ods. They proposed CopyRNN which uses the
copy mechanism (Gu et al., 2016) with the GRU-
based encoder-decoder model. This was further
extended by Chen et al. (2018) to incorporate cor-
relations between the predicted keyphrases (Cor-
rRNN) and by Yuan et al. (2020) to propose a mech-
anism to generate a sequence of a variable num-
ber of keyphrases (catSeq). Several other works
approached the task using reinforcement learning
(Chan et al., 2019), generative adversarial networks
(Swaminathan et al., 2020), and hierarchical decod-
ing (Chen et al., 2020). Ye et al. (2021b) further
reframed the task as sequence-to-set generation in-
stead of sequence-to-sequence generation and used
the transformer model for the first time for this task.
Later, Garg et al. (2022); Wu et al. (2022); Kulka-
rni et al. (2022); Wu et al. (2021) used other pre-
trained models like Longformer Encoder-Decoder,
BART, KeyBART, and UniLM. In this paper, we
constrain our focus to CatSeq model (Yuan et al.,
2020) and explore data augmentation strategies us-
ing CatSeq on three datasets. However, our aug-
mentation strategies can be extended to work with
other pre-trained models in future work.

Data Augmentation & Keyphrase Generation.
Data augmentation has been explored in re-
lated tasks like Named-Entity Recognition (Dai
and Adel, 2020; Wang and Henao, 2021), and
Keyphrase Extraction (Veyseh et al., 2022; Liu
et al., 2018), but there have been minimal efforts
for exploring data augmentation in Keyphrase Gen-
eration. Most of such works deal with augmen-
tation of the candidate keyphrases (extracted us-
ing an off-the-shelf unsupervised keyphrase ex-
traction method) to the ground truth keyphrases.
Ye and Wang (2018) generated synthetic ground
truth labels for the additional unlabeled data. Shen
et al. (2022) generated silver labels in addition to

the gold-labeled keyphrases using an automatic
comparison and ranking mechanism. Chen et al.
(2019); Santosh et al. (2021) augmented keyphrases
from semantically similar documents to improve
keyphrase generation. In contrast, we deal mainly
with the augmentation on the input side (i.e., aug-
menting text to the given articles instead of aug-
menting the ground-truth keyphrases). Garg et al.
(2022) used external information from various parts
of the body and appended it to the T || A of the
given articles. Our data augmentation strategy is
weakly inspired by this work and we use this work
as one of the baselines for comparison. Ray Chowd-
hury et al. (2022) proposed a data augmentation
strategy similar to one of our augmentation meth-
ods (suffixed with KPD), i.e., randomly dropping
present keyphrases from text.. We leverage the
strategy further to drop the present keyphrases from
even the body of the articles and then augment it to
the articles themselves.

Low-Resource Keyphrase Generation. Wu
et al. (2022) presented a method for a low-resource
setting where they utilized the major fraction of a
large-scale dataset (KP20k) as unlabeled data for
pretraining (using sophisticated pretraining objec-
tives) and the smaller fraction of the dataset for
fine-tuning. Ye and Wang (2018) proposed a semi-
supervised technique where they created synthetic
keyphrases for the large-scale unlabeled data and
also utilized the unlabeled data for training the
model in a multi-tasking fashion. In contrast, our
methods do not require acquiring any unlabeled
data or pretraining or multi-task training but work
with a few annotated samples. However, all the
above works can very well complement our meth-
ods to further improve the performance.

3 Methods

In this section, we first describe the formulation of
the keyphrase generation task. Next, we describe
the baselines followed by the data augmentation
strategies that we propose for keyphrase genera-
tion.

Problem Formulation. Keyphrase Generation
can be posited as a sequence-to-sequence genera-
tion task where the input is the text from a given
article and the output is a sequence of keyphrases
that summarize the article. Formally2, the task can

2We model the problem similar to CATSEQ as proposed by
Yuan et al. (2020).
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Datasets #Train #Dev #Test Avg #words Avg #kp Avg kp-len % Present % Absent
LDKP3K♠ 50,000 3,339 3,413 6,457 4.45 1.86 84.24 15.76
LDKP10K♠ 50,000 10,000 10,000 4,674 5.98 2.07 74.40 25.60
KPTimes 259,923 10,000 20,000 948 4.03 2.17 48.44 51.56

Table 2: Statistics of the datasets. #words: number of words in the document, #kp: number of keyphrases, kp-len:
keyphrase length, % Present (Absent): percentage of present (absent) keyphrases. ♠ indicates medium version of
the original dataset. Note that the statistics are computed for the combined train, dev and test sets.

be denoted as follows:
Input: Title || Sent1 || Sent2 ||...|| Sentk
Output: kp1 || kp2 ||...||kpn

where kpi denotes a keyphrase, Sentj denotes a
sentence from the abstract or from the body of the
article, || denotes any delimiter (e.g., [SEP] in this
work).

3.1 Baselines
T || A: This baseline contains all the training sam-
ples with Title and Abstract concatenated as T
[SEP] A.
T || A || BODY: For this baseline, we simply con-
catenate the body of the article to T || A. This
baseline was presented in the prior work by Garg
et al. (2022).

3.2 Data Augmentation Strategies
Further, as discussed in §1, we describe the data
augmentation strategies created primarily using
four ways of augmentation: dropout, synonym re-
placement (both keyphrase-specific and standard)
and back-translation. We describe them as follows:

AUG_BODY: In this method, we augment the train-
ing set with the text from the body of each article,
which doubles the total number of samples. That
is, one sample is T || A and the other is BODY (i.e.,
sentences from the body of the article).

AUG_BODY_KPD: In this method, we first apply
the dropout technique presented by Ray Chowd-
hury et al. (2022) to the body of the article and then
augment it (as above). The dropout technique is to
mask some of the present keyphrases (particularly,
all occurrences of a given keyphrase) in the body
of the article.

AUG_TA_KPD: In this method of augmentation,
we first apply the dropout technique to the T || A,
and then add it to the training set.

AUG_BODY_KPSR: In this method, we replace
all the present keyphrases in the body of the arti-
cle with the corresponding synonyms from NLTK
WordNet (Miller, 1995) and augment it to the
training set. If a particular keyphrase does not

have a corresponding synonym, we retain the orig-
inal keyphrase. Notably, only a small number of
keyphrases lack synonyms in the WordNet. For
instance, we were able to find synonyms for 2936
(out of 3282) keyphrases for data augmentation on
the Body, with 1000 samples of LDKP3K dataset.
We show the statistics for the LDKP3K dataset in
Table 3.

1000 2000 4000 8000
Aug_TA_KPSR 3386/ 6705/ 13374/ 26757/

3733 7385 14702 29398
Aug_Body_KPSR 2936/ 5844/ 11671/ 23538/

3282 6515 13001 16171

Table 3: Statistics of the synonyms replaced/ total syn-
onyms by AUG_BODY_KPSR and AUG_TA_KPSR
methods for LDKP3K dataset for four settings, i.e.,
1000, 2000, 4000, 8000 samples.

AUG_TA_KPSR: This is similar to
AUG_BODY_KPSR but with the difference
that we replace present keyphrases with their
synonyms in the T || A instead of the body of the
article.

AUG_BODY_BT: In this method, we backtrans-
late the body of the article from English to French
and back to English using Opus-MT (Tiedemann
and Thottingal, 2020) pretrained translation models.
The backtranslated (or equivalently, paraphrased)
articles are then augmented as separate samples
to the training set. During the translation of text
from one language to another, we use temperature
sampling with a temperature value equal to 0.7.

AUG_TA_BT: This method applies back transla-
tion model to the T || A instead of the body and
does augmentation similar to AUG_BODY_BT.

AUG_BODY_SR: We use the standard synonym
replacement, i.e., we randomly select 10% of the to-
kens from the body of a given article, replace them
with their corresponding synonyms from NLTK
Wordnet, and augment the text as a separate article
to the training set.
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AUG_TA_SR: We do augmentation similar to
AUG_BODY_SR but use the T || A instead of body.

4 Experimental Setup
4.1 Datasets
We conduct experiments on three datasets for
keyphrase generation. All these datasets contain
the full text of the articles along with the keyphrase
annotations. 1) LDKP3K (Mahata et al., 2022)
contains computer science research articles from
online digital libraries like ACM Digital Library,
ScienceDirect and Wiley. It is a subset of KP20K
corpus (Meng et al., 2017) but each article now
contains the full text instead of just the title and ab-
stract. 2) LDKP10K (Mahata et al., 2022) expands
a subset of articles from OAGkx dataset (Çano and
Bojar, 2019) to contain their full text. The articles
are scientific publications curated from various do-
mains. We use the medium version of both LDKP
datasets (each consists of 50,000 samples in the
training set) to facilitate quality sampling of the
articles for the low-resource setting while being
mindful of the computational budget. 3) KPTi-
mes (Gallina et al., 2019) is a large-scale dataset
with long news texts. To mimic KG datasets, we
map the heading of the news article to Title, and
segment the main body of the news article into a
maximum of 300-words3 Abstract and the rest of
the text as Body. We choose KPTimes to validate
our observation on an altogether different domain.
Datasets’ statistics are shown in Table 2. Dataset
preprocessing steps are outlined in Appendix §A.

4.2 Evaluation
We compare the performance of the different meth-
ods comprehensively for four low-resource settings,
i.e., with 1000, 2000, 4000 and 8000 samples. The
settings are highly competitive to the prior works
where they used at best 5000 samples (Ray Chowd-
hury et al., 2022; Wu et al., 2022) for their experi-
ments. Following prior works (Meng et al., 2017;
Chen et al., 2018; Chan et al., 2019; Chen et al.,
2020), we report the results for metrics F1@54 and
F1@M in the main tables. All comparisons are
done after stemming the text as well as keyphrases.

Following Meng et al. (2017); Chan et al. (2019);
Yuan et al. (2020), we use GRU encoder-decoder-
based architecture for evaluating all models. For

3The length was chosen on a similar scale as the average
length of abstracts in LDKP10K, which is about 260 words.

4We use the metrics from (Chan et al., 2019) and adopted
by Chen et al. (2020); Ahmad et al. (2021); Ye et al. (2021a).

all experiments, we restrict the length of the body
(or equivalently, full text) to a maximum sequence
length of 800 words. For each setting, we sample
thrice and further repeat each sample for three dif-
ferent seeds. We thus report the average result for a
total of nine runs (3 samples * 3 seeds) for each set-
ting. Hyperparameters and other implementation
details are presented in Appendix §A.

5 Results and Analysis

We present our discussion of results for the gener-
ation of the two types of keyphrases, i.e., present
and absent in §5.1 and §5.2, respectively.

5.1 Present Keyphrase Generation

From Table 4, we make the following observations.
First, augmenting the baseline T || A with the text
from the body (AUG_BODY) helps to improve the
present keyphrase generation performance. Sec-
ond, we observe that the methods that use the body
(prepended with AUG_BODY) are better than the
augmentation methods that just use Title and Ab-
stract (prepended with AUG_TA). These two ob-
servations imply that the body constitutes a rich
source of present keyphrases.

Third, we also compare with Garg et al. (2022)
(T || A || BODY) where they concatenated different
types of sentences to T || A. We observe that aug-
menting the text from the articles (AUG_BODY)
instead of merely concatenating them (T || A ||
BODY) improves the performance by a wide mar-
gin. It is also interesting to observe that T || A ||
BODY, which found significant performance gains
in large-scale settings, underperforms even T || A
in many purely low-resource settings.

Fourth, the results suggest a quite intriguing ob-
servation that the standard data augmentation tech-
niques like synonym replacement and back transla-
tion (suffixed with SR, BT) are more rewarding for
present keyphrase generation performance than the
techniques specifically designed for the keyphrase
generation task (suffixed with KPD, KPSR). This
trend could be because synonym replacement and
back translation bring more diversity to the training
samples (since they replace/ rephrase a much larger
portion of the text) compared to keyphrase-specific
techniques which modify only a handful of tokens
(i.e., present keyphrases) in the text. It is worth
mentioning that even these standard data augmen-
tation techniques have been largely ignored by the
current research on keyphrase generation.
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LDKP3K 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 4.681 9.106 6.191 11.892 9.672 18.478 11.971 22.861

T || A || Body 4.941 9.555 5.992 11.612 10.141 19.570 12.300 23.530

AUG_TA_SR 4.751 9.343 6.662 12.740 9.193 17.6510 11.370 21.950

AUG_TA_BT 4.411 8.622 6.322 12.273 10.420 19.961 12.340 23.322

AUG_TA_KPD 4.671 9.191 6.000 11.631 7.922 15.485 10.530 20.551

AUG_TA_KPSR 4.550 8.951 5.701 10.901 7.141 13.875 9.330 18.291

AUG_Body 5.332 10.425 7.106 13.9218 9.975 19.2518 11.822 22.674

AUG_Body_SR 4.881 9.694 6.500 12.532 9.369 18.1530 12.191 23.043

AUG_Body_BT 4.590 9.042 6.363 12.265 10.500 20.091 12.311 23.193

AUG_Body_KPD 4.722 9.316 6.121 11.923 8.827 17.0418 11.610 22.141

AUG_Body_KPSR 4.600 9.151 5.781 11.216 7.442 14.608 11.401 21.643

LDKP10K 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 4.471 8.273 6.661 12.322 9.951 17.492 11.311 19.763

T || A || Body 3.894 7.3014 6.551 12.071 9.810 17.541 11.701 20.242

AUG_TA_SR 4.370 8.260 6.220 11.671 10.690 18.330 12.300 20.860

AUG_TA_BT 4.041 7.592 7.701 14.013 10.271 18.002 10.440 18.260

AUG_TA_KPD 3.790 7.182 5.141 9.753 9.533 16.686 11.292 19.925

AUG_TA_KPSR 3.740 7.111 4.771 9.083 8.663 15.196 10.220 17.781

AUG_Body 4.456 8.4521 6.985 12.9012 10.370 18.280 11.921 20.733

AUG_Body_SR 4.220 8.010 6.360 11.881 10.120 17.910 11.570 20.381

AUG_Body_BT 4.380 8.172 7.653 13.875 10.240 17.951 11.171 19.733

AUG_Body_KPD 3.963 7.498 5.612 10.544 9.430 16.810 11.030 19.530

AUG_Body_KPSR 3.830 7.241 4.771 9.062 9.240 16.490 10.930 19.270

KPTimes 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 9.830 19.011 13.493 24.497 16.921 28.840 19.130 31.890

T || A || Body 9.662 18.566 13.642 24.984 16.740 29.330 18.910 32.200

AUG_TA_SR 11.2010 21.1719 15.210 26.590 17.300 29.360 19.300 32.440

AUG_TA_BT 11.024 21.228 13.933 25.997 16.312 29.293 18.711 32.690

AUG_TA_KPD 8.940 17.410 12.901 23.633 15.581 27.860 17.641 30.911

AUG_TA_KPSR 9.122 17.884 13.832 24.902 15.770 27.600 17.990 30.930

AUG_Body 9.783 19.6211 14.311 26.251 17.261 30.331 19.391 33.011

AUG_Body_SR 11.214 22.057 14.461 26.781 16.861 30.131 18.960 33.230

AUG_Body_BT 10.462 20.240 14.120 25.920 16.460 29.281 18.883 32.751

AUG_Body_KPD 8.803 17.629 13.362 24.763 16.491 29.431 18.481 32.170

AUG_Body_KPSR 10.213 20.278 13.620 25.820 16.251 29.512 18.021 32.341

Table 4: Performance for generation of present keyphrases. The results are highlighted with blue (↑) and red (↓)
with respect to baseline T || A. || denotes concatenation of the text. Standard deviation is subscripted to each number
and is reported as a multiple of ± 0.001. Best viewed in color.

Fifth, we rather observe that the keyphrase-
specific data augmentation techniques are not just
lower in performance than the standard data aug-
mentation techniques but often they hurt the per-
formance of the model when trained in purely low-
resource settings. The reason could be that the
models do not have enough samples and diversity
to learn to generate the present keyphrases, all the
more when the present keyphrases are dropped or
replaced during training. This is in contrast with
the behavior of models when trained on a large-
scale dataset, where the performance of present
keyphrase generation (AUG_TA_KPD) is on par
with T || A (Ray Chowdhury et al., 2022).

Sixth, in Table 4, we can also compare the per-
formance of models trained on: (1) total x original
samples, (2) x original + x augmented samples,
(3) total 2x original samples. For example, for

LDKP3K dataset, we observe that 2000 original
samples achieve the best performance (11.89 in
F1@M), followed by the augmented version (9.34
for augmentation with synonym replacement, 10.42
for augmentation with body) whereas the perfor-
mance when using 1000 original samples is 9.10.
We observe similar trends across the different aug-
mentation strategies and datasets.

We draw the following conclusions: (1) Data
augmentation techniques for keyphrase generation
have been quite an under-studied topic, particularly
for low-resource settings and the behavior of the
models is different than that when training on large-
scale settings; (2) We show that existing works such
as those by Garg et al. (2022); Ray Chowdhury et al.
(2022) can be surpassed by the data augmentation
methods discussed in this work when used in low-
resource settings for present keyphrase generation.
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LDKP3K 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 0.0780 0.1690 0.1290 0.2810 0.0440 0.0930 0.0440 0.0990

T || A || Body 0.0790 0.1650 0.1300 0.2820 0.0470 0.1050 0.0310 0.0730

AUG_TA_SR 0.1320 0.2900 0.1360 0.3000 0.0960 0.2070 0.0670 0.1410

AUG_TA_BT 0.1280 0.2790 0.1390 0.3050 0.0680 0.1400 0.1210 0.2660

AUG_TA_KPD 0.1400 0.3110 0.1450 0.3180 0.1410 0.3070 0.0990 0.2180

AUG_TA_KPSR 0.1420 0.3070 0.1770 0.3930 0.1510 0.3210 0.1540 0.3250

AUG_Body 0.1290 0.2910 0.1300 0.2920 0.0610 0.1380 0.0790 0.1750

AUG_Body_SR 0.1410 0.3190 0.1570 0.3420 0.0760 0.1610 0.1490 0.3220

AUG_Body_BT 0.1300 0.2870 0.1210 0.2650 0.0810 0.1830 0.1200 0.2530

AUG_Body_KPD 0.1440 0.3280 0.1890 0.4070 0.1360 0.2980 0.1820 0.3980

AUG_Body_KPSR 0.1620 0.3590 0.2000 0.4410 0.1840 0.4050 0.2270 0.4950

LDKP10K 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 0.0230 0.0470 0.0390 0.0790 0.1140 0.2280 0.1840 0.3350

T || A || Body 0.0210 0.0440 0.0350 0.0740 0.0520 0.1050 0.1590 0.2890

AUG_TA_SR 0.0310 0.0610 0.0540 0.1100 0.1950 0.3870 0.3550 0.6290

AUG_TA_BT 0.0270 0.0510 0.0840 0.1730 0.1960 0.3830 0.3370 0.6170

AUG_TA_KPD 0.0200 0.0410 0.0570 0.1150 0.2100 0.4030 0.2990 0.5520

AUG_TA_KPSR 0.0310 0.0590 0.0670 0.1330 0.2290 0.4330 0.4290 0.7690

AUG_Body 0.0330 0.0630 0.0710 0.1480 0.2060 0.4070 0.3440 0.6220

AUG_Body_SR 0.0370 0.0710 0.0850 0.1680 0.2130 0.4100 0.3780 0.6870

AUG_Body_BT 0.0330 0.0640 0.0730 0.1510 0.1930 0.3870 0.3380 0.6370

AUG_Body_KPD 0.0440 0.0880 0.0850 0.1660 0.2380 0.4650 0.4000 0.7260

AUG_Body_KPSR 0.0450 0.0890 0.1060 0.2100 0.2590 0.4920 0.4590 0.8270

KPTimes 1,000 2,000 4,000 8,000
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

T || A 0.0260 0.0510 0.0260 0.2470 1.4300 2.4451 3.0660 5.3931

T || A || Body 0.0230 0.0440 0.0230 0.2710 1.0820 1.9500 2.5580 4.7190

AUG_TA_SR 0.1050 0.1760 1.2400 2.1680 2.7180 4.6480 4.2740 7.3360

AUG_TA_BT 0.1630 0.2770 0.1631 2.0502 2.5010 4.3900 3.8261 6.8181

AUG_TA_KPD 0.0600 0.1070 0.0600 0.6370 1.6340 2.8540 3.4230 6.0060

AUG_TA_KPSR 0.0870 0.1630 0.0870 1.8411 2.7480 4.6480 4.4650 7.3520

AUG_Body 0.0330 0.0600 0.0330 1.1500 2.4600 4.3800 4.1710 7.3850

AUG_Body_SR 0.1590 0.2780 1.1220 1.9990 2.6810 4.7080 4.1351 7.2851

AUG_Body_BT 0.1310 0.2390 1.1910 2.1520 2.3630 4.2151 3.7950 6.6701

AUG_Body_KPD 0.0380 0.0690 0.0380 1.2001 2.5880 4.6070 4.3820 7.5750

AUG_Body_KPSR 0.1820 0.3190 0.1820 1.9631 2.7080 4.7440 4.3251 7.6292

Table 5: Performance for generation of absent keyphrases. The results are highlighted with blue (↑) and red (↓)
with respect to baseline T || A. || denotes concatenation of the text. Standard deviation is subscripted to each number
and is reported as a multiple of ± 0.001. Best viewed in color.

5.2 Absent Keyphrase Generation

To investigate the ability of the KG models to
develop a semantic understanding of the docu-
ments, we evaluate the performance of the absent
keyphrase generation. Table 5 presents the absent
keyphrase performance of the different augmen-
tation methods. Our observations are as follows.
First, augmentation with the body (prefixed with
AUG_BODY) still surpasses the Title and Abstract
(prefixed with AUG_TA) counterparts. Second, un-
like the present keyphrase generation performance,
the absent keyphrase generation performance is
generally better with almost all the data augmen-
tation methods compared to the baseline T || A.
The reason could be that the augmentation meth-
ods artificially turn some of the present keyphrases
to absent keyphrases (e.g., present keyphrases re-
placed with synonyms or dropped or rephrased).

Thus, the model finds much more opportunities to
learn to generate absent keyphrases.

Third, interestingly, KG-targeted data augmen-
tation methods (suffixed with KPD, KPSR) per-
form better than the standard data augmentation
methods like synonym replacement and back trans-
lation (suffixed with SR, BT) for generating ab-
sent keyphrases (unlike present keyphrase gener-
ation). This is because KPD, KPSR specifically
replace the present keyphrases to become absent
keyphrases. Whereas SR, BT randomly replace/
rephrase the tokens and thus, one would expect
a less number of present keyphrases turning into
absent keyphrases. Fourth, augmentation with KG-
based synonym replacement (KPSR) surpasses
even the dropout augmentation technique (KPD).
This might be because of two reasons: (1) the
keyphrase dropout method masks the keyphrases
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Excerpts from test dataset samples Methods Predicted Keyphrases

committees of learning agents [SEP] we describe how machine learning and
decision theory is combined in an application that supports control room
operators of a combined heating and power plant ...
Gold: machine learning ; committees ; decision analysis

T || A learning

Aug_Body machine learning

Aug_Body_SR learning

compositional analysis for linear control systems [SEP] the complexity of
physical and engineering systems , both in terms of the governing physical
phenomena and the number of subprocesses involved ...
Gold: compositional reasoning ; linear systems ; simulation relations ;

assume-guarantee reasoning

T || A control

Aug_Body linear control; linear systems

Aug_Body_SR linear control; linear systems

the bits and flops of the n-hop multilateration primitive for node localization
problems [SEP] the recent advances in mems , embedded systems and wireless
communication technologies are making the realization ...
Gold: technologies ; ad-hoc localization ; sensor networks ;

embedded systems ; wireless ; network

T || A tangible

Aug_Body wireless networks

Aug_Body_SR sensors

Table 6: Sample predictions using models trained with different (representative) augmentation methods and the
baseline (T || A). The text is highlighted as follows: PRESENT KEYPHRASES , ABSENT KEYPHRASES . Note
that the test samples contain only T || A. Best viewed in color.

with some probability value whereas we replace
all the present keyphrases with their synonyms,
(2) dropping the important keyphrases hides some
information from the model, while replacing the
keyphrases with their synonyms still largely pre-
serves the semantics and integrity of the text.

Fifth, we observe that the model proposed by
Garg et al. (2022) which is based on concatenation
is not able to generalize well in the low-resource
settings, rather, ends up weakening the model per-
formance compared to T || A. This again urges to-
wards the development of data augmentation meth-
ods in purely low-data regimes.

Sixth, in Table 5, the results show that the model
trained on the combination of original and aug-
mented samples outperforms the settings where the
model is trained on equivalent amount of original
samples, for most datasets and augmentation strate-
gies. For instance, for LDKP3K dataset, the 2000
augmentation version achieves 0.290 in F1@M (for
augmentation with synonym replacement on Title
and Abstract) and outperforms both 2000 original
samples (0.281) and 1000 original samples (0.169).
Thus, for the same amount of data (2000 dataset
size), the augmented version shows better results
than without data augmentation.

We show sample predictions from the represen-
tative models: T || A (baseline), AUG_BODY (best
for Present KG), AUG_BODY_SR (best for Absent
KG) in Table 6. In the table, we can observe that
while T || A fails to capture the specific topics (or
keyphrases) for the document, models trained with
augmentation strategies can generalize better.

Methods Pres.KP Abs.KP TotalKP
T || A 3374 2093 5467
T || A || Body 3985 1482 5467
AUG_TA_SR 5761 5173 10934
AUG_TA_BT 5499 5435 10934
AUG_TA_KPD 4586 6348 10934
AUG_TA_KPSR 4532 6402 10934
AUG_Body 6309 4625 10934
AUG_Body_SR 5402 5532 10934
AUG_Body_BT 5291 5643 10934
AUG_Body_KPD 4590 6344 10934
AUG_Body_KPSR 4591 6343 10934

Table 7: Number of present, absent, total keyphrases in
the training set of LDKP3K with 1000 samples for the
different augmentation methods.

6 Analysis

In this section, we study one of the settings in more
detail, i.e., with the LDKP3K dataset having 1000
samples in the training set (and twice the number
in the training set for AUG-prefixed methods). The
study unfolds into two aspects: (a) analyzing the
data created for the different augmentation meth-
ods, (b) developing better inference strategies.

We analyze the data created using the differ-
ent augmentation methods and report the present,
absent and total number of keyphrases in Table
7. First, we observe that all the data augmen-
tation methods have double the total number of
keyphrases because the total number of samples
is doubled. In effect, the model develops a better
generalization ability when it practices with more
instances of present and absent keyphrases. Second,
we see that AUG_BODY has the highest number
of present keyphrases. This implies that the text
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Methods Present Absent
F1@5 F1@M F1@5 F1@M

T || A 4.68 9.10 0.078 0.169
AUG_TA_BT 4.41 8.62 0.128 0.279
AUG_TA_KPSR 4.55 8.95 0.132 0.290
AUG_Body 5.33 10.42 0.129 0.291
AUG_Body_BT 4.59 9.04 0.130 0.287
AUG_Body_KPD 4.72 9.31 0.144 0.328
AUG_Body_KPSR 4.60 9.15 0.162 0.359

Inference Strategies

Body ∪ Body-KPSR 6.41 11.95 0.196 0.428
TA-BT ∪ Body-BT 5.39 10.19 0.160 0.342
TA-KPSR ∪ Body-KPSR 6.17 11.47 0.220 0.462
Body-BT ∪ Body-KPD 6.45 11.81 0.204 0.435
Body-KPSR ∪ Body-KPD 5.94 11.18 0.204 0.444

Table 8: A comparison of various Inference Strategies
using Union (see §6) with the individual (AUG_) meth-
ods on LDKP3K with 1000 samples in the training set.

from the body of the articles not only adds diver-
sity to the training samples (as also evident from
Tables 1, 4), but also the diversity contains a lot
of present keyphrases, unlike other augmentation
methods like KPD, KPSR. Third, it is also evident
from Table 7 that the KG-specific data augmenta-
tion methods (suffixed with KPD, KPSR) are rich
sources of absent keyphrases whereas the standard
data augmentation (suffixed with SR, BT) meth-
ods are rich in present keyphrases. This further
explains the observations made in the previous sec-
tions §5.1-5.2 that the KG-specific augmentation
methods perform better for absent keyphrase gen-
eration, whereas the standard data augmentation
methods do better in present keyphrase generation.

Further, in Table 8, we present some of the repre-
sentative inference strategies by unionizing differ-
ent augmentation methods during inference. Union
can be seen as a post-training augmentation method
that (during inference) takes a union of the predic-
tions from multiple models that are pretrained us-
ing different augmentation methods. The idea is to
leverage the complementary strength of the differ-
ent models that are good for either or both present
and absent keyphrase generation. As expected, the
performance of the Union methods surpasses that
of the individual augmentation methods.

7 Conclusion

Although data augmentation has been a very com-
mon practice to advance the state-of-the-art in NLP,
it has been under-explored for the keyphrase gen-
eration (KG) task. Thus, this work discusses var-
ious data augmentation methods including both
types (i.e., standard and KG-specific) particularly

for purely low-resource keyphrase generation, and
provides comprehensive evaluation for 12 different
settings (four settings for three datasets each).

We also leverage the full text of the articles for
data augmentation and observe large improvements
over the baseline as well as over data augmenta-
tion methods that use only title and abstract (T
|| A). Detailed analysis helps us believe that KG-
specific data augmentation methods can largely im-
prove absent keyphrase generation but at the cost of
present keyphrase generation. In contrast, the stan-
dard data augmentation techniques like synonym
replacement and back-translation are capable of in-
troducing enough diversity to improve the present
keyphrase generation without bringing a drop in ab-
sent keyphrase generation performance. Although
augmentation with the body improves both types of
generation to some degree, this work leaves much
room to develop better data augmentation strate-
gies to train the model to do better on both present
and absent keyphrase generation in low-resource
settings which are prevalent in many domains.

8 Limitations

We conducted extensive experiments with three
datasets from different domains to substantiate the
results thoroughly. We observe the best perfor-
mance when we also leverage the body of the ar-
ticles. So, we did not evaluate the performance
on the datasets that do not have the full text (or
equivalently, long text) of the articles.
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A More Implementation Details

Following Garg et al. (2022), we preprocessed
the full text of the articles for all three datasets.
We filtered all the articles that had either of the
four fields missing, viz., title, abstract, keyphrases,
full text, or that contained less than five sentences
in the full text. We segmented the full text into
sentences using PunktSentenceTokenizer5 and to-
kenized the sentences further into tokens using
NLTK’s word_tokenizer. We also lowercased the
text, removed html text, emails, urls, escape sym-
bols, and converted all the numbers into <digit>
(Meng et al., 2017), and finally removed any du-
plicate items in the collection. Further, we sub-
sampled the datasets to construct four low-resource
settings (sampled thrice for each setting) containing
1000, 2000, 4000 and 8000 samples.

We use the GRU-based architecture for evaluat-
ing all the methods. Similar to Meng et al. (2017);
Yuan et al. (2020); Chan et al. (2019) we use an
encoder-decoder architecture (where both the en-
coder and the decoder are GRUs) with attention
and a pointer mechanism (See et al., 2017). The ex-
act details of the architecture are similar to that of
Chan et al. (2019). The vocabulary size is 50,000
and each word is translated into embeddings of
dimension equal to 100. The GRU encoders and
decoders have hidden layer sizes of 150 and 300
respectively. We use a learning rate of 1e-3, batch
size of 4, Adam optimizer, ReduceLROnPlateau
scheduler and maximum epochs as 20. We early
stop the training with patience value of 2.

5https://www.nltk.org/_modules/nltk/tokenize/
punkt.html
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