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Abstract

Recent advancements in multimodal founda-
tion models (e.g., CLIP) have excelled in zero-
shot generalization. Prompt tuning involved
in the knowledge transfer from foundation
models to downstream tasks has gained sig-
nificant attention recently. Existing prompt-
tuning methods in cross-modal learning, how-
ever, either solely focus on language branch,
or learn vision-language interaction in a shal-
low mechanism. In this context, we propose
a Deeply coupled Cross-modal Prompt learn-
ing (DCP) method based on CLIP. DCP flex-
ibly accommodates the interplay between vi-
sion and language with a Cross-Modal Prompt
Attention (CMPA) mechanism, which enables
the mutual exchange of respective representa-
tion through a well-connected multi-head at-
tention module progressively and strongly. We
then conduct comprehensive few-shot learning
experiments on 11 image classification datasets
and analyze the robustness to domain shift as
well. Thorough experimental analysis evidently
demonstrates the superb few-shot generaliza-
tion and compelling domain adaption capacity
of a well-executed DCP. The code can be found
at https://github.com/Gingl./CMPA.

1 Introduction

Large foundation models pre-trained on web-scale
image-text pairs such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) have shown promis-
ing performance on zero-shot image classification.
Research has repeatedly shown that the general
knowledge learned by the foundation models can
also be transferred to diverse downstream tasks,
such as few-shot image classification (Zhou et al.,
2022b,a), visual grounding (Subramanian et al.,
2022), visual question answering (Liu et al., 2022)
and so on. They have exhibited a significant po-
tential in open-vocabulary scenarios. Thus, the
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challenge associated with how to efficiently and
effectively adapt large pre-trained models to down-
stream tasks has garnered increasing attention es-
pecially in low-resource training scenarios.

Directly fine-tuning the foundation model is
infeasible due to the massive training parame-
ters and the catastrophic forgetting caused by
overfitting (Kirkpatrick et al., 2016). In con-
trast, the parameter-efficient prompt tuning ap-
proach explored in natural language processing has
yielded significant success (Lester et al., 2021),
leading to an increased examination of this tech-
nique within the realm of multi-modality, espe-
cially in the language-branch of CLIP. For exam-
ple, CoOp (Zhou et al., 2022b) and ProDA (Lu
et al., 2022b) explore the vanilla few-shot learn-
ing based on CLIP by adjusting the embedding or
distribution of the text prompt. CoCoOp (Zhou
et al., 2022a) and ProGrad (Zhu et al., 2022) focus
more on the unseen classes. They contextualize the
text prompt either under the supervision of visual
clues or tweak gradient direction to improve the
generalization ability of the model.

The aforementioned approaches, however, only
adjust the text embedding of CLIP and neglect the
visual branch. The success of VPT (Jia et al., 2022)
demonstrates the effectiveness of visual prompt
learning. Inspired by this work, UPT (Zang et al.,
2022) and MaPLe (Khattak et al., 2022) synergize
the visual and textual prompts. Specifically, UPT
improves the few-shot learning ability by gener-
ating visual and text prompts initially. MaPLe
achieves better performance in the classification
of unseen classes. They uncover the underlying
rationale and limitations of dual-branch prompt
tuning.

Concretely, the dual-branch CLIP learns the
visual and language synergy only based on con-
trastive learning, whereas both branches lack mu-
tual communication at the early stage of the net-
work. Multi-modal prompt learning techniques,
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such as MaPLe and UPT, incorporate language-
vision interactions of the network and achieve sub-
stantially improved performance, highlighting the
significance of the cross-modal interactions. How-
ever, previous studies have leveraged language-
vision interactions at a superficial level. For ex-
ample, UPT generates visual and text prompts
before they are fed into the corresponding en-
coders. MaPLe generates visual prompts condi-
tioned on language counterparts by a mapping
function. Many studies (Dosovitskiy et al., 2021;
Wang et al., 2022a) have shown that neural net-
works, especially transformer-based models, can
leverage the deep fusion of information from mul-
tiple views to improve their performance. It re-
mains less explored in the thread of multi-modal
few-shot learning. To this end, we design Deeply
coupled Cross-modal Prompt learning (DCP) en-
hancing the language-vision interaction. Specifi-
cally, DCP is built upon CLIP, with additional text
and visual prompts across multiple layers. Dif-
ferent from previous methods with deep prompt
tuning (Jia et al., 2022; Zang et al., 2022; Khattak
et al., 2022), DCP only initializes the first layer of
visual and text prompt randomly. The subsequent
prompts are generated by Cross-Modal Prompt
Attention (CMPA) module, which elegantly inte-
grates the prompts from the preceding cross-modal
layer. CMPA is characterized with stronger con-
nection in two folds, i.e., Depth and Breadth. 1)
Depth means that CMPA intensifies the correlation
of the prompts among different layers. 2) Breadth
refers to that CMPA amplifies the interaction be-
tween visual and language modalities. CMPA is the
core module to realize the deep coupling between
two modalities. Essentially, DCP empowered by
CMPA amalgamates uni-branch and dual-branch
multi-modal pre-training paradigms in a favorable
way in an attempt to bridge the discrepancy be-
tween visual and textual knowledge without intro-
ducing too much overhead.

To conclude, the contributions of this work are
as follows:

* We develop a deeply coupled cross-modal
prompt learning (DCP) method with a
core module cross-modal prompt attention
(CMPA). CMPA can reinforce the interaction
between visual and language modals across
different layers.

* We benchmark our method on 11 image classi-
fication datasets consisting of generic objects,

scenes, actions and fine-grained categories.
Our method surpasses visual prompt tuning,
text prompt tuning and existing competitive
multi-modal prompt tuning methods under the
few-shot setting.

* We conduct experiments on domain adapta-
tion tasks. Our method achieves comparable
performance to the state-of-the-art methods,
indicating the robustness of our method to do-
main shift.

2 Related Work

2.1 Vision-language Pre-trained Models

The advent of Transformer (Vaswani et al., 2017)
has accelerated the development of large-scale pre-
training. The application of Transformer in the
multi-modal is divided into two schools of thought:
one is the single-stream model, in which language
and vision information are fused at the beginning
and fed directly into the encoder together; the other
is the dual-stream model, in which language and
vision information first pass through two separate
encoder modules at the beginning, and then the
different modal information is fused through the
cross Transformer.

At the outset, the basic architecture of some con-
temporaneous work is BERT. The images are de-
tected with Faster-RCNN (Ren et al., 2015) for
region features, and these image region features
are fed into BERT along with text information to
align the text and image information. Following
the same process as BERT, these methods first pre-
train and then fine-tune on the corresponding tasks.
Single-stream networks (Li et al., 2019; Alberti
et al., 2019; Chen et al., 2019; Li et al., 2020; Su
et al., 2020; Zhou et al., 2020; Qi et al., 2020; Lu
et al., 2020) fuse information from different modal-
ities directly through an encoder. The dual-stream
models (Lu et al., 2019; Tan and Bansal, 2019) in-
tegrate different modal information through cross
modal transformer. Empirically single-stream net-
works are more sufficient for information fusion,
while dual-stream networks can be more efficient
for training due to fewer training parameters. In the
design of our method, we aim to combine the ad-
vantages of the single-stream and dual-stream, so
as to enhance the cross-modal integration without
introducing many training parameters.

Recent cross-modal large-scale pre-training
models have made greater breakthroughs in train-
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ing data scale and tasks by devising various
model architectures and training objectives, and
have achieved impressive performance in many
downstream tasks. CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) got remarkable
zero-shot results after being pre-trained on mil-
lions or billions of (image, text) pairs collected
from the internet. Coca (Yu et al., 2022) com-
bined the advantages of the contrast learning
method (Radford et al., 2021) and the genera-
tive model SIMVLM (Wang et al., 2022b) by
adding caption loss to the contrast loss of CLIP.
OFA (Wang et al., 2022a), Unified-10 (Lu et al.,
2022a) and Florence (Yuan et al., 2021) unified
vision, language and multi-modal tasked by pre-
training on both cross-modal and uni-modal data.
These methods have achieved state-of-the-art re-
sults in many downstream tasks. Some meth-
ods are dedicated to improving the performance
of certain specific tasks. UniTAB (Yang et al.,
2022) focused on grounded vision-language tasks
such as grounded captioning and visual ground-
ing. GLIP (Li et al., 2022) unified object detec-
tion and phrase grounding for pre-training. Pre-
training models have opened up a situation where
deep learning models scale and perform in tandem,
becoming a revolutionary breakthrough in artificial
intelligence and deep learning.

2.2 Prompt Learning

For a long time, first pre-training then fine-tuning
was the dominant approach to apply large foun-
dation models to downstream tasks. However,
fine-tuning for large models is inefficient and may
cause catastrophic forgetting (Kirkpatrick et al.,
2016). Prompt learning is proposed to address the
above problems. The prompt is usually a series of
trainable parameters inserted into the input. The
success of prompt learning in NLP (Lester et al.,
2021) has inspired its application in other modali-
ties. VPT (Jia et al., 2022) is a typical successful
application of prompt learning on computer vision.
Prompt learning has generated more attention and
made great progress in cross-modal learning.

SoftCPT (Ding et al., 2022) and CPL (He et al.,
2022) applied prompt tuning to different vision
and language tasks and outperformed single-task
prompt tuning method. CoOp (Zhou et al., 2022b),
ProDA (Lu et al., 2022b) and UPT (Zang et al.,
2022) adapted prompt learning to traditional few-
shot visual recognition with CLIP as the backbone.

CoCoOp (Zhou et al., 2022a), ProGrad (Zhu et al.,
2022) and MaPLe (Khattak et al., 2022) improved
the classification performance of pre-trained mod-
els on novel categories by prompt learning. Dif-
ferent from previous methods, our approach brings
stronger connection between modalities and lay-
ers with proposed cross-modal prompt attention.
The stronger interaction between vision and lan-
guage enables our method to get state-of-the-art
performance in the few-shot learning.

3 Method

In this section, we first introduce the preliminaries,
including CLIP (Radford et al., 2021), CoOp (Zhou
et al., 2022b) and VPT (Jia et al., 2022). Then, we
describe our deeply coupled prompt learning (DCP)
and detail its underlying module CMPA.

3.1 Preliminaries

CLIP is a dual-encoder pre-trained model which
consists of a text encoder and an image encoder.
The text and image are independently encoded
by the corresponding encoder, then projected to
the same embedding space by a projection layer.
Specifically, the backbone of the image encoder is
ResNet (He et al., 2016) (d=256) or ViT (d=512),
which can map the high-dimension image into a
low-dimension embedding. The text encoder is
built based on the decoder of Transformer (Vaswani
et al., 2017), which is also known as GPT (Brown
et al., 2020), to generate a vectorized representa-
tion for a sequence of words. The model uses a
contrastive loss to align the two modalities during
training stage. The training objective is to maxi-
mize the cosine similarity for the match image-text
pairs and minimize the unmatched ones.

In zero-shot image recognition, the image en-
coder of CLIP encodes the image into a feature
representation . The input text is usually in the
form of ““a photo of a {class}.” (discrete prompt),
where the “{class}” token is the name of each cate-
gory. For each dataset containing K categories, a
set of text prompts {w; } X | are generated by the
text encoder. The prediction probability is com-
puted as

exp (cos (x, wy) /T)
i exp (cos (@, w;) /)]

where T is a temperature parameter.

ply | z) = ey

CoOp adapts CLIP to downstream tasks with
prompt tuning. Specifically, CoOp tries to learn
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Figure 1: The architecture of deeply coupled prompt learning and cross-modal prompt attention module.

prompt embedding (continuous prompt) during
few-shot training to avoid manual prompts. The
prompt fed in the text encoder is designed as
t = [Vi[V]2...[V]m[CLASS], where [V],, (m €
{1, ..., M}) is initialized with the same dimension
as word embeddings. The parameters of the CLIP
model is frozen while the prompt is trainable. The
prediction probability of CoOp is

exp (cos (2, g(t,))/7)
SR exp (cos (, g(£:)) /7))

where ¢(-) denotes the text encoder.

p(y|x) = (2)

VPT is an efficient and effective way to adapt
large-scale Transformer models in vision with only
a small amount of trainable parameters. The back-
bone of VPT is ViT, which is the same as the im-
age encoder of CLIP. There are two variants of
VPT: VPT-Shallow and VPT-Deep. VPT-Shallow
only inserts prompts into the first layer of the
Transformer. The visual prompt can be defined as
p = [P]1[P]s...[P]n, where [P],, (n € {1,...,N})
keeps the same dimension as the image embedding.
The input of VPT-shallow is [z s, p, x|, Where 5
is the classification token [C'LSS]|. VPT-Deep intro-
duces visual prompts at every Transformer layer.
The deep VPT can be formulated as

,Xi] — Lz ([Xifl pi_l,Xi_l])

cls

1=1,2,...,L
y = Head (xfls) ,

[Xti?ls’ e

3)

where L denotes the number of Transformer lay-
ers and Head is the classification head. Only the
prompts and classification head is learnt during
training. VPT achieves impressive performance on
24 downstream recognition tasks.

3.2 Cross-modal Prompt Attention

Inspired by the advance of prompt learning in vi-
sion and language, recent studies start to explore
multi-modal prompt learning (Zang et al., 2022;
Khattak et al., 2022). These methods update the
visual and text prompt simultaneously to achieve
balance in the learning of visual and text embed-
ding. Although the visual and text embedding are
adapted to the few-shot data, the interaction be-
tween visual and text is still insufficient. Hence we
propose deeply coupled cross-modal prompt learn-
ing (DCP), which can enhance the communication
between prompts across different layers and modal-
ities. The essential module of DCP is cross-modal
prompt attention, which fuses visual and text with
multi-head cross-modal attention. Figure 1 depicts
the pipeline of DCP and the detailed architecture
of cross-modal prompt attention (CMPA).

Our method follows the implementation of CLIP,
which is also a dual-encoder model. Differently,
we add prompts to every branch, and enable infor-
mation fusion between vision and language during
training through CMPA. Specifically, CMPA is a
multi-head attention with visual and text prompts
as inputs. The language prompts of the first layer
are initialized with the pre-trained CLIP word em-
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beddings of the template *a photo of a <class>’,
whereas the visual prompts inserted into the first
layer are randomly initialized from a normal dis-
tribution. Then, the prompts of the next layer are
generated by CMPA based on the prompts from the
preceding layer. Formally, CMPA can be formu-
lated as

Pl phT
P! = softmax <v(t)> P} “4)
Vi,

1 pI\T
Pffl = softmax <Pt(\/];l)> Pyt 5)
k
1=12,...,.N—1, (6)

where P/ and P! denote the text prompt and visual
prompt the the [ layer of each encoder, respectively.
N is the depth of CMPA, which is smaller than
the length of text and visual encoder. dj is the
dimension of keys.

Different from previous methods, only the
prompts from the first layer are randomly generated.
The subsequent prompts condition on the prompts
from both visual and language modal. CMPA en-
ables information communication between vision
and text through corresponding prompts. Totally,
CMPA brings stronger feature fusion from two as-
pects: layers and modalities. Note that CMPA
shares parameters from different layers, and the
additional trainable parameters is only in a small
amount.

4 Experiments

In this section, we conduct experiments to evaluate
the effectiveness of our method under two settings.
One is few-shot visual recognition including 11
different datasets covering generic objects, scenes,
actions and fine-grained categories. The other is
domain adaptation, where we train our model on
ImageNet and evaluate it on other four datasets.

4.1 Few-shot Learning
4.1.1 Datasets

Following CoOp (Lester et al., 2021), we eval-
uate our method on 11 public visual recogni-
tion datasets: ImageNet (Deng et al., 2009), Cal-
tech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013),
Flowers102 (Nilsback and Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVCAir-
craft (Maji et al., 2013), SUN397 (Xiao et al.,

2010), DTD (Cimpoi et al., 2014), EuroSAT (Hel-
ber et al., 2019) and UCF101 (Soomro et al., 2012).
We also use the same 1, 2, 4, 8 and 16 shots as
CoOp for training and the full test set for evalua-
tion purpose. The reported results are the average
over three runs with different random seeds.

4.1.2 Implementation Details

We use the pre-trained ViT-B/16 CLIP model as
our backbone. The length of prompt tokens for
visual and textual context are both 16. The prompt
depth is 9 as a trade-off between accuracy and
training efficiency. We set the batch-size to 4
with a learning rate of 0.0035 via SGD optimizer.
We use 20 epochs for most datasets, except Im-
ageNet, SUN397 and Food101. Also, 5-epoch
setting works for diverse shots of Food101, 1/2/4-
shot of ImageNet, and 1/2-shot of SUN397, respec-
tively.

4.1.3 Main Results

Baseline Methods. We compare our method with
the original zero-shot CLIP, text prompt learning
(CoOp), visual prompt learning (VPT) and multi-
modal prompt learning (MaPLe), which all have
ViT-B/16 as visual backbone. Basically, we fol-
low the implementation of MaPLe (Khattak et al.,
2022). The prompt length of CoOp is set to 16.
VPT uses a prompt length of 8 and the visual and
text prompt length of MaPLe is 2. The training
epoch of CoOp is defined as 10, and that of VPT
and MaPLe is 5. We use the deep variant of VPT in
few-shot experiments. The prompt depth of MaPLe
is 9 as their original setting.

Performance Analysis. Figure 2 demonstrates
our results comparison with other methods. The
top left sub-figure shows the average performance
of four methods. We can have the following
findings. 1) Overall, cross-modal prompt learn-
ing (DCP and MaPLe) gets a large performance
gain compared with single-modal prompt learn-
ing methods (VPT and CoOp). VPT and CoOp
achieve comparable performance on different shots.
These results demonstrate the superiority of cross-
modal prompt learning over uni-modal prompt
learning. 2) Although both belong to multi-modal
prompt learning methods, our method still out-
performs MaPLe on 1/2/4/8/16 shots settings by
1.72/3.18/3.19/2.20/2.76(%). MaPLe utilized a
linear layer to generate visual prompts from text
prompts. Our proposed DCP enhances the inter-
action between vision and language with a cross-
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Figure 2: Main results of few-shot image classification on 11 datasets. The accuracy (%) is the average over
three runs on 1/2/4/8/16 shots. Overall, our DCP (red line) outperforms other methods by a large margin on the

average results of 11 datasets.

modal prompt attention, which can not only guide
visual embedding learning through text prompts,
but also influence the language embedding with
visual prompts. 3) Compared with 2/4/8/16 shots,
our approach achieves a lower performance gain
on one shot. We can also find that on separate
datasets, our method achieves the best performance
in almost all 16-shot cases (except for Food101).
This phenomenon indicates that our method is more
effective in cases where the number of shots is rela-

tively large. This is probably because the alignment
between different modals is more challenging due
to the small number of samples per category.

For individual datasets, we find that our ap-
proach has significant performance improvements
on Flowers102, StanfordCars, FGVCAircraft, and
EuroSAT. However, on the datasets of general cat-
egories such as ImageNet and Caltech101, our
method does not achieve satisfactory performance
when the number of shots is less than 16. We can
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Figure 4: The comparison of different feature fusion
methods on 10 datasets without ImageNet.

conclude that our method is more robust for fine-
grained classification datasets, and we need more
shots for general category classification. On the
dataset of Food101, our method performs slightly
lower than MaPLe. We also find that all meth-
ods underperform zero-shot on 1-shot setting. We
suppose this phenomenon comes from the noisy
training data of Food101 (Bossard et al., 2014).

4.1.4 Ablation Study

The are two important settings in CMPA: the fea-
ture fusion method in different prompts and param-
eter sharing of CMPA across different layers. We
conduct corresponding ablation experiments in this
section to find the optimal setting.

Feature Fusion in Prompts. Before the visual
and text prompts are fed into the CMPA, the dimen-
sion of the batch size is supposed to be consistent.

Variant 2 4 6 8 16

w/ PS 68.99 7256 75.69 7842 80.55
wioPS 6742 7134 7527 78.49 80.53

Table 1: The performance comparison with and without
parameter sharing. The results are the average accuracy
on 11 datasets of different shots.

The defined batch size only affects visual prompt
while the batch size of text prompts is actually the
number of the dataset due to the implementation
of CLIP. The dimension transformation of visual
and text prompts is shown in Figure 3. The batch
size of text prompt is actually the number of cat-
egories in the dataset. We experiment with three
settings to align the batch size of visual and text
prompts. Figure 4 reports the average accuracy
over three runs on different shots (1/2/4/8/16) of
10 datasets (without ImageNet for time efficiency).
‘Avg’ means that we use the average of visual and
text prompts across the dimension of batch. ‘Max’
stands for using the features with the highest re-
sponse across the batch dimension as the visual
and text prompt. ‘First’ represents that we select
the first embedding across the batch dimension of
visual and text prompts to feed into CMPA. Overall,
the ‘avg’ setting of feature fusion can achieve better
performance compared with ‘max’ and “first’.

Parameter Sharing. We intend to learn as few
parameters as possible to achieve a transfer of large-
scale pre-trained models in downstream tasks. Set-
ting the prompt depth to 9 means that there are 9
CMPA modules, which greatly increases the num-
ber of trainable parameters for the model. Hence
we conduct the experiment in which the parameters
of CMPA are shared across different layers. Ta-
ble 1 shows the average results of different shots
on 11 datasets. ‘PS’ is short for ‘parameter shar-
ing’. It can be observed that on most shots (except
for 8 shots) the performance of parameter sharing
is higher than non-sharing setting.

4.2 Domain Generalization

After prompt tuning on specific datasets, we do
not want to lose the general knowledge of the pre-
trained large model. In this section, we conduct
domain adaptation experiments to evaluate the gen-
eralization ability of our model DCP.
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Source

Target

Method TmageNet V2 S A R Average OOD Average
CLIP 66.73 60.83 46.15 47.77 7396  59.09 57.18
CoOp 71.53 64.20 4799 49.71 7521 61.73 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 62.13 59.91
VPT-Deep 70.57 63.67 47.66 4385 7442  60.03 57.40
MaPLe 71.02 64.07 49.15 5090 7698 62.42 60.28
UPT 72.63 64.35 48.66 50.66 76.24  62.51 59.98
DCP (ours) 71.53 64.50 48.77 49.40 76.50 62.14 59.79

Table 2: Domain generalization comparison of DCP with existing approaches. The winners and runners-up are

marked in bold font and underlined, respectively.

4.2.1 Datasets and Implementation Details

Following (Zhou et al., 2022b), we use Im-
ageNet (Deng et al., 2009) as source do-
main, and ImageNet V2 (Recht et al., 2019),
ImageNet-Sketch (Wang et al., 2019), ImageNet-
A (Hendrycks et al., 2021b) and ImageNet-
R (Hendrycks et al., 2021a) as target domains. We
train our model on the 16 shots of ImageNet, and
test it on other four datasets. Different from the
settings in few-shot task, the training epoch on 16-
shot ImageNet in cross domain task is set to 5. We
also decrease the prompt length to 8.

4.2.2 Main Results

Table 2 compares our method DCP with other
prompt learning methods on cross-domain tasks.
The compared methods include zero-shot CLIP,
unimodal prompt learning methods (CoOp, Co-
CoOp and VPT-Deep) and multi-modal prompt
learning methods (MaPLe and UPT). The best re-
sults on different datasets are in bold, and the sec-
ond best results are underlined. We can observe
that 1) prompt learning does not corrupt the gen-
eralization ability of pre-trained large models; 2)
multi-modal prompt learning methods outperform
unimodal prompt learning methods in generaliza-
tion performance; 3) our method can get compara-
ble performance as the state-of-the-art methods.

5 Discussion and Conclusion

This paper proposes a deeply coupled cross-modal
prompt learning method, with a core module cross-
modal prompt attention. Our method focuses on
optimizing the interaction across different models
and layers to address the alignment between vision
and language. Experiments on few-shot image clas-

sification and domain adaptation evidence that our
method can transfer the general knowledge learned
by pre-trained foundation models to downstream
tasks without penalty of the original generalization
ability. Our method provides a strong baseline on
few-shot image classification. The deep fusion be-
tween visual and language information may enable
our approach to have greater potential for complex
cross-modal tasks, such as referring expression
comprehension (Subramanian et al., 2022), image
retrieval (Baldrati et al., 2022) and visual question
answering (Liu et al., 2022). We will apply our
method to such complicated cross-modal tasks to
evaluate its effectiveness in our future work.

SUN397

3
< 7 +- DCP_ep5 <
68 /i DCP_ep10
Vi +- DCP_epl5
66 | -+~ DCP_ep20

-~ DCP_ep5

DCP_ep10
- DCP_epl5
-~ DCP_ep20

i2 4 8 16 i2 4 8 16
Number of training examples per class Number of training examples per class

Figure 5: Accuracy comparison of different epochs on
Sun397 and ImageNet.

6 Limitations

We discover that for datasets with a relatively large
number of categories, our method requires a more
delicate setting of epoch under different shots. Fig-
ure 5 shows the average results on Sun397 and
ImageNet of different epochs. It can be observed
that for datasets with a large number of categories
(such as Sun397 and ImageNet), as the number of
shots decreases, the performance deteriorates with
an increase in the number of epochs, which is not
evident on the datasets with a small number of cat-
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egories. We will delve further into this problem to
find the reason and solution.
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