
Findings of the Association for Computational Linguistics: ACL 2023, pages 6970–6983
July 9-14, 2023 ©2023 Association for Computational Linguistics

CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset

Hanchong Zhang1∗, Jieyu Li1∗, Lu Chen1†, Ruisheng Cao1,
Yunyan Zhang2, Yu Huang2, Yefeng Zheng2 and Kai Yu1†

1X-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, SJTU AI Institute

Shanghai Jiao Tong University, Shanghai, China
2Tencent Jarvis Lab, Shenzhen, China

{zhanghanchong,oracion,chenlusz,kai.yu}@sjtu.edu.cn

Abstract

The cross-domain text-to-SQL task aims to
build a system that can parse user questions
into SQL on complete unseen databases, and
the single-domain text-to-SQL task evaluates
the performance on identical databases. Both of
these setups confront unavoidable difficulties in
real-world applications. To this end, we intro-
duce the cross-schema text-to-SQL task, where
the databases of evaluation data are different
from that in the training data but come from
the same domain. Furthermore, we present
CSS1, a large-scale CrosS-Schema Chinese
text-to-SQL dataset, to carry on correspond-
ing studies. CSS originally consisted of 4,340
question/SQL pairs across 2 databases. In or-
der to generalize models to different medical
systems, we extend CSS and create 19 new
databases along with 29,280 corresponding
dataset examples. Moreover, CSS is also a
large corpus for single-domain Chinese text-
to-SQL studies. We present the data collec-
tion approach and a series of analyses of the
data statistics. To show the potential and use-
fulness of CSS, benchmarking baselines have
been conducted and reported. Our dataset is
publicly available at https://huggingface.
co/datasets/zhanghanchong/css.

1 Introduction

Given the database, the text-to-SQL task (Zhong
et al., 2017; Xu et al., 2017) aims to convert the
natural language question into the corresponding
SQL to complete complicated querying. As the
wild usage of relational database, this task attract
great attention and has been widely studied in both
academic and industrial communities.

Recently, text-to-SQL researches (Hui et al.,
2022; Lin et al., 2020; Qi et al., 2022) mainly
focus on building a parser under a cross-domain

∗The first two authors contributed equally to this work.
†The corresponding authors are Lu Chen and Kai Yu.

1Our code is publicly available at https://github.com/
X-LANCE/medical-dataset

setup (Yu et al., 2018; Wang et al., 2020b), where
the databases of the training set and the evaluation
set do not overlap. It aims to construct a univer-
sal parser that can automatically adapt different
domains to inhibit the problem of data scarcity.
However, domain-specific knowledge, especially
domain convention, is crucial but difficult to trans-
form across different domains under cross-domain
setup. Another line of research focuses on the
experiment environment where the training data
and the evaluation data are based on the same
database, which is known as a single-domain setup.
A single-domain text-to-SQL system can parse do-
main knowledge more easily and also has more
wide applications in the real world. However, the
problem of data scarcity always comes up when
security issues and privacy issues exist. Therefore,
both of these setups will face particular difficulties
when it comes to the real world.

To this end, we introduce the cross-schema setup
in this work. The cross-schema text-to-SQL tasks
aim to build a text-to-SQL parser that can auto-
matically adapt different databases from the same
domain, which can avoid the aforementioned prob-
lems. Actually, the cross-schema text-to-SQL also
has broad applications in the real world. For ex-
ample, all the hospital store the information of pa-
tients and medical resources in databases with dif-
ferent structures. Most information categories are
identical across these databases, for instance, the
patient name and the treatment date. Moreover,
domain-specific representations such as medicine
names in databases and user questions are also
commonly used. In this case, we can build a uni-
versal in-domain text-to-SQL parser that can be de-
ployed on the new database from the given domain.
Compared with the cross-domain setup, a cross-
schema parser will not always confront completely
unseen domain knowledge. On the other hand,
compared with the single-domain setup, the prob-
lem of data scarcity can also be inhibited because

6970

https://huggingface.co/datasets/zhanghanchong/css
https://huggingface.co/datasets/zhanghanchong/css
https://github.com/X-LANCE/medical-dataset
https://github.com/X-LANCE/medical-dataset

the data from other in-domain databases can be
used to train the model. However, a cross-schema
text-to-SQL parser need to automatically adapt dif-
ferent database schema structure. Unfortunately,
this issue is less investigated before. Therefore,
how to construct a structural-general parser is the
mainly challenge of cross-domain text-to-SQL.

In this paper, we propose a large-scale CrosS-
Schema Chinese text-to-SQL dataset (CSS), con-
taining 33,620 question/SQL pairs across 21
databases. We generate (question, SQL) pairs with
templates and manually paraphrase the question
by crowd-sourced. For the databases, we collect
2 real-world database schemas involving medical
insurance and medical treatment. As the privacy
issues, we are not allowed to use the original data.
Therefore, we fill the databases with pseudo val-
ues. Based on these 2 seed databases, we alter
the schema and expand 19 databases with differ-
ent structures. Hence, CSS can be used to develop
cross-schema text-to-SQL systems. On the other
hand, the original 2 databases correspond 4,340
samples, which construct the largest Chinese single-
domain corpus. This corpus also allows researchers
to carry on related studies. Our main contributions
can be summarized as follows:

1. We present the cross-schema text-to-SQL task
and propose a large-scale dataset, CSS, for
corresponding studies. The dataset and base-
line models will be available if accepted.

2. We provide a real-world Chinese corpus for
single-domain text-to-SQL researches.

3. To show the potential and usefulness of CSS,
we conducted and reported the baselines of
cross-schema text-to-SQL and Chinese single-
domain text-to-SQL.

2 Related Works

Single-domain text-to-SQL datasets Earliest se-
mantic parsing models are designed for single-
domain systems to answer complex questions.
ATIS (Price, 1990; Dahl et al., 1994) contains man-
ually annotated questions for the flight-booking
task. GeoQuery (Zelle and Mooney, 1996) contains
manually annotated questions about US geogra-
phy. Popescu et al. (2003); Giordani and Moschitti
(2012); Iyer et al. (2017) convert GeoQuery into
the SQL version. Restaurants (Tang and Mooney,
2000; Popescu et al., 2003) is a dataset including

questions about restaurants and their food types etc.
Scholar (Iyer et al., 2017) includes questions about
academic publications and corresponding automat-
ically generated SQL queries. Academic (Li and
Jagadish, 2014) enumerates all query logics sup-
ported by the Microsoft Academic Search (MAS)
website and writes corresponding question utter-
ances. Yelp and IMDB (Yaghmazadeh et al., 2017)
consists of questions about the Yelp website and
the Internet Movie Database. Advising (Finegan-
Dollak et al., 2018) consists of questions about the
course information database at the University of
Michigan along with artificial data records.

Single-domain text-to-SQL datasets contain only
one database. Although text-to-SQL models
trained with single-domain datasets are applied in
corresponding specific domains, different systems
with the same domain but different backgrounds
have diverse databases, which means that models
should have the generalization ability to be trans-
ferred among different systems. Existing single-
domain datasets do not own the feature that re-
quires models to improve cross-schema general-
ization ability. On the contrary, our cross-schema
setup is raised for this issue.

Cross-domain text-to-SQL datasets Recent re-
searches expect text-to-SQL models (Guo et al.,
2019; Bogin et al., 2019; Zhang et al., 2019) to gen-
eralize to unseen databases. Thus cross-domain
text-to-SQL datasets are released. Zhong et al.
(2017) releases WikiSQL, a dataset of 80,654
manually annotated question/SQL pairs distributed
across more than 20k tables from Wikipedia. Al-
though WikiSQL is a large-scale dataset, each
database schema merely consists of one table
and each SQL query merely consists of SELECT,
FROM, WHERE clauses. Yu et al. (2018) releases
Spider, a large-scale complex cross-domain text-to-
SQL dataset. Comparing with previous datasets,
Spider owns much more complex databases for
various domains and complex SQL queries with
advanced SQL clauses and nested SQL structures.
Wang et al. (2020b) releases DuSQL, yet another
large-scale cross-domain text-to-SQL dataset but in
Chinese. Having similar form with Spider, DuSQL
has become a popular Chinese text-to-SQL dataset.
There are also some conversational cross-domain
text-to-SQL datasets, including SParC (Yu et al.,
2019b), CoSQL (Yu et al., 2019a), CHASE (Guo
et al., 2021), DIR (Li et al., 2023b) etc.

Although our cross-schema dataset owns more

6971

than one databases, it is different from cross-
domain datasets. It concentrates on model gen-
eralization ability across different databases which
share the similar structure since they are in the
same domain.

3 Dataset Collection

In this section, we introduce our method of con-
structing the medical dataset CSS in detail. The
dataset construction method mainly consists of five
steps: 1) initial databases creation, 2) question/SQL
templates creation, 3) values filling, 4) questions
rewriting, and 5) database schema extension.

We discuss five steps of constructing the dataset
in Section 3.1-3.5 respectively. Figure 1 shows the
overview of the complete process.

Question template: 门诊就诊$1中患者的体温是多少?
What is the temperature of the outpatient where visit ID is $1 ?

SQL template: SELECT temperature FROM outpatient_record WHERE ID = $1

Initial Databases
Creation

门诊就诊记录(outpatient_record)
体温(temperature)患者姓名(name)就诊流水号(ID)

Question/SQL
Templates Creation

Values
Filling

Questions
Rewriting

Database Schema
Extension

table name
column names

Question: 门诊就诊123中患者的体温是多少?
What is the temperature of the outpatient where visit ID is 123 ?

SQL: SELECT temperature FROM outpatient_record WHERE ID = 123

Paraphrase: 门诊就诊123中患者测了体温，数值是多少?
What is the patient's temperature reading during the outpatient visit 123?

SQL: SELECT temperature FROM outpatient_record WHERE ID = 123

门诊就诊记录(outpatient_record)
体温(temperature)患者年龄(age)患者姓名(name)就诊流水号(ID)

(SQL not changed in this case)

Figure 1: Overview of the dataset collection process.

3.1 Initial Databases Creation

To construct the dataset, the first step is to cre-
ate initial databases. We collect two databases
from the real world scenario, i.e. the insurance
database and the medical database. The insur-
ance database mainly stores medical consumption
records of many different patients. The medical
database mainly stores records of medical diagnos-
tic and examination results.

It is obvious that records data in medical
databases are usually sensitive, since the issue of
patients privacy is involved in these data. It is not
feasible to use data from the real world directly in
our dataset. To protect privacy of users involved
in the medical system, we generate database cell-
values with certain rules and ensure that generated
data are reasonable.

3.2 Question/SQL Templates Creation

Creating abundant and diverse question/SQL tem-
plates is an important step for constructing the
dataset, which influences the quality of the gen-
erated dataset a lot. A question/SQL template can
be regarded as an example of the dataset, which
consists of a question template and a SQL query
template answering the question. The only differ-
ence between the question/SQL template and the
real dataset example is that values carrying infor-
mation (e.g. ID, name, time) in the question/SQL
template are replaced with special tokens. In the
subsequent steps, values can be generated and filled
into corresponding question/SQL templates with
certain rules, which means that all question/SQL
templates can be transformed into real dataset ex-
amples eventually.

In general, we use three methods to create vari-
ous question/SQL templates. Firstly, given medical
databases, we enumerate all columns and attempt
to raise a question for each column as far as possi-
ble. Sometimes we put several columns with close
lexical relations into one question/SQL template,
since the diversity of the SELECT clause can get in-
creased. It is obvious that question/SQL templates
written by this method are relatively simple.

Secondly, we raise a few medical query scenar-
ios and create question/SQL templates based on
them. In the real world, different people with dif-
ferent occupations and social roles will ask differ-
ent types of questions. For instance, patients may
care their medical consumption records and doctors
may care medical examination results. Based on
different real-world scenarios, we can raise various
questions that meet needs of people with different
social roles (e.g. doctor, patient). Furthermore,
these question/SQL templates are usually more
challenge since their SQL skeletons are usually
more complex and diverse.

Thirdly, we add question/SQL templates which
include SQL keywords and SQL skeletons that
never occur in previous templates. We count oc-
currence frequencies for all SQL grammar rules
and SQL skeletons that occur in dataset examples.
Referring to statistical results, we create questions
and corresponding SQL queries which consist of
SQL grammar rules that occur in few dataset ex-
amples. Detailed statistical results are shown in
Section 4.2. By creating question/SQL templates
with this method, the SQL diversity of the dataset
can get improved.

6972

We eventually raise 434 different question/SQL
templates totally. All these templates will get pro-
cessed in subsequent steps.

3.3 Values Filling

In order to generate real dataset examples from
question/SQL templates, values should be gener-
ated and filled into all templates. Different types
of values are replaced with different special tokens
in question/SQL templates. In this step, we use
certain rules to generate random values for various
special tokens.

Concretely, special tokens indicating number or
time are filled with reasonable and suitable random
values. Special tokens indicating ID (e.g. per-
son ID, hospital ID) are filled with random strings,
which consist of numbers and letters. Other special
tokens basically indicate specialized and profes-
sional words like disease names. To generate these
values, we firstly collect sufficient disease names,
medicine names, medical test names, etc. Then
these special tokens are filled with values chosen at
random from corresponding candidate value lists.

Actually one unique question/SQL template can
be used to generate several different dataset exam-
ples, since the template can be completed with var-
ious random values. We generate 10 dataset exam-
ples for each question/SQL template. Consequently
there are totally 4,340 question/SQL pairs which
are directly generated from 434 question/SQL tem-
plates.

3.4 Questions Rewriting

Although 4,340 question/SQL pairs directly gener-
ated from templates can already be used to train and
test text-to-SQL models, they cannot be directly
added into the eventual medical dataset. Question
sentences generated from question templates are
usually unnatural. Moreover, 10 question sentences
generated from the same one question template
share the same sentence pattern. which means lack
of natural language diversity.

To tackle the issue of language naturalness and
diversity, we recruit annotators to rewrite dataset
examples. All questions directly derived from ques-
tion templates are rewritten by annotators. In this
process, lexical and syntactic patterns of question
sentences get changed, which leads to improvement
of natural language diversity of the dataset.

To ensure the diversity of rewritten question sen-
tences, we design a specific metric to evaluate the

rewriting quality. We recruit two groups of annota-
tors and request them to rewrite question sentences
with metric scores as high as possible. Finally
we merge two rewriting results from different an-
notating groups with some rules and acquire all
rewritten questions. Detailed explanation of the
metric is shown in Appendix A.

The correctness of rewritten questions is also
an important issue. We use the automatic method
to examine rewritten questions and make sure that
key information are always maintained after the
rewriting process.

Payment. All annotators were paid based on
their annotations. Annotators would get paid 0.58
RMB for each annotation example.

3.5 Database Schema Extension
Database schema extension is a key feature of CSS.
Text-to-SQL models with good performance should
have the ability to be used in various medical sys-
tems. In the real world application, different medi-
cal systems may use different databases. However,
these databases may share the similar structure,
since all of them are designed for the medical do-
main. Consequently, we believe that cross-schema
generalization ability for text-to-SQL models is
significant and add this challenge task in CSS.

CSS originally contains 2 databases. Based on
them, we follow Li et al. (2023a) and create 19 new
databases. Firstly for two tables linked with for-
eign keys, we create a new relation table between
the original two tables and create new foreign keys
respectively pointing to them. Secondly for two
tables linked with foreign keys, we merge them by
putting their columns together in a merged table.
Thirdly for a table with a special column which
only contains a few different kinds of values (e.g.
gender), we split the table into several tables ac-
cording to those limited values.

patient_info
nameID

medical_record
doctor_IDpatient_IDID

patient_info
nameID

medical_record
doctor_IDID

relation
MIDPID

Database Schema Extension

Figure 2: An instance of database schema extension.

After creating databases, CSS acquires 19 new

6973

databases and 29,280 new dataset examples. There-
fore, CSS totally contains 33,620 question/SQL
pairs across 21 databases.

4 Dataset Statistics and Comparison

In this section, we list some statistical information
of CSS and existing datasets and do comparison.
We mainly discuss scale statistics and SQL statis-
tics with various datasets, including single-domain
datasets, cross-domain datasets and CSS.

4.1 Scale Statistics

Table 1 shows scale statistics of existing datasets,
including single-domain datasets, cross-domain
datasets, and the medical dataset CSS. For single-
domain datasets listed in the table and WikiSQL,
we use the standardized version from Finegan-
Dollak et al. (2018). CSS contains 33,620 examples
generated from scratch across 21 databases. Com-
paring with previous single-domain datasets, CSS
has the largest scale and various databases. We
extend original databases with several certain rules.
Therefore, CSS can help text-to-SQL models gener-
alize to different medical systems, where databases
are different but share the similar structure.

Databases in CSS have a great number of
columns, composite primary keys, and foreign
keys, which indicates that databases in CSS com-
monly possess complex structures. This is also a
challenge feature of CSS. It requires models to find
out effective information from complex database
structures.

4.2 SQL Statistics

First of all, we clarify the concept named SQL
skeleton. For a certain SQL query, it is feasible to
remove detailed schema items and values from the
SQL query. Concretely, we replace tables used
in the SQL query with the special token "tab".
Columns and values are processed with the sim-
ilar method. Columns are replaced with the special
token "col" and values are replaced with the special
token "value". Then the result is defined as the
SQL skeleton, which retains the basic structure of
the original SQL query.

Table 2 shows SQL statistics of existing datasets.
CSS totally possesses 562 different SQL skeletons,
which is comparable with ATIS and surpasses other
single-domain datasets. Note that SQL queries in
CSS are commonly very long. The average and
maximum number of SQL query tokens are 55.41

and 243 respectively, which has surpassed almost
all existing datasets except ATIS. The statistical
result indicates that SQL queries in CSS are diverse
and complex. This is still a challenge for text-to-
SQL models.

5 Tasks and Models

5.1 Dataset Splitting

We provide three methods to split the dataset into
train/dev/test sets. Different dataset splitting meth-
ods correspond to different tasks and raise different
challenges for models. For the first method, 4,340
original dataset examples are shuffled at random
and then are split with the ratio 0.8/0.1/0.1. This
sub-task is an ordinary text-to-SQL task setting
and requires models to generalize well on natural
language.

For the second method, 434 question/SQL tem-
plates are shuffled at random and then are split
with the ratio 0.8/0.1/0.1. Then 4,340 original ques-
tion/SQL pairs fall into corresponding dataset sub-
sets. Comparing with other dataset splitting meth-
ods, larger language gap and SQL gap exist among
train/dev/test sets, since different question/SQL
templates generally express different meanings.
Models are required to have the stronger SQL pat-
tern generalization ability under this sub-task.

For the third method, we add extended dataset
examples and split all 33,620 examples according
to their databases. All databases are split with the
ratio 0.6/0.2/0.2. No overlap of databases exists
in train/dev/test sets. This dataset splitting method
provides a challenge task, which requires models
to possess the stronger generalization ability across
diverse databases sharing similar structures.

5.2 Syntactic Role Prediction

How to improve the cross-schema generalization
ability of text-to-SQL models is a key challenge
raised in CSS. In this section, we introduce our
simple method to tackle the issue of model gener-
alization ability across different databases.

The text-to-SQL model LGESQL (Cao et al.,
2021) add an auxiliary task named graph pruning
in order to improve the model performance. Given
the natural language question and the database
schema, the model is required to predict whether
each schema item occurs in the SQL query. Follow-
ing Cao et al. (2021), we raise a similar auxiliary
task named syntactic role prediction (SRP). Under

6974

Dataset Language Examples DBs Avg T/DB Avg C/T Avg P/T Avg F/T
ATIS English 19,201 1 25 5.24 0.16 1.56

GeoQuery English 920 1 8 3.88 1.75 1.12
Restaurants English 378 1 3 4.00 1.00 1.33

Scholar English 1,858 1 12 2.33 0.58 0.75
Academic English 200 1 15 2.80 0.47 0.00

Yelp English 141 1 7 5.43 1.00 0.00
IMDB English 147 1 16 4.06 1.00 0.19

Advising English 4,744 1 18 6.89 1.39 5.39
WikiSQL English 80,654 26,531 1.00 6.34 0.00 0.00

Spider English 9,693 166 5.28 5.14 0.89 0.91
DuSQL Chinese 25,003 208 4.04 5.29 0.51 0.71

CSS Chinese 33,620 21 5.62 28.49 1.68 1.65

Table 1: Scale statistics of existing datasets. "Avg T/DB" represents the average number of tables per database
schema. "Avg C/T" represents the average number of columns per table. "Avg P/T" represents the average number
of columns in the composite primary key per table. "Avg F/T" represents the average number of foreign keys per
table.

Dataset # SQL Avg Len Max Len
ATIS 828 97.96 474

GeoQuery 120 26.08 92
Restaurants 12 29.22 61

Scholar 158 37.07 65
Academic 76 36.30 116

Yelp 62 28.92 56
IMDB 30 27.48 55

Advising 169 47.49 169
WikiSQL 39 12.48 23

Spider 1,116 17.99 87
DuSQL 2,323 20.23 37

CSS 562 55.41 243

Table 2: SQL statistics of existing datasets. "# SQL"
represents the number of SQL skeletons. "Avg Len"
represents the average number of tokens in one SQL
query. "Max Len" represents the maximum number of
tokens in one SQL query.

this task, the model is required to predict in which
SQL clause each question token occurs.

The SQL query structure may change as the
database schema changes. Figure 3 shows an in-
stance, where two databases share the similar struc-
ture but the key information "doctor" in the ques-
tion are used in the FROM clause and the WHERE
clause respectively. We hypothesize that model
with strong cross-schema generalization ability
should distinguish syntactic roles of every ques-
tion tokens under different databases.

Concretely, according to the text-to-SQL model
LGESQL, the model input is a graph G =

(V,E) constructed with the given question and the
database schema. Graph nodes V include question
tokens and schema items (i.e. tables and columns)
and graph edges E indicate relations among them.
The model encodes each node i into an embedding
vector xi. Then the context vector x̃i for each node
i can be computed with multi-head attention.

αh
ij = softmaxj∈Ni

(xiW
h
q)(xjW

h
k)

T

√
d/H

,

x̃i = (concatHh=1

∑

j∈Ni

αh
ijxjW

h
v)Wo,

where d is the dimension of embedding vectors, H
is the number of heads, Ni is the neighborhood of
the node i, and Wh

q ,W
h
k ,W

h
v ∈ Rd×d/H ,Wo ∈

Rd×d are network parameters.
For each question node qi, the model can pre-

dict in which SQL clause it occurs with xqi and x̃qi .
Specifically we divide the SQL query into 16 differ-
ent parts, which are discussed in detail in Appendix
B. Thus the auxiliary task is a binary classification
task for each question token and each SQL part.

P (yqi |xqi , x̃qi) = σ([xqi ; x̃qi]W + b),

where W ∈ R2d×16, b ∈ R1×16 are network pa-
rameters and yqi is the probability vector. The
ground truth ygqi,j is 1 when the question token qi
occurs in the j-th SQL part. The training object is

L = −
∑

qi

∑

j

[ygqi,j logP (yqi,j |xqi , x̃qi)

+ (1− ygqi,j) log(1− P (yqi,j |xqi , x̃qi)].

6975

The syntactic role prediction task is combined
with the main task in a multitasking way. In ad-
dition, SRP can also be added into the RATSQL
model directly, since RATSQL and LGESQL both
encode graph nodes into embedding vectors and
SRP only takes these vectors as the input.

doctor_info
departmentnameID
outpatientTom1

………

Question: Which department does the doctor Tom work in?

SQL: SELECT department FROM doctor_info
WHERE name = "Tom"

person_info
departmentidentitynameID
outpatientdoctorTom1

…………

SQL: SELECT department FROM person_info
WHERE name = "Tom" AND identity = "doctor"

Figure 3: Given the question, the corresponding SQL
query differs among various but similar databases.

6 Experiments

6.1 Experiment Setup

Baseline approaches We adopt three competi-
tive text-to-SQL models as the baseline approaches,
i.e. RATSQL (Wang et al., 2020a), LGESQL (Cao
et al., 2021), and PICARD (Scholak et al., 2021).
RATSQL and LGESQL process given information
with graph encoding and decode the abstract syntax
tree (AST) of the result SQL query. PICARD is
a sequence-to-sequence approach and is different
from the other two approaches.

RATSQL constructs a graph with question to-
kens and schema items (i.e. tables and columns)
and encodes the graph with the relation-aware self-
attention mechanism. With the unified framework,
RATSQL can easily establish and handle relations
among graph nodes and then encode elements with
various categories jointly.

Comparing with RATSQL, LGESQL improves
the model performance by utilizing the line graph.
LGESQL pays more attention to the topological
structure of graph edges and distinguishes local
and non-local relations for graph nodes. Besides
the original graph used in RATSQL, LGESQL also
constructs the corresponding line graph, since the
line graph can help facilitate propagating encoding
messages among nodes and edges.

Model Dev Test
w/o w w/o w

RATSQL 90.2 81.1 89.0 79.1
LGESQL 91.7 82.2 90.8 81.1
PICARD 93.8 53.7 70.3 58.3

Table 3: Model performances under dataset splitting
method according to examples.

Different from RATSQL and LGESQL, PI-
CARD is a sequence-to-sequence model. Nowa-
days large pretrained language models have pos-
sessed the strong ability for handling and process-
ing natural language with unconstrained output
space. However, SQL is a formal language with
strict grammar rules. Invalid SQL queries are very
likely to be generated if pretrained models are
directly finetuned with text-to-SQL datasets. PI-
CARD provides an approach, which can help reject
invalid tokens during each decoding step and gen-
erate sequences in the constrained output space.

For each baseline model, we use pre-
trained language models (PLMs) within the
encoding module. In our experiments, the
PLM longformer-chinese-base-4096 is ap-
plied in RATSQL and LGESQL and the PLM
mbart-large-50 is applied in PICARD.

Evaluation metrics There are several metrics
to evaluate text-to-SQL model performances, in-
cluding exact match and execution accuracy etc.
The exact match metric requires the predicted SQL
query to be equivalent to the gold SQL query. The
execution accuracy metric requires the execution
result of the predicted SQL query to be correct.

We mainly use the exact match (EM) metric in
our experiments. Concretely, we present model
performances with (w) and without (w/o) value
evaluation respectively.

6.2 Results and Analysis

According to 3 different dataset splitting methods,
we test baseline models under 3 sub-task settings.
Table 3 shows model performances under dataset
splitting method according to examples. LGESQL
achieves the best performance under this sub-task,
i.e. 90.8% EM(w/o) accuracy and 81.1% EM(w)
accuracy on the test set. This indicates that existing
text-to-SQL parsing models have had the ability
to perform very well if all databases and possible
SQL structures have appeared in the train set. Mod-
els merely need to generalize on natural language,

6976

which is simple when utilizing strong PLMs.
Table 5 shows model performances under the

template-splitting sub-task. Comparing with the
previous sub-task, performances of three base-
line models decrease a lot. Although RATSQL
achieves the best performance under this sub-task,
the EM(w/o) accuracy and the EM(w) accuracy on
the test set are only 58.9% and 53.0% respectively.
Question/SQL templates in dev/test sets do not ap-
pear in the train set. Thus models have to predict
unseen SQL patterns when testing. The experiment
result indicates that there is still a large room for the
improvement of model generalization ability across
SQL patterns. We believe that CSS can also help
facilitate researches on improving model ability of
predicting unseen SQL patterns.

Q:列出水天干这位患者在医院7539997住院的
就诊记录里入院科室名字含有耳鼻喉科的记录
Q: List the records of patient Tiangan Shui admit-
ted to hospital 7539997, including the records with
the department name containing Otolaryngology.
Gold: SELECT * FROM person_info JOIN hz_info

JOIN zyjzjlb WHERE person_info.XM = "水天干" AND

hz_info.YLJGDM = "7539997" AND zyjzjlb.JZKSMC LIKE

"%耳鼻喉科%"

Pred: SELECT * FROM person_info JOIN hz_info

JOIN zyjzjlb WHERE person_info.XM = "水天干" AND

hz_info.YLJGDM = "7539997" AND zyjzjlb.JZKSMC LIKE

"%耳鼻炎%"

Q: 从01年1月31日一直到09年8月12日内患
者80476579被开出盐酸多奈哌齐片(薄膜)的总
次数一共有多少？
Q: How many times has patient 80476579 been
prescribed donepezil hydrochloride tablets (thin
film) from 2001-01-31 to 2009-08-12?
Gold: SELECT COUNT(*) FROM t_kc21 JOIN

t_kc22 WHERE t_kc21.PERSON_ID == "80476579" AND

t_kc22.STA_DATE BETWEEN "2001-01-31" AND "2009-

08-12" AND t_kc22.SOC_SRT_DIRE_NM == "盐酸多奈哌

齐片(薄膜)"

Pred: SELECT COUNT(*) FROM t_kc21 JOIN

t_kc22 WHERE t_kc21.PERSON_ID == "80476579" AND

t_kc22.STA_DATE BETWEEN "2001-01-31" AND "2009-

08-12" AND t_kc22.SOC_SRT_DIRE_NM == "盐酸多奈"

Table 4: Case study for the PICARD model when pre-
dicting values. FROM conditions are omitted for clarity.

Note that as a sequence-to-sequence approach,
PICARD cannot perform as well as the two AST-
based approaches (RATSQL and LGESQL) in the

Model Dev Test
w/o w w/o w

RATSQL 60.5 55.2 58.9 53.0
LGESQL 59.5 54.4 58.5 52.8
PICARD 52.6 40.9 49.8 38.6

Table 5: Model performances under dataset splitting
method according to templates.

Model Dev Test
w/o w w/o w

RATSQL 36.6 35.7 43.4 42.0
RATSQL + SRP 38.3 37.4 47.2 45.3

Table 6: Model performances under dataset splitting
method according to databases. "SRP" represents the
auxiliary task named syntactic role prediction.

template-splitting sub-task. There is a room of
model performances between PICARD and AST-
based approaches, especially when values in SQL
queries are concerned in evaluation. Table 4 shows
two instances from the test set in the template-
splitting sub-task, where the PICARD model suc-
cessfully generates the structure of the SQL query
but predicts the wrong value. As shown in Table
2, SQL queries in CSS are commonly very long
and complex, which leads to great difficulty for
PICARD decoding. The decoding error would ac-
cumulate as the decoding step increases. According
to our statistical results, during the decoding pro-
cess of AST-based approaches, the average number
of AST nodes is 56.95. Although the average num-
ber of tokens in the SQL query is 55.41, PLM
used in PICARD would split tokens into many sub-
words. Consequently, decoding steps of PICARD
is actually much more than AST-based approaches.
Furthermore, table and column names in CSS are
commonly consisted of unnatural tokens, which
improves the decoding difficulty of PICARD a lot.

Table 6 shows model performances under dataset
splitting method according to different databases.
Under this sub-task, we use RATSQL as the base-
line model and attempt to add the auxiliary task
SRP, expecting to improve the model performance
across different databases. The experiment result
shows that the model performance increases about
1.7% on the dev set and increases about 3.3%-3.8%
on the test set when SRP is applied into RATSQL.
This proves that SRP can help improve the cross-
schema generalization ability of the model when
using SRP as a simple baseline method.

6977

t_kc21
MED_CLINIC_ID

t_kc24
REF_SLT_FLGMED_CLINIC_IDMED_SAFE_PAY_ID

t_kc21
MED_CLINIC_ID

t_kc24
REF_SLT_FLGMED_SAFE_PAY_ID

t_kc21_t_kc24
MED_SAFE_PAY_IDMED_CLIINIC_ID

Original SQL: SELECT REF_SLT_FLG
FROM t_kc24
WHERE MED_CLINIC_ID = "20997914113"

RATSQL:
SELECT t_kc24.REF_SLT_FLG

FROM t_kc24

WHERE t_kc21.MED_CLINIC_ID = "20997914113"

RATSQL+SRP:
SELECT t_kc24.REF_SLT_FLG

FROM t_kc24 JOIN t_kc21_t_kc24 JOIN t_kc21

WHERE t_kc21.MED_CLINIC_ID = "20997914113"

Figure 4: Case study for SRP. JOIN conditions in the
FROM clause are omitted for brevity.

Figure 4 is an instance from the test set, where
RATSQL predicts the wrong SQL but RATSQL
with SRP predicts the correct result. After database
schema extension, a new relation table is created.
However, RATSQL does not understand the change
and misses the relation table in the FROM clause.
On the contrary, the auxiliary task SRP helps the
model utilize the relation table and eventually pre-
dict the correct SQL.

7 Conclusion

This paper presents CSS, a large-scale cross-
schema Chinese text-to-SQL dataset designed for
the medical domain. We illustrate the detailed pro-
cess of dataset construction and also present statis-
tical information comparing with existing datasets.
We raise a challenge task in CSS, which requires
models to generalize across various databases but
in the same domain. To tackle the above task,
we designed a baseline method named syntactic
role prediction as an auxiliary task for model train-
ing. We conduct benchmark experiments with three
competitive baseline models and prove that future
researches on CSS is valuable.

Limitations

We raise a new challenge task in our medical
dataset CCS. Comparing with existing datasets,
CCS requires text-to-SQL models to generalize
to different databases with the similar structure
in the same domain. To tackle this problem, we
provide a baseline method named syntactic role
prediction, which is an auxiliary task and can be
combined with the main task in a multitasking way.
Our experiments prove that SRP can help improve
the cross-schema generalization ability of models.
However, the improvement is not that large. How to

generalize models across different databases shar-
ing the similar structure is still a challenge issue.
We expect that future works can solve this difficult
problem.

Ethics Statement

We collect two original medical databases from
the real world. However, cell-values in medical
databases are commonly sensitive, since the in-
formation of patients and doctors are involved in
these values. Thus we only retain the database
schema and generate sufficient cell-values with cer-
tain rules. We ensure that generated values are rea-
sonable and that privacy of medical system users
can get protected.

Acknowledgments

We thank Xiaowen Li, Kunrui Zhu and Ruihui
Zhao from Tencent Jarvis Lab for providing nec-
essary initial data. We also thank all the anony-
mous reviewers for their thoughtful comments.
This work has been supported by the China NSFC
Project (No.62106142 and No.62120106006),
Shanghai Municipal Science and Technology Ma-
jor Project (2021SHZDZX0102), CCF-Tencent
Open Fund and Startup Fund for Youngman Re-
search at SJTU (SFYR at SJTU).

References
Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.

Representing schema structure with graph neural net-
works for text-to-SQL parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4560–4565, Florence, Italy.
Association for Computational Linguistics.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and
non-local relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541–2555, Online. Association
for Computational Linguistics.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui

6978

https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010

Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with generative
parsers discriminatively reranked. In Proceedings of
COLING 2012: Posters, pages 401–410, Mumbai,
India. The COLING 2012 Organizing Committee.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan,
Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2021.
Chase: A large-scale and pragmatic Chinese dataset
for cross-database context-dependent text-to-SQL.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2316–2331, Online. Association for Computational
Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2SQL: Injecting syntax to question-schema
interaction graph encoder for text-to-SQL parsers.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1254–1262, Dublin,
Ireland. Association for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an
interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73–84.

Jieyu Li, Lu Chen, Ruisheng Cao, Su Zhu, Hongshen
Xu, Zhi Chen, Hanchong Zhang, and Kai Yu. 2023a.
On the structural generalization in text-to-sql.

Jieyu Li, Zhi Chen, Lu Chen, Zichen Zhu, Hanqi Li,
Ruisheng Cao, and Kai Yu. 2023b. Dir: A large-scale
dialogue rewrite dataset for cross-domain conversa-
tional text-to-sql. Applied Sciences, 13(4).

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:

EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th Interna-
tional Conference on Intelligent User Interfaces, IUI
’03, page 149–157, New York, NY, USA. Association
for Computing Machinery.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora, pages 133–141, Hong Kong,
China. Association for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua
Li, Hua Wu, Min Zhang, and Haifeng Wang. 2020b.
DuSQL: A large-scale and pragmatic Chinese text-to-
SQL dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6923–6935, Online. Association
for Computational Linguistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Type- and content-driven syn-
thesis of SQL queries from natural language. CoRR,
abs/1702.01168.

6979

https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://aclanthology.org/C12-2040
https://aclanthology.org/C12-2040
https://doi.org/10.18653/v1/2021.acl-long.180
https://doi.org/10.18653/v1/2021.acl-long.180
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2022.findings-acl.99
https://doi.org/10.18653/v1/2022.findings-acl.99
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
http://arxiv.org/abs/2301.04790
https://doi.org/10.3390/app13042262
https://doi.org/10.3390/app13042262
https://doi.org/10.3390/app13042262
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070
https://aclanthology.org/H90-1020
https://aclanthology.org/H90-1020
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.emnlp-main.562
https://doi.org/10.18653/v1/2020.emnlp-main.562
http://arxiv.org/abs/1702.01168
http://arxiv.org/abs/1702.01168

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, page 1050–1055. AAAI Press.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong,
China. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Rewriting Metric

First of all, we define the rewriting ratio (RR) be-
tween two different sentences s1 and s2, i.e.

RR(s1, s2) =
EditDistance(s1, s2)

|s1|+ |s2|
,

where EditDistance(s1, s2) represents the edit
distance between s1 and s2. Assume that
si,1, si,2, · · · , si,10 are ten rewritten question sen-
tences derived from the same question/SQL tem-
plate i. In order to improve the language diversity,
we expect ten rewritten sentences to differ from
each other. Thus we request annotators to maxi-
mize

1

N

N∑

i=1

1

55

∑

1≤j<k≤10

RR(si,j , si,k),

when rewriting, where N is the number of ques-
tion/SQL templates.

When merging rewriting results from two groups
of annotators, for each example with the original
question sentence so, we need to decide between
two rewritten sentences sr1 and sr2. Here we choose
sr1 only if

RR(so, sr1) > RR(so, sr2).

B Syntactic Role Prediction

We divide the SQL query into 16 different parts.
Table 7 shows detailed situations. For each ques-
tion token qi, we find out all schema items which
have schema linking relations with qi. Then for
each SQL part, we label that qi appears in this part
if qi itself or one of those schema items appears in
this part.

6980

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

Name Description
NONE Element is not used in SQL.

SELECT Element is a normal column in SELECT.
SELECT_AGG Element is a column with an aggregation function in SELECT.
SELECT_NEST Element appears in SELECT, where SELECT is a nested SQL query.

FROM Element is a normal table in FROM.
FROM_NEST Element appears in FROM, where FROM is a nested SQL query.

WHERE Element is a normal column in WHERE
WHERE_NEST Element appears in WHERE, where WHERE is a nested SQL query

GROUP Element is a normal column in GROUP BY.
HAVING Element appears in HAVING.
ORDER Element is a normal column in ORDER BY.

ORDER_AGG Element is a column with an aggregation funciton in ORDER BY.
LIMIT Element appears in LIMIT.

INTERSECT Element appears in INTERSECT.
UNION Element appears in UNION.

EXCEPT Element appears in EXCEPT.

Table 7: 16 parts of the SQL query.

6981

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�3 A2. Did you discuss any potential risks of your work?
8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5,6

�3 B1. Did you cite the creators of artifacts you used?
5,6

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
3

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
3

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4

C �3 Did you run computational experiments?
5,6

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
It is not important.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6982

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�7 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
It is not important.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5,6

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
3

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
3

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
3,5,6

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
3

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
3

6983

