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Abstract

Some variants of self-supervised denoising ob-
jectives for pre-training encoder-decoder lan-
guage models have been reported to have a
negligible impact on downstream performance.
Yet the design of these pre-training objectives
leads to behavioural differences that can be
uncovered with specific manipulations. We re-
produce a recently proposed zero-shot control
method and find that it is only successful on a
subset of models. To understand what causes
the difference in its effectiveness, we perform
a set of controlled experiments, varying only
the pre-training objective, and find unexpected
interactions between the pre-training method
and downstream controllability of models after
fine-tuning. Our results show that different pre-
training objectives have consequences that may
not be visible in standard downstream evalua-
tion, but which should be taken into account
when developing models with controllability in
mind.

1 Introduction

Self-supervised denoising objectives have proven
extremely powerful for deriving transformer-based
pre-trained language models (PLMs) given mas-
sive amounts of unlabelled data. These objectives
are typically agnostic towards specific downstream
tasks and thus do not resemble real-world use cases.
Instead, they enable the model to learn optimal pa-
rameter initialisations for subsequent fine-tuning
on various downstream tasks (Dai and Le, 2015;
Erhan et al., 2010). During fine-tuning, the PLM
quickly learns new tasks based on the supervised
signal provided, rendering pre-training task largely
redundant.

Previous work has found performance differ-
ences on downstream tasks to be negligible given
various denoising pre-training objectives (Lewis
et al., 2020; Alajrami and Aletras, 2022).1 As

1We confirm these findings with our own models in Ap-
pendix C.

Figure 1: The effect of CtxAug for inquisitive dialogue
modelling with off-the-shelf models. In contrast to
BART, T5 models exhibit a minimal response to the
context code. T5-small-LM refers to the LM-adapted
model from Lester et al. (2021a).

a result, the choice of which method to apply
in pre-training has largely been based on factors
such as efficiency (e.g. Raffel et al., 2020; Song
et al., 2019). However, given equally well perform-
ing pre-training objectives, we find that encoder-
decoder PLMs respond drastically differently to
post-hoc manipulations after fine-tuning.

Specifically, we investigate the use of con-
text augmentation (CtxAug), proposed by Haz-
arika et al. (2022), as a zero-shot control method
designed to steer a fine-tuned encoder-decoder
model towards generating outputs with particu-
lar attributes. While they introduce this as a gen-
eral control mechanism for encoder-decoder trans-
formers, our experiments with BART (Lewis et al.,
2020) and two variants of T5 (Raffel et al., 2020;
Lester et al., 2021a) show that controllability via
context augmentation is predominantly exhibited
by BART (Figure 1).

Given this observation, we hypothesise that the
success of this zero-shot control method may be
highly dependent on a model’s pre-training objec-
tive. To investigate this hypothesis, we set out
to identify exactly what aspects of BART’s pre-
training allow for CtxAug to work. Our findings
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suggest that fine-tuned models are capable of ex-
hibiting vestigial behaviours2 which are endowed
by their pre-training objectives and allow for inter-
esting and useful post-hoc manipulation methods
in downstream applications.

2 Background

2.1 Seq2Seq Pre-training Objectives

To jointly pre-train an encoder-decoder transformer
(Vaswani et al., 2017), seq2seq pre-training objec-
tives typically corrupt an input sequence (noise)
before feeding it to the model and then train the
model to recover the original sequence (denoise).
Usually, this involves span-based masked language
modelling (MLM) (Joshi et al., 2020; Devlin et al.,
2019a) combined with a standard language mod-
elling objective involving left-to-right prediction
(Bengio et al., 2003; Radford et al., 2018). How-
ever, popular denoising objectives differ in terms of
the extent of corruption applied and the amount that
needs to be recovered. For instance, MASS (Song
et al., 2019) applies MLM to a single, randomly
selected span of contiguous source tokens and pre-
dicts only the noised tokens given their positional
information. T5 (Raffel et al., 2020) randomly se-
lects multiple token spans and replaces each span
with a single unique ‘sentinel’ mask token. The tar-
get sequence then corresponds to a stilted sequence
consisting of the masked input spans separated by
their respective sentinel tokens. BART (Lewis
et al., 2020) applies span-based MLM in conjunc-
tion with sentence permutation. In stark contrast
to the previous approaches, BART is tasked with
reconstructing the input sequence in full and not
just the masked spans, which we refer to as partial
reconstruction.

2.2 Context Augmentation for Zero-shot
Control

Despite strong generalisation abilities of fine-tuned
PLMs, controlling for desirable attributes in gen-
erated text remains an active area of research
(e.g. Dathathri et al., 2019; Liu et al., 2021; Yang
and Klein, 2021; Krause et al., 2021; Pascual
et al., 2021) Recently, Hazarika et al. (2022) pro-

2While there is a substantial body on catastrophic forget-
ting, where information relevant for a learned task is lost upon
training on a new task (McCloskey and Cohen, 1989; Good-
fellow et al., 2014), we use vestigial behaviour to refer to
observable properties that remain after fine-tuning and can
be traced back to earlier (pre-)training tasks, in analogy to
vestigial structures in biology.

posed CtxAug as a means of controlling fine-tuned
encoder-decoder LMs in a zero-shot setting. Given
an encoder-decoder transformer trained on a down-
stream task, CtxAug aims to provide additional
conditioning context, not included in the original
source sequence, to guide the model generation
towards a particular attribute. CtxAug encodes a
set of phrases or sentences that exhibit a target at-
tribute into an averaged representation C, which is
concatenated with the hidden representation of the
original source sequence: C‘encpxq. The decoder
can then attend to this augmented input context at
inference time without any updates to the model’s
parameters. To ensure that the model does not sim-
ply disregard the context code, the authors also
propose to manually re-weight the model’s cross
attention with an attention biasing parameter. In
experiments on dialogue modelling, Hazarika et al.
(2022) demonstrate that CtxAug can be used to
encourage more inquisitive and positive sentiment
responses.

3 Experimental Setup

3.1 Pre-training

To investigate the effect of different encoder-
decoder pre-training objectives on CtxAug, we
use a controlled setup on scaled-down models and
datasets, where only the pre-training objective dif-
fers. Specifically, we compare the following objec-
tives (depicted in Table 3):

i) MLM+PS: span-based MLM combined with
sentence permutation (i.e. BART’s default pre-
training objective);

ii) MLM: span-based MLM alone;

iii) PS: sentence permutation alone;

iv) SIPR-MS: MASS-style span-infilling with par-
tial reconstruction3;

v) SIPR-T5: T5-style span-infilling with running
partial reconstruction and sentinel tokens;

vi) SIFR: span-infilling with full reconstruction
of the input sequence.

Since methods differ in their original works in
terms of how spans are selected for masking, we

3For consistency, our SIPR-MS differs from the original
MASS objective in that we select multiple spans for masking
in a given input, while (Song et al., 2019) only select a single
span per training example, and we do not perform any random
mask replacement.
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Single Objectives (§4.1) Mixed Objectives (§4.3)

No PT MLM+PS MLM PS SIFR SIPR-MS SIPR-T5
SIFR/PR

1:3 1:1 3:1

inquisitive
default 54.18 35.24 50.39 40.61 50.79 44.87 54.04 47.90 57.84 50.80
CtxAug -8.27 +9.68 +5.42 -0.20 +6.37 -10.90 -7.07 +2.42 +2.82 +5.51

positive
default 29.24 39.19 29.17 34.52 31.46 35.65 34.00 31.46 35.65 34.00
CtxAug +11.99 +7.12 +5.11 +15.33 +6.71 +6.47 +13.93 +6.71 +6.47 +13.93

Table 1: Portion of inquisitive (top) and positive sentiment (bottom) dialogue responses generated under default
generation settings (in grey) and the absolute increase/decrease with CtxAug using the appropriate context code. All
results are the aggregate of multiple seeded runs. Scores in bold indicate statistically significant differences from
the default generations within all seeded runs according to a two-tailed unpaired t-test (p < 0.01).

unify these based on the approach taken by Lewis
et al. (2020) and use a Poisson distribution (λ “
3).4 For reference, we also compare to a non-pre-
trained (No PT) baseline, which is trained from
scratch on the downstream task.

Model We use the BART model architecture,
which resembles a standard encoder-decoder trans-
former with GeLU activation functions. Follow-
ing Dufter and Schütze (2020) we scale the model
down by dividing the size of the hidden layer, in-
termediate feed forward layers, and the number of
attention heads by 12. This results in a hidden size
of 64 and intermediate size of 256 and a single
attention head.

Data As pre-training data we select the BookCor-
pus5 (Zhu et al., 2015; Bandy and Vincent, 2021)
due to its stylistic similarities to our downstream
task (e.g. dialogues between characters). We per-
form simple preprocessing, removing preambles
and meta data by filtering lines without sentence-
final punctuation or lines containing more than
70% punctuation or numbers. We set aside 100
randomly selected books for validation. The result-
ing corpus contains approximately 72M and 400k
sentences for training and validation, respectively.
Given our budgeted training setup, the model only
sees approximately 65% of the data before reach-
ing the maximum number of update steps. Finally,
we train our own BART tokenizer on the training
split with a maximum vocabulary size of 4,096.

4Here, 0-length spans, which correspond to insertions in
the original BART denoising objective are ignored. And con-
tiguous independently masked spans are merged to ensure the
we do not have consecutive [M] tokens in the input sequence.

5We use a version created in September, 2020 (https:
//github.com/soskek/bookcorpus).

3.2 Fine-tuning & Inference
To measure the impact of CtxAug for zero-shot
controlled generation, we follow the experimen-
tal setup from Hazarika et al. (2022) and focus
on promoting inquisitive and positive responses in
knowledge-grounded dialogue generation with the
Topical-Chat dataset (Gopalakrishnan et al., 2019).
The task is to generate the target dialogue turn
given a relevant knowledge snippet k and the dia-
logue history hT , where T is the number of turns.

At inference time, we use top-p sampling (p=0.9)
with beam size of 4 and a temperature of 0.7. Se-
quences are generated with a maximum length of
40 tokens. For all experiments, we pre-train and
fine-tune with 3 different seeds before performing
inference with 5 different seeds. This results in a to-
tal of 15 inference runs for each model. To promote
inquisitiveness with CtxAug we randomly sample
10 questions from the training data to construct
the control code. To promote positive sentiment,
we use a limited set of only 5 short phrases. Fine-
tuning and inference experiments are performed
with Hugging Face’s Transformers library (Wolf
et al., 2020). We include the full details on training
and inference hyperparameters in Appendix A.6

4 Results

4.1 Pre-training Objectives for CtxAug
Table 1 shows the effectiveness of CtxAug given
the different pre-training objectives considered. For
promoting inquisitive responses (top row), BART’s
original denoising objective (MLM+PS) exhibits
the strongest positive response to CtxAug over the
default generation setting. Meanwhile, isolating
the two independent noising operations used in this
objective reveals that sentence permutation (PS)

6We make our code available at https://github.com/
ZurichNLP/understanding-ctx-aug.
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alone is insufficient for CtxAug to succeed. Com-
paring span-infilling pre-training objectives (SI*),
we can observe that the format of the target se-
quence used during pre-training is crucial. With
noising operations being equal, CtxAug for inquis-
itive responses works effectively only when the
model is pre-trained to reconstruct the target se-
quence in full, while partial reconstruction yields
similar results to that of no pre-training (No PT).
In contrast, encouraging more positive responses
with CtxAug (bottom row) succeeds regardless of
the pre-training strategy7, and even without any
pre-training.

This suggests that multiple factors may con-
tribute to the overall effectiveness of CtxAug in
practice. Firstly, the fact that models trained from
scratch can still leverage CtxAug for positive senti-
ment suggests that there may be effects arising from
correlation of source and target attribute features in
the fine-tuning data. In such a case, CtxAug may
not generalise to other datasets and tasks. Secondly,
and most notably, full reconstruction pre-training
objectives support CtxAug more than partial recon-
struction objectives.

Reconstructing the corrupted input sequence in
full naturally encourages a strong correlation be-
tween input and target attributes. This more closely
resembles the central mechanism in CtxAug where
a vector representing the desired target attribute is
‘reconstructed’ in the target sequence. Meanwhile,
partial reconstruction objectives yield primarily dis-
jointed source and target sequences. This does
not necessarily preclude the possibility of inferring
relationships between co-occuring attributes over
long distances (e.g., sentence-initial subject-verb
inversion together with a sentence-final question
mark). However, the likelihood of successfully
learning these becomes plausible only in scenar-
ios where some co-occurring features remain un-
masked and others are reconstructed. This limits
the efficacy of CtxAug for promoting inquisitive-
ness, and possibly other attributes that occur over
longer distances, to certain pre-training methods.

4.2 Duration of Fine-tuning on CtxAug

To investigate how CtxAug is impacted by the du-
ration of fine-tuning, we conduct an ablation study
in which we perform inference at regular inter-
vals throughout fine-tuning. Figure 2 depicts how

7Appendix B shows that this also holds with publicly avail-
able models.

Figure 2: Effect of CtxAug throughout fine-tuning given
different pre-training strategies. X-axis values indicate
the number of training epochs and are shown on the log
scale to better visualise the earliest stages of fine-tuning.

CtxAug behaves relative to the default generation
setting as the model learns the downstream task.
When starting from randomly initialised parame-
ters, given question control phrases (top left), the
model fails to leverage the control code effectively,
resulting in degradation in inquisitiveness relative
to the default generations settings. For positive sen-
timent (bottom left), however, we can observe that
the fine-tuning data provides a sufficient signal to
support CtxAug. In this setting the model starts to
effectively make use of the control code after three
epochs.

Meanwhile, the SIFR pre-trained model is able to
leverage CtxAug at all stages of fine-tuning, high-
lighting the vestigial behaviour from pre-training.
This is most visible when encouraging positive sen-
timent responses (bottom right), where, in the ear-
liest stages of fine-tuning, we can observe a signifi-
cant increase in the number of positive sentiment
responses generated. As the model adapts to the
task, this advantage tapers off, indicating that ves-
tigial behaviours from pre-training weaken over
time.

For inquisitive responses (top right), the effect
of CtxAug is most noticeable after the first few
fine-tuning epochs, suggesting that this type of pre-
training objective endows the model with a useful
bias that can be effectively exploited by CtxAug.
We also note that while the effect is only slight
under this condition, it reflects the model’s overall
tendency to generate responses pertaining to the tar-
get attributes in question. As the model learns the
task, inquisitiveness naturally increases, while pos-
itiveness decreases. Manual inspection confirmed
that at the earliest stages of training, models tended
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to output generic and positive responses (e.g. “I
know!”), which gradually become slightly more
varied to include negative responses (e.g. “I don’t
know that.”) and simple questions.

4.3 Mixing Pre-training Objectives

Any encumberment to leveraging interesting and
useful post-hoc control techniques such as Ctx-
Aug with fine-tuned PLMs may be considered a
significant downside of upstream decisions relat-
ing to the pre-training objective. Yet in order to
scale models and training data, partial reconstruc-
tion objectives have been chosen due to their lower
computational cost (Raffel et al., 2020). One possi-
ble option for striking a desirable balance between
pre-training efficiency and downstream flexibility
could be to combine different pre-training objec-
tives either within a single pre-training scheme or
as a secondary pre-training before fine-tuning (e.g.
Lester et al., 2021b). To this end, we experiment
with combining SIFR and SIPR-T5 within a single
pre-training scheme, SIFR/PR, and investigate vari-
ous mixing ratios: 1:3, 1:1 and 3:1. Table 1 (right)
shows that gradually increasing the degree to which
the model is tasked with full reconstruction of the
noised input improves the effectiveness of CtxAug
but even at 75% adoption (3:1), it fails to reach
equivalence with using only SIFR.

5 Related Work

The study of PLMs, their abilities, properties and
behaviours, occupies a significant space in today’s
NLP research (e.g. Rogers et al., 2020; Lialin et al.,
2022; Clark et al., 2019). Numerous works have
evaluated and compared downstream performance
of seq2seq PLMs, covering a wide array of tasks in-
cluding abstractive summarisation (Blekanov et al.,
2022; Zhu et al., 2021; Tang et al., 2022; Fabbri
et al., 2021), question answering (Luo et al., 2022),
graph-to-text generation (Ribeiro et al., 2021), di-
alogue modelling (Shin et al., 2022) and text sim-
plification (Štajner et al., 2022), among others.
While such comparisons are useful for guiding re-
searchers in selecting the right model for a task and
can sometimes reveal interesting differences on
certain task-specific data sets, they tend to neglect
important differences between PLMs, such as the
underlying model size or the type and amount of
data used for pre-training. Thus, it remains difficult
to explain exactly why a particular model performs
better or worse on a given task.

Meanwhile, there is a growing body of literature
aimed at explaining some of the interesting and
often unexpected behaviours observed among large
PLMs. In this area, multilinguality has been linked
to the duration of fine-tuning (Dufter and Schütze,
2020), and the ability to perform in-context few-
shot learning and zero-shot generalisation has been
linked to multiple factors. These include model
scale (Brown et al., 2020), the types and formatting
of demonstrations (Min et al., 2022), memorisa-
tion of pre-training data (Xie et al., 2022) and its
distributional properties (Chan et al., 2022). The
selection of architecture and pre-training objectives
have also been found to be influential (Wang et al.,
2022). Our work falls into this category and aims
to explain which aspects of seq2seq pre-training
objectives contribute to the ability to exploit addi-
tional conditioning context provided at inference
time.

6 Conclusions

As PLMs become increasingly commonplace, so
too does the importance of understanding the po-
tential downstream consequences of decisions re-
lating to their design. Our experiments indicate that
context augmentation, as a method for zero-shot
controlled natural language generation, is suscepti-
ble to inductive biases learned in pre-training given
different types of control codes. Based on this, we
conclude that pre-training objectives that aim to
reconstruct a noised input in full, similar to BART,
are best suited to leverage this technique. Look-
ing forward, we expect that even for seemingly
equally effective pre-training objectives, we can
identify differences in behaviour, e.g. applicability
of control methods, that remain after fine-tuning.
In searching for optimal pre-training strategies for
PLMs, this opens another dimension that needs to
be considered and better understood.
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Limitations

Comparing downstream performance of pre-
training objectives with large-scale models is pro-
hibitively expensive. Because of this, we employ
scaled-down models that closely resemble the archi-
tectures and training procedures of popular PLMs.
In doing so, we assume that our findings are trans-
ferable to some larger publicly available models.
As noted by Hazarika et al. (2022), CtxAug offers
an interesting alternative to prompting generative
LMs that are significantly smaller than those that
typically exhibit few- and zero-shot capabilities
(Brown et al., 2020). While we provide support for
both Hazarika et al. (2022)’s claim and our assump-
tion in preliminary and supplementary experiments
with select PLMs (see Section 1 and Appendix B),
these experiments are still performed on models of
up to 140M parameters. Therefore, we stop short
of concluding that our findings generalise to LLMs,
which dwarf these models in comparison.

Additionally, the number and types of target
attributes that a user may want to control for in
various downstream text generation tasks are po-
tentially endless. However, our study focuses on
only two possible target attributes, namely, inquis-
itiveness and positive sentiment, for the task of
conversational dialogue modelling. In this way, our
work partially serves as a re-implementation and
reproduction study, confirming the main findings
from Hazarika et al. (2022), but also highlighting
limitations.
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A Training Details

A.1 Pre-training Hyperparameters

Our scaled down models have approximately 1M
parameters and are pre-trained using the open-
source Fairseq library (Ott et al., 2019). Follow-
ing recommendations for budgeted pre-training by
Izsak et al. (2021), we use a small batch size of
4,096 tokens and a triangular learning rate sched-
ule which warms up for 2,500 steps and decays
to zero with over 250k update steps. We also re-
strict the maximum sequence length to 256 which
is sufficient for our downstream task of dialogue
modelling. All other hyperparameters are kept the
same as those used by Lewis et al. (2020). Our mini
model pre-training takes approximately 6 hours on
a single Nvidia K80 GPU (16GB memory).

A.2 Fine-tuning on Topical-Chat

Topical-Chat comprises conversational dialogues
between pairs of crowd workers. The crowd work-
ers were provided with reading sets containing dif-
ferent fun facts on eight different topics including
sports, pop culture and politics as interesting dis-
cussion points. For each target dialogue turn in the
dataset, it is assumed that the relevant knowledge
snippet is provided as additional context based on
previous work from Hedayatnia et al. (2020). Table
2 provides an overview of the dataset’s splits.

To fine-tune on Topical-Chat, we followed the
setup adopted by Hazarika et al. (2022). Specifi-
cally, the input sequence comprises a fixed number
of ‘bucketed’ tokens. 32 tokens are reserved for
the knowledge snippet and 25 tokens for each turn
in the dialogue history. A <pad> token is used to
fill empty positions within each bucket and indi-
vidual text sequences are truncated if their length

Split Items

Train 145,238
Valid 8,986
Test (freq.) 9,065
Test (rare) 9,075

Table 2: Number of items in Topical-Chat for
knowledge-grounded dialogue generation.

exceeds the allocated bucket size. Dialogue history
turns are delimited with speaker identifier tokens
and the entire input sequence is prepended with a
<bos> token. The model is trained for a maximum
of 10 epochs with an effective batch size of 20 and
a learning rate of 6.25e ´ 5. The maximum target
sequence length is set to 64. Fine-tuning on a sin-
gle Nvidia K80 GPU (16GB memory) takes around
1.5 to 2.5 hours depending on the model size.

A.3 Inference on Topical-Chat

At inference time, we use the same hyperparam-
eters for all models. Specifically, we use top-p
sampling (p=0.9) with beam size of 4 and a tem-
perature of 0.7. The maximum sequence length is
set to 40 tokens. When applying CtxAug we manu-
ally re-weight the cross attention distribution using
method described in Hazarika et al. (2022). Again,
we used the recommend hyperparameter value of 5,
which the authors found to provide a good balance
between exhibiting the target attribute and main-
taining fluency. To account for randomness, we run
inference with multiple random seeds, which takes
approximately 25 minutes for each experiment set-
ting using a batch size of 120.

To construct the control code, we adopt the same
methods as Hazarika et al. (2022). For inquisi-
tiveness, we randomly sample 10 questions from
the Topical-Chat training split. These 10 questions
are then embedded once to construct the control
code that is concatenated with every instance in
the test set. Note that the sampling process is de-
pendent on the random seed for each inference run.
This means that each seeded inference setting uses
a different set of questions to construct the con-
trol code. For positive sentiment, we always use
the same five phrases defined by Hazarika et al.
(2022): “That’s awesome”, “That’s cool”, “Oh that
is great”, “It’s great to”, “It’s wonderful to”. Since
Hazarika et al. (2022) reported negligible differ-
ences between the different sampling strategies for
finding control phrases, we refrained from doing
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an extensive search over alternative methods and
opted to use their recommended settings.

Our main experiments are reported on the
Topical-Chat ‘frequent’ test set, however, we ob-
served similar trends across the board when evalu-
ating on the Topical-Chat ‘rare’ test set also.

B CtxAug for Positive Sentiment

Encouraging positive sentiment with CtxAug ap-
plied to our scaled down models proved successful
for all models regardless of the pre-training strategy
used. Figure 3 shows that this result also holds with
much larger publicly available models, with all dif-
ferences being statistically significant according to
a two-tailed unpaired t-test (p < 0.01). Note that
the weaker effect of CtxAug for positive sentiment
compared to controlling for response inquisitive-
ness with BART-base agrees with the findings from
Hazarika et al. (2022).

Figure 3: Performance of CtxAug with publicly avail-
able models when controlling for positive sentiment in
Topical Chat.

C Performance Metrics

Inspecting the results of automatic metrics, we
find only negligible differences on downstream per-
formance across different denoising pre-training
objectives, supporting previous findings (Lewis
et al., 2020; Alajrami and Aletras, 2022; Raffel
et al., 2020). Table 5 provides results for com-
monly used metrics for evaluating dialogue mod-
els. Specifically, we report the total number of
unique responses generated (Uniq. Resp.), average
response length (Resp. len.), perplexity (PPL) as
computed by a distilled GPT-2 model8, the portion
of unique unigrams per response (Dist-1), Self-
BLEU (Zhu et al., 2018), BLEU (Papineni et al.,

8https://huggingface.co/distilgpt2

2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005). The latter three metrics are
computed using ground-truth responses as refer-
ences and are implemented in Hugging Face’s Eval-
uate library9. Without pre-training, the difference
in performance for all metrics is noticeable.

9https://huggingface.co/docs/evaluate/index
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Model Noised Input Target

MASS (Song et al., 2019) I like [M] [M]. [M] [M] [M] in 1989. [P] [P] The Simpsons [P] It was released [P] [P] [P]

T5 (Raffel et al., 2020) I like [M1]. [M2] in 1989. [M1] The Simpsons [M2] It was released [M]

BART (Lewis et al., 2020) [M] in 1989. I like [postcards]. I like The Simpsons. It was released in 1989.

MLM+PS [M] in 1989. I like [postcards]. I like The Simpsons. It was released in 1989.

MLM I like postcards. [M] in 1989. I like The Simpsons. It was released in 1989.

PS It was released in 1989. I like The Simpsons. I like The Simpsons. It was released in 1989.

SIPR-MS I like [M] [M]. [M] [M] [M] in 1989. [P] [P] The Simpsons [P] It was released [P] [P] [P]

SIPR-T5 I like [M1]. [M2] in 1989. [M1] The Simpsons [M2] It was released [M]

SIFR I like [M]. [M] in 1989. I like The Simpsons. It was released in 1989.

Table 3: General-purpose seq2seq denoising objectives used for pre-training. The bottom section depicts the
pre-training objectives used in our experiments for comparison with those used in publicly available models. [M]
and [P] indicate mask and pad tokens, respectively, while words appearing in square brackets indicate a token
selected randomly from the vocabulary, following the 80/10/10 mask, replace, keep strategy used in the original
MLM objective (Devlin et al., 2019b).

Knowledge snippet: Daniel Radcliffe voiced the cartoon parody of Twilight’s Edward Cullen on The Simpsons episode
Treehouse of Horror XXI.

Speaker A: Yep me either. I saw the 70’s show was made in the UK and was cancelled after only 10 shows.
Speaker B: Wow, I guess they didnt love it like people did here. Did you realize that in the first 400 episodes of

the SImpsons Homer had 188 jobs. I thought he always worked at the plant.
Speaker A: Oh wow that’s a lot of jobs. I had no idea.
Speaker B: Me neither, that kind of shocked me. Do you remember the Treehouse of Horror xxi from the

Simpsons?
Speaker A: I do not remember that. Was it a good episode?
Target: It had Daniel Radcliffe voicing Edward Cullen.

Table 4: Example of the knowledge-grounded dialogue task in Topical-Chat.

No PT MLM+PS MLM PS SIFR SIPR-MS SIPR-T5

Uniq. Resp. 0.57(±0.06) 0.76(±0.01) 0.67(±0.02) 0.68(±0.01) 0.68(±0.02) 0.7(±0.01) 0.7(±0.02)
Resp. len. 13.47(±0.53) 15.75(±0.19) 16.21(±0.27) 15.41(±0.34) 15.99(±0.07) 15.41(±0.33) 16.5(±0.34)
PPL 50.87(±6.95) 59.09(±2.4) 54.91(±3.66) 57.26(±2.51) 53.71(±1.09) 60.62(±3.27) 58.64(±0.98)
Dist-1 0.91(±0.0) 0.92(±0.0) 0.93(±0.0) 0.93(±0.0) 0.93(±0.0) 0.92(±0.01) 0.93(±0.0)
Self-BLEU 0.86(±0.01) 0.74(±0.0) 0.79(±0.01) 0.78(±0.01) 0.79(±0.01) 0.78(±0.01) 0.78(±0.0)
BLEU 0.01(±0.0) 0.03(±0.0) 0.03(±0.0) 0.03(±0.0) 0.03(±0.0) 0.03(±0.0) 0.04(±0.0)
ROUGE-1 0.16(±0.01) 0.2(±0.0) 0.21(±0.0) 0.2(±0.0) 0.21(±0.0) 0.2(±0.0) 0.21(±0.0)
METEOR 0.11(±0.0) 0.15(±0.0) 0.15(±0.0) 0.15(±0.0) 0.15(±0.0) 0.15(±0.0) 0.16(±0.0)

Table 5: Performance metrics for dialogue modelling with Topical-Chat evaluated on the ‘frequent’ test set. Results
are averaged from 3 different pre-trained/fine-tuned models initialised with different seeds, each with 5 different
seeded runs for inference.
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number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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C �3 Did you run computational experiments?
3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A, Appendix C

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Where applicable, this information is included in the relevant Github repository that will be made
available with the paper.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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