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Abstract

A major challenge in the field of Text Gen-
eration is evaluation: Human evaluations are
cost-intensive, and automated metrics often dis-
play considerable disagreement with human
judgments. In this paper, we propose a statis-
tical model of Text Generation evaluation that
accounts for the error-proneness of automated
metrics when used to generate preference rank-
ings between system outputs. We show that
existing automated metrics are generally over-
confident in assigning significant differences
between systems in this setting. However, our
model enables an efficient combination of hu-
man and automated ratings to remedy the error-
proneness of the automated metrics. We show
that using this combination, we only require
about 50% of the human annotations typically
used in evaluations to arrive at robust and sta-
tistically significant results while yielding the
same evaluation outcome as the pure human
evaluation in 95% of cases. We showcase the
benefits of approach for three text generation
tasks: dialogue systems, machine translation,
and text summarization.

1 Introduction

The field of Text Generation (TG) has witnessed
substantial improvements over the past years. The
gain in performance is mainly due to the applica-
tion of large-scale pre-trained language models (De-
vlin et al., 2019; Raffel et al., 2020) based on the
Transformer architecture (Vaswani et al., 2017),
which allows fast processing of large amounts of
data. This has spawned myriads of new systems for
TG. The most prominent example is GPT-3 (Brown
et al., 2020), which showcases impressive perfor-
mance on a variety of tasks in a zero-shot learning
regime.

One major hurdle for further progress is the eval-
uation of TG systems. Currently, the most reliable

∗ These authors contributed equally.

approach to evaluating TG systems is a human-
based evaluation (Celikyilmaz et al., 2020), which
is time-consuming and cost-intensive. Furthermore,
human evaluation suffers from a set of problems
such as low annotator agreements (Amidei et al.,
2018), and they need to be designed with care to be
reproducible (Belz et al., 2021). These problems
motivated the development of automated evaluation
metrics, which take the input of a TG system and
the generated text (and potentially one or multiple
reference texts) as their input, and return a rating.

Generally, there are two types of automated met-
rics: trained and untrained metrics (Celikyilmaz
et al., 2020). The most prominent untrained met-
rics are the BLEU score (Papineni et al., 2002) and
the ROUGE score (Lin, 2004), developed for the
evaluation of machine translation and automated
summarization systems, respectively. The more re-
cent metrics that were proposed are trained metrics.
One of the first such approaches is the PARADISE
framework by Walker et al. (1997) for task oriented
dialogue systems, which learns to match interac-
tion statistics to user satisfaction scores. Current
approaches are based on large pre-trained language
models. For conversational dialogue systems, there
are ADEM (Lowe et al., 2017), USR (Mehri and Es-
kenazi, 2020b), FED (Mehri and Eskenazi, 2020a)
or MAUDE (Sinha et al., 2020), among others (for
a more complete overview, we refer the reader
to Yeh et al. (2021); Deriu et al. (2021)). For ma-
chine translation, the most prominent trained met-
rics are COMET (Rei et al., 2020) and BleuRT (Sel-
lam et al., 2020). For a more in-depth treatment
of different automated metrics for TG systems, we
refer the reader to Celikyilmaz et al. (2020).

Some metrics already achieve correlations with
human judgements of 50% and above (Yeh et al.,
2021; Fabbri et al., 2021; Freitag et al., 2021). For
this reason, it is a tempting to use automated met-
rics to rate and rank TG systems. A typical ap-
proach to compare two systems is to use preference
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ratings, where the generated output of two systems
for the same input is given, and the metric is used
to decide which output is preferred or if they are of
similar quality (Mathur et al., 2020; Kocmi et al.,
2021). Such preferences are then aggregated for
several sample inputs to decide which system is
"better". One important open question, which we
will tackle in this paper, is how erroneous ratings
from an automated metric on the sample level in-
fluences the system level evaluation.

Motivating Example. Assume that we are given
a set of TG systems, and the goal is to rank them
according to some criterion (e.g. relevance of gen-
erated summaries for some text summarization sys-
tems). Assume that we are given an automatic
preference metric. The naive application of this
metric to determine which of two TG systems is
better is to apply the metric to the outputs of the
two systems for a test set of a fixed size. Then one
would apply a statistical significance test (Coak-
ley and Heise, 1996) to determine if one system
is preferred significantly more often than the other
by the metric. This process is repeated for each
pair of systems, and then a partial ordering can be
derived from the pairwise decisions. To compare
the outcome of the automated evaluation, the same
procedure is repeated with a human evaluation. A
good metric is one that recreates the same system
level preference ranking or the same pairwise re-
sults as a human evaluation would generate.

In this setting, there are four types of outcomes
with respect to a human evaluation at the system
level:

• No Error. There are two sub-cases of no er-
rors. 1) If the human evaluation states that two
systems are significantly different, and the au-
tomated evaluation states the same (Green).
2) If the human evaluation states that two sys-
tems are not significantly different, and the
automated evaluation states the same (Olive).

• Inversion Error. If the human evaluation
significantly prefers system A over system B,
but the automated evaluation results in the
opposite preference (Red).

• Omission Error. If the human evaluation
states that two systems are significantly differ-
ent, but the automated evaluation states that
they are of the same quality (Blue).

• Insertion Error. If the human evaluation
states that two systems are not significantly
different, but the automated evaluation states

that they are (Yellow).
We have evaluated the performance of several

automated metrics in comparison to human prefer-
ences. More precisely, we examined four TG tasks
- chatbots, summarization (coherence), summariza-
tion (consistency), and machine translation - and
analyzed the performance of a popular automated
metric for each of these tasks when used to derive
system rankings based on pairwise comparison of
the metrics’ sample level scores.

Figure 1 highlights the error-proneness of the
analysed automated metrics. The main findings
are:

• Only around 50% of the pairwise system com-
parisons agree with the human evaluation.

• The Insertion Error is the most prominent with
an average of 30%.

• Inversion errors appear in around 10% to 20%
of the comparisons on average.

• The are almost no Omission errors.
We hypothesize that the large discrepancy between
the outcome of the automated and the human eval-
uation stems from three different sources of uncer-
tainty that are not accounted for when applying the
automated metric: 1) the sample size used to run
the evaluation1, 2) the errors of the metric, and 3)
the sample size used to estimate the extent of the
metric errors. Thus, naively applying automated
metrics leads to overconfident predictions, which
yield wrong outcomes of the evaluation.

Contributions. This paper has two main con-
tributions: First, we propose a novel Bayesian sta-
tistical model of TG evaluation which integrates
the various sources of uncertainty mentioned above.
The model yields a more robust evaluation and has
the flexibility to combine human and automated
evaluations. The model can be used to determine
whether two systems are significantly different or if
they are of equal quality. The second contribution
is an evaluation protocol that leverages the statisti-
cal model and reduces the amount of human ratings
required.

We investigate the performance of the evalua-
tion protocol in a case-study in three different TG
tasks: chatbots, text summarization, and machine
translation. Our case-study shows that using our
contributions, we can almost completely correct
for the errors emerging in the naive application of
the metrics and that the amount of human ratings

1This is sometimes addressed using standard significance
testing.
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Figure 1: Comparison between the naive application of automated metrics and human evaluation. For each metric,
the difference to the human evaluation is shown on the system-pair level. Green and Olive show agreement, Blue is
an Omission Error, Yellow an Insertion Error, and Red denotes an Inversion Error.

needed to produce robust evaluation outcomes is
reduced by more than 50%.

2 Definition of Preference Metrics

In this section, we formally define preference met-
rics, their errors, and how to mitigate them. We
then use this formalism to derive an effective eval-
uation protocol that can handle error-prone metrics.
For the remainder of the paper, we define I as the
set of all possible inputs (e.g., for machine transla-
tion all sentences in the source language), and O as
the set of all possible outputs (e.g., all sentences in
the target language). We start by defining a TG sys-
tem as a function that takes an input and generates
an output π : I → O.

On an abstract level, we can define a preference
metric as a function that takes as an input a triple
consisting of: the input to a TG system (e.g., a
sentence in the source language to be translated),
the output of a system A, and the output of a sys-
tem B (e.g., the translated sentences in the target
language), and returns the preference rating. This
is formalized as follows:

Definition 1 (Preference Metrics). We call func-
tions of the form M : I × O × O → {>,=, <}
preference metrics. We call an outcome of ” > ” a
win, ” = ” a draw, and ” < ” a loss.

Note that the semantics of M(i, o1, o2) is to find
out whether output o1 is preferred over o2. At this
point, the notion of an output being preferred is
to be taken abstractly, in a real-world application
this would be realized by a concrete feature (better
fluency, higher relevance, etc.).

Next, we introduce an oracle, which constitutes
the ground-truth. When constructing an oracle in a
real-world application, we would usually resort to
human annotations.

Definition 2 (Preference Oracle). The preference
oracle is a function Ω : I × O ×O → {>,=, <}

such that

Ω(i, o1, o2) =

{
> if o1 is preferred to o2
= if there is no preference
< if o2 is preferred to o1

Now we define the notion of an error-prone met-
ric.

Definition 3 (Error-prone Metric). A preference
metric with independent confusion errors M is
an error-prone metric where the probability of a
given outcome is only dependent on the compari-
son oracle rating 2. Its confusion probabilities are
defined as:

µc,c′ = Pr(M(i, o1, o2) = c|Ω(i, o1, o2) = c′)

∀c, c′ ∈ {>,=, <}, ∀i ∈ I, ∀o1, o2 ∈ O
(1)

The errors made by an error-prone preference met-
ric can be represented by a confusion matrix with
normalized columns, such that each entry in the
matrix is a probability. The matrix µ is called the
mixture matrix of M:

µ =



µ>> µ>= µ><

µ=> µ== µ=<

µ<> µ<= µ<<


 (2)

Note that the mixture matrix of an error-free
metric is the identity matrix.

3 Statistical Model for Preference Metrics

In this section, we introduce the statistical model
that is used to compare two TG systems πa and
πb. The model encompasses three main sources of
uncertainty.

1. Uncertainty due to sample size of both error-
free and error-prone ratings

2. Uncertainty introduced by errors from the
error-prone metric

3. Uncertainty over the true error-rates of the
error-prone metric

2This means in particular that there are no dependencies
on the "difficulty" of the input.
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Algorithm 1: Pairwise Decision Function.
Input :πa, πb

Input :Set of metric judgments M
Input :Set of human judgments A
Output :Return preference rating

1 begin
2 ncc′ ← CountConfusions (A, M , c, c’)
3 n>, n=, n< ← CountsFromAnn (A)
4 m>,m=,m< ← CountsFromAnn (M )
5 ·µ> ∼ Dir(n>> + 1, n=> + 1, n<> + 1)
6 ·µ= ∼ Dir(n>= + 1, n== + 1, n<= + 1)
7 ·µ< ∼ Dir(n>< + 1, n=< + 1, n<< + 1)
8 µ = (µ·>,µ·=,µ·<)
9 p ∼ Dir(n> + 1, n= + 1, n< + 1)

10 m>,m=,m<|p,µ ∼ Tri(|Mij |,µp)
11 {p̃}Ni=1 ← MCMCSamplePosterior(p, N)

12 θ = 1
N

∑N
i=1 I[p̃i> > p̃i<]

13 if θ > 1− γ
2

then
14 return >
15 else if θ < γ

2
then

16 return <
17 else
18 return =
19 end
20 end

We build up the statistical model step-by-step by
discussing each source of uncertainty. We apply
the Bayesian approach which allows us to describe
the process in terms of probability distributions
that can be sampled by using Markov Chain Monte
Carlo (MCMC) sampling (refer to Appendix A
and B for additional details).

For the rest of the chapter, assume that we have
access to a set of inputs {i1, . . . , in} ⊆ I, and the
corresponding system outputs of πa and πb, i.e.,
oaj = πa(ij), and obj = πb(ij).

3.1 Step One: Direct Estimation of the
Win-Rate Significance

For this, assume that we have access to the pref-
erence oracle Ω itself. Let rΩj = Ω(ij , o

a
j , o

b
j) be

the output of the preference oracle. Let Ix[y] de-
note an index function that is equal to Ix[y] =
1 ⇐⇒ x = y, and 0 otherwise. Then let
n> =

∑n
j=1 I>[rΩj ] denote the number of times

oaj was rated as being better than obj . We analo-
gously define n< =

∑n
j=1 I<[rΩj ] the number of

times oaj was rated as being worse than obj , and
n= =

∑n
j=1 I=[rΩj ] the number of draws. We use

a Dirichlet distribution to model the posterior dis-
tribution for the given observations:

Pr(p|N> = n>, N= = n=, N< = n<)

∼ Dir(n> + 1, n= + 1, n< + 1)
(3)

where p = (p>, p=, p<) denotes the probability
vector for the win-rate p>, the draw-rate p=, and
the loss-rate p<.

3.2 Step Two: Integrate the Metric-Errors
In this section, we assume a metric that makes
mistakes, i.e., an error-prone metric M. Let
rmj = M(ij , o

a
j , o

b
j) denote the rating given by

an error-prone metric for sample j. Analogous to
before, we define m> =

∑n
j=1 I>[rmj ] the number

of times the error-prone metric prefers the output
of system πa to that of πb. The counts for equal-
ity and being worse are denoted by m= and m<,
respectively. Since M is an error-prone metric,
the counts m>,=,< are not equal to the true counts
n>,=,<, which are yielded by an oracle. The errors
made by the metric are characterized by its mixture
matrix µ. In this section, we assume that the pre-
cise values of µ are known. We note that the true
probabilities p = (p>, p=, p<) are transformed
by the mixture matrix to the error-prone ones by
p̂ = (p̂>, p̂=, p̂<) = µp. We want to model
the posterior distribution p(p|M> = m>,M= =
m=,M< = m<) of the true probabilities p given
the observed error-prone ratings. This is done by
combining the prior belief of p with the likelihood
of the observed m>,=,< values, which can be mod-
eled using a Multinomial distribution. We use a
Dirichlet prior for p ∼ Dirichlet(α>, α=, α<).
The parameters αc are either chosen according to
Equation 3, if we have access to oracle ratings, or
set to 1, which corresponds to a uniform prior.

p ∼ Dirichlet(α>, α=, α<)

m>,m=,m<|p ∼Mult(n,µp)

Pr(p|m>,m=,m<)

∝ Pr(M> = m>,M= = m=,M< = m<|p)Pr(p)

3.3 Step Three: Integrate Uncertainty over
Error Measurements

In a real-world scenario, the values of µ must be
estimated from data. This is achieved by comparing
the error-prone metric outputs to a set of oracle
outputs. For this, we use the following counts:
nc,c′ =

∑n
i=1 Ic[rmj ] ∗ Ic′ [rΩj ],∀c, c′ ∈ {>,=, <}.

Thus, n<,= denotes the number of times the error-
prone metric returns < and the oracle returns =. In
Bayesian terms, each column in the mixture matrix
is modeled as a Dirichlet distribution.
µ·> = (µ>>, µ=>, µ<>)

⊤ ∼ Dirichlet(n.,> + 1)

µ·= = (µ>=, µ==, µ<=)
⊤ ∼ Dirichlet(n.,= + 1)

µ·< = (µ><, µ=<, µ<<)
⊤ ∼ Dirichlet(n.,< + 1)

µ = (µ·>,µ·=,µ·<)

(4)
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Thus, the mixture matrix is treated as a random
variable. Putting all together, we define a joint
posterior for p and µ given the error-prone metric
observation and the prior for p and µ.

p ∼ Dirichlet(α>, α=, α<)

µ ∼ see Equation 4
m>,m=,m<|p,µ ∼Mult(n,µp)

Pr(p,µ|m>,m=,m<)

∝ Pr(m>,m=,m<|p,µ)Pr(p)Pr(µ)

3.4 Decision Function
Algorithm 1 shows how to apply the framework
for one pair of systems πa, πb for a set of inputs I
and a set of human annotations A. First the metric
M is used to generate the set of automated ratings
M . Then the confusion counts nc,c′ are computed
based on the human annotations and the metric rat-
ings, which are used to create the distributions of
the mixture matrix µ. Then the human annotations
are used to estimate the prior distribution Pr(p)
of the comparison results. The metric samples
are then used to estimate the posterior distribution
Pr(p,µ|m>,m=,m<). Each of the three steps
presented above yields a posterior distribution for
p = (p>, p=, p<). In order to decide whether sys-
tem πa is better than system πb, we need to check
whether p> and p< are significantly different. For
this, we draw a number of samples p̃i from the pos-
terior. This can in general be done using Markov
Chain Monte Carlo sampling 3. We define a sig-
nificance level γ (e.g. γ = 0.05) and consider
the fraction of samples where p̃i> > p̃i<. If this
fraction is greater than 1 − γ

2 , then we regard the
difference as being significant. Conversely, if the
fraction is smaller than γ

2 , then πa is significantly
worse than πb.

4 Evaluation Protocol

In this section, we present an evaluation proto-
col combining human and automated metric rat-
ings assuming a limited budget for human annota-
tions. More formally, given a set of TG systems
π1, ..., πS , we want to create a partial order, where
πi > πj if the win-rate of πi is significantly greater
than the one from πj . The evaluation protocol is
depicted in Algorithm 2. The protocol leverages
the statistical framework to reduce the amount of
human annotations needed by leveraging the metric
judgments. This works as follows: We are given
a set of inputs I (which corresponds to a test set),

3The posterior in Equation 3 can be sampled directly.

Algorithm 2: Evaluation Protocol
Input :Π = π1, ...πS

Input :An error-prone automated metricM
Input :Budget for human annotations B
Input :Annotation batch size N
Input :Set of inputs I
Output :Partial Order of π1, ...πS

1 begin
2 UndecidedPairs← ∀i, j : (πi, πj) ∈ Π×Π;
3 Aij ← EmptySet;
4 Mij = {M(ik, πi(ik), πj(ik))|∀k ∈ |I|}
5 while B > 0 and |UndecidedPairs| > 0 do
6 foreach πi, πj ∈ UndecidedPairs do
7 Aij ← Aij∪ CollAnn (N , πi, πj)

B ← B −N
8 end
9 foreach πi, πj ∈ UndecidedPairs do

10 op = DecisionFunction (Aij , Mij , πi,
πj)

11 if op ∈ {<,>} then
12 UndecidedPairs←

UndecidedPairs \(πi, πj)
13 end
14 end
15 end
16 return ComputePartialOrder (Π×Π\

UndecidedPairs);
17 end

a set of TG systems {π1, ..., πS} to be ranked, an
automated metric M, and an annotation budget B,
which is the maximum allowed amount of annota-
tions. The result of the protocol is a (potentially)
partial order of the TG systems.

The protocol starts with a set of undecided sys-
tem pairs, which initially consists of all pairs of
systems, and an empty set of human annotations
for each pair of systems Aij . In a first step, the
metric M computes the scores Mij for each pair of
systems. That is, for all inputs in I all TG systems
generate their outputs, which are then evaluated
using M.

Then we repeat the following process until our
budget is empty. First we extend Aij with a batch
of N human annotations for each pair of undecided
systems. We then iterate over the undecided system
pairs and use the decision function from Algorithm
1 (see Section 3) to decide whether two given sys-
tems are significantly different given the current
set of annotations and metric ratings. If so, the pair
is removed from the set of undecided pairs. When
the budget is empty or all system pairs are decided,
a (potentially) partial order is computed. The de-
cision function leverages human and automated
ratings to state whether one system is significantly
better than the other.

The advantage the protocol is two-fold. First, it
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Chatbot SummEval WMT21
Data BST CNN/DM News EN->DE
Metrics 5 7 4
TG Systems 6 11 16
Human Ratings 50 100 500
Metric Ratings 1k 11k 1k

Table 1: Overview of the data used. The ratings refer
to the number of ratings available for each pair of TG
systems.

exploits the fact that some system pairs are easier
to distinguish than others. In cases where |p> −
p<| is large we need fewer human annotations to
achieve the significance threshold. Compared to
the setting where we allocate the same number of
human annotations for each pair of systems, this
allows us to spend more of the annotation budget
on difficult system pairs. This approach can be used
even in the absence of automated ratings. Second,
our framework allows for a seamless combination
of ratings from both humans and an automated
metric.

5 Case Studies - Setup

In this section, we present three case studies where
we apply the evaluation protocol outlined in Algo-
rithm 2. As showcases, we use three domains: the
WMT 21 metrics task data (Freitag et al., 2021) for
machine translation, the SummEval data (Fabbri
et al., 2021) for summarization, and data collected
for conversational dialogue systems (see Appendix
C). Table 1 gives an overview of the setting. For
each domain, we investigate a set of metrics ap-
plied to outputs of a set of TG systems. We provide
the details of the TG systems and the metrics in
Appendix C.
Chatbot: For the chatbot domain, we used the
ParlAI framework (Miller et al., 2017) to gener-
ate 1000 outputs for 5 different TG systems on
the BlendedSkillTask (BST) dataset (Smith et al.,
2020). We then used the DialEval framework
by Yeh et al. (2021) to run the outputs on 5 different
metrics: DEB (Sai et al., 2020), GRADE (Huang
et al., 2020), HolisticEval (Pang et al., 2020),
MAUDE (Sinha et al., 2020), and USL-H (Phy
et al., 2020). In addition, we used Amazon Me-
chanical Turk to annotate 50 pairwise outputs.
SummEval: For the summarization domain, we
used the SummEval framework (Fabbri et al.,
2021), which provides the outputs of 16 differ-
ent summarization tools on the CNN/DailyMail
corpus (Nallapati et al., 2016), as well as 100 ex-

Domain Corr. Inv. Omi.. Ins. KLD
Chatbot 0.47 0.1 0.10 0.33 0.46
Summeval Rel. 0.55 0.19 0.03 0.23 0.28
WMT21 0.52 0.07 0.10 0.31 0.52

Table 2: Average frequency of Error Types for all met-
rics if metrics are applied naively. Correct (Cor.), In-
verted (Inv.), Omission (Omi.), and Insertion (Ins.).

pert annotations for each of these systems for each
of the features: relevance, coherence, consistency,
and fluency. We used the SummEval framework
to generate 11k pairwise ratings by 7 different au-
tomated metrics: BertScore (Zhang et al., 2019),
BLANC (Vasilyev et al., 2020), CIDEr (Vedantam
et al., 2015), Rouge-L (Lin, 2004), S3 (Peyrard
et al., 2017), SummaQA (Scialom et al., 2019), and
SUPERT (Gao et al., 2020).
WMT21: For machine translation, we used the
WMT21 metrics task data (Freitag et al., 2021). In
this work, we only focus on the English to German
language pair and the news domain, where eight
machine translation systems were evaluated, plus
three human references for each input which were
also regarded as TG systems (resulting in eleven
TG systems). Although the WMT21 metrics task
inspected 15 different automated metrics, we only
focused on four of them (we selected the most
prominent ones): BleuRT (Sellam et al., 2020),
COMET (Rei et al., 2020), C-SPEC (Takahashi
et al., 2021), and sentence-level BLEU (Papineni
et al., 2002). For each TG system there are 500
expert MQM annotations, and for each metric there
are 1000 metric ratings.

6 Case Studies - Results

In this section, we discuss the results of the case
study. We use the error-measures that we presented
in List 1 in the introduction. Furthermore, for each
system pair we compute the Kullback-Leibler Di-
vergence (KLD) between the mode of the posterior
in Equation 3 based on all human annotations phum

and the mean estimated by running Algorithm 2
pprot. We then report the average over all pairs
of systems: 2

S(S−1)

∑
j>iKLD(p

(i,j)
prot||p

(i,j)
hum).

Note that in Tables 2 and 3, we only report the
Relevance part of the SummEval data due to space
limitations. The results for the other features are in
Appendix D.

The naive application of metrics yields many
errors. When applying the metrics naively, i.e.
by simply checking whether m> is significantly

6461



Metric Corr. Inv. Omi. Ins. KLD Ann.
Chatbot Domain

Human 0.93 0.00 0.00 0.07 0.05 0.59
DEB 0.93 0.00 0.00 0.07 0.06 0.49
GRADE 0.87 0.00 0.00 0.13 0.05 0.53
HOLISTIC 0.87 0.00 0.00 0.13 0.05 0.52
MAUDE 0.87 0.00 0.00 0.13 0.05 0.53
USL-H 0.87 0.00 0.00 0.13 0.05 0.52

Summeval Relevance Domain
Human 0.96 0.00 0.00 0.04 0.07 0.43
BertScore 0.90 0.00 0.01 0.09 0.06 0.40
BLANC 0.93 0.00 0.02 0.06 0.05 0.41
CIDEr 0.93 0.00 0.01 0.06 0.06 0.42
ROUGE-L 0.92 0.00 0.01 0.08 0.05 0.41
S3 0.93 0.00 0.01 0.07 0.06 0.41
SummaQA 0.92 0.00 0.01 0.08 0.05 0.41
SUPERT 0.91 0.00 0.01 0.08 0.06 0.39

WMT21 Domain
Human 0.65 0.00 0.00 0.35 0.06 0.34
BleuRT 0.65 0.00 0.00 0.35 0.06 0.34
C-SPEC 0.65 0.00 0.00 0.35 0.06 0.33
COMET 0.65 0.00 0.00 0.35 0.06 0.34
BLEU 0.65 0.00 0.00 0.35 0.05 0.34

Table 3: Frequency of Error Types for all metrics if
the protocol is applied. Correct (Cor.), Inverted (Inv.),
Omission (Omi.), Insertion (Ins.), and the fraction of
annotations needed with the protocol (Ann.).

bigger than m<, then this introduces many cases
where systems that are not significantly different
are rated as such. In Table 2 the average error
rates for each error type are shown (the full result
table is found in Appendix D). Overall the Insertion
error type dominates (averaging at 23% to 33%).
That is, in all domains, the metrics have a strong
tendency to suggest differences between systems
that are not statistically significant according to
the human evaluation. The rate of inversion errors
depends on the domain and metrics used. For the
chatbot domain, the average Inversion error rate lies
at 10%. For SummEval-Relevance the Inversion
error rates lie at an average of 23%. The average
KLD scores are high, which indicates that the naive
application of metrics yields distributions that are
in high disagreement with the human evaluation.

The evaluation protocol is able to recreate the
original results. Table 3 shows the results of apply-
ing the protocol described in Algorithm 2. We also
report the results achieved when applying the pro-
tocol using only human ratings (i.e., leaving Mij

empty), as well as the result of an ideal metric in
the SummEval - Relevance case. First, we note that
there are no Inversion Errors, almost no Omission
Errors, and there is a high Correctness score. For
the Chatbot and SummEval domain the outcomes
agree in around 90% to those of the human eval-
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Figure 2: Budget vs. Kullback-Leibler Divergence

uation. For the WTM21 domain, the agreement
is lower at 65%. The most common error type is
the Insertion Error. In our setting this can be ex-
plained by the fact that we are using the outcomes
of significance tests to compare the human to the
protocol evaluation. Thus, using corrected metric
samples increases the amount of samples, which
leads to pairs being rated as significantly different.
Since the ratings are based on our decision function,
which takes into account different sources of uncer-
tainty, the Insertions are not necessarily wrong. In
fact one reason to use automated evaluation is to
find differences between system that would be too
expensive to discover with human annotations.

A different view for comparing the outcomes of
the evaluations is given by the KLD score, which
reports how close the distribution pprot is to the
original human evaluation. This view removes the
significance test from the equation, and better show-
cases the disagreement between the protocol and
the original human evaluation. In all cases the KLD
scores are very low, which shows that the protocol
yields results comparable to the original human
evaluation. In terms of the number of annotations
needed, there are two measures. First, we compare
the number of annotations needed by the protocol
to the one needed by the full human evaluation.
Here, the application of our protocol reduces the
amount of humans annotation by more than half in
most cases. For the WMT21 we can even reduce
it by two thirds. The second view is comparing
the number of annotations needed by the protocol
to the annotations needed when the protocol is ap-
plied to human ratings only. For the Chatbot and
SummEval domain, leveraging automated metrics
results in less data needed (up to 10% for the Chat-
bot domain, and 5% for the SummEval domain).
For the WMT21 domain, only 1% difference is
measured. We assume that this are due to the fact
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that the metrics are not yet of high enough quality
to yield the boost needed to have a large impact.
Summary. Figure 2 summarizes the main out-
comes of this work. The Figure shows the number
of annotations (x-axis) in relation to the negative
log-KLD score achieved (y-axis). The full human
evaluation is set as reference, that is, using 100%
of annotations, and a KLD score of 0 (thus, not
shown). The Figure shows that on average using
the full protocol on real-world metrics yields using
40% of annotations, and achieving a KLD score
of 0.08. On the other hand, not using metric rat-
ings in the protocol needs 43% of annotations and
achieving a worse KLD score of 0.6. The naive
application of the metrics does not need any annota-
tions but yields high KLD scores (1.6 on average).
To showcase an upper limit, we also added the KLD
divergence for an ideal metric, which we simulated
using the Bayesian model, where we use a fixed
µ (see Appendix E for details). The ideal metric
only needs 38% of annotation, and achieves a KLD
score of 0.02. An ideal metric would also achieve
a low KLD when applied naively.

7 Related Work

We here focus on approaches that discuss theory-
driven analysis of metrics-based evaluation of TG
systems that involve human annotations.

Chaganty et al. (2018) propose an approach to
combine human and metrics-based evaluation us-
ing control variates to reduce biases in automated
metrics and save annotation costs. They explore
automated scalar metrics in the Summarization and
QA domain and find that their approach can lead
to marginal reductions of the required human anno-
tations. They conclude that further improvement
of automated metrics and exploration of ranking-
based evaluation are potential future directions.
One interesting take-away from this work is the
influence of the quality of the human annotations.
Currently, we approximate the oracle preference
ratings through human annotations without explic-
itly modeling uncertainty stemming from annotator
disagreement. Wei and Jia (2021) pick up this point
and apply a statistical approach to identify a setting
in which automated metrics for Machine Transla-
tion and Summarization are more precise than hu-
man annotations: When the qualitative difference
is small and there are only few human annotations.
They argue that the reason is that while human an-
notations are unbiased, they have a high variance.

Conversely, automatic metrics tend to have a high
bias but low variance. Furthermore, they apply the
bias-variance-noise decomposition from Domingos
(2000) to analyse sources of errors in evaluation
and asses bias levels in automated metrics. Our
analysis, in comparison, is more fine-grained in
terms of categorizing metric errors, and we pro-
pose how to combine human and metric evaluation
under a budget constraint. Similar to this work, von
Däniken et al. (2022) propose a model that captures
uncertainties stemming from imperfect metrics and
insufficiently sized test sets. With their framework,
the required size of a test set that is needed to dis-
tinguish a given difference in performance between
two systems with a given automated metric can
be calculated. Their investigation is limited to the
case when scalar metrics are converted to binary
metrics, however. Card et al. (2020) also analyse
the required data set sizes that enable the detec-
tion of significant differences between systems, but
they do not account for metric errors explicitly.
Hashimoto et al. (2019) propose an evaluation ap-
proach that combines human and automated evalu-
ation in a statistical framework to estimate diversity
and quality of NLG systems jointly. Their focus is
the creation of a novel metric, while our goal is to
evaluate existing ones and to combine them with
human annotations to obtain robust evaluations.

8 Conclusion

In this work, we introduced a novel Bayesian model
that explicitly handles errors from automated met-
rics at the sample level. We then proposed an eval-
uation protocol that leverages this statistical model
to reduce the amount of human annotations needed
while yielding similar evaluation outcomes. We
applied the protocol to three tasks in a case study.
Namely, Dialogue Systems, Summarization, and
Machine Translation. The results show that the
Bayesian model is able to successfully include vari-
ous types of uncertainty, which leads to more trust-
worthy applications of automated metrics. When
applying the protocol, we achieve similar results
as a purely human evaluation with only half the
annotations needed.
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Limitations

Human Ratings as Oracle. In this work, we
make the strong assumption that human ratings are
equivalent to the oracle. As noted in the introduc-
tion, human evaluation is hard to setup and does
not always lead to satisfactory agreement scores.
However, for SummEval and WMT21 the human
ratings are provided by experts, and thus, can be
seen as close to oracle ratings. For the Dialogue
domain, the ratings are made by crowdsourcing
where we applied MACE (Hovy et al., 2013) to get
the highest quality ratings. In future work, we will
integrate the uncertainty of the human evaluation
in the Bayesian model as well, which is not trivial.

Pairwise µ. We noted that the for each pair of
systems, the mixture matrix is different. As a conse-
quence, the errors made by the metric must be com-
puted for each pair of systems separately, which
is more cost-intensive. In future work, we aim to
develop methods to transfer the knowledge from
one system pair to another. This also highlights
one issue of automated metrics, namely, that they
are biased towards certain output types, which are
exhibited by certain TG systems.

Draws are ignored. One issue with preference-
based ratings is the question of how to handle draws
on the sample basis. Currently, we use p> and p<
to decide if two systems are significantly different.
However, if we consider the case of p> = 0.02,
p< = 0.01, and p= = 0.97, then with enough
samples, we will measure a statistical significant
difference between the two systems. However, in
97% of cases the outputs are of equal quality. Thus,
can we really state that one system is better than
the other?

Statistical Significance Decision. To compare
the outcomes of the automated evaluation to the hu-
man evaluation, we rely on statistical significance
testing. For this, we use the standard approaches,
which are widely adopted. However, we noted that
the significance decisions are rather arbitrary and
make it hard to compare two evaluations, especially
the interpretation of Insertion Errors is not trivial.
The large amounts of additional automated metric
ratings result in some pairs being rated as signifi-
cantly different. However, it is not clear whether
this is a mistake or if we were able to distinguish

two systems that were not distinguishable due to
too little data. The KLD score gives better insights
for this as it compares distributions.

Differences in Samples. Currently, we disregard
the fact that there are samples which are harder to
rate than others. In fact, we treat each sample as
being equal in Defintion 3. However, the sample
difficulty could be leveraged to distinguish differ-
ent systems from each other. For instance, if two
machine translation systems are evaluated only on
easy samples, then they might be rated as being of
equal quality. However, a test on a harder sample
might show the difference in capabilities between
the two systems.

Conversion to Preference Ratings. Current au-
tomated metrics are built such that they return a
scalar value ∈ R to rate a given pair of input and
output. We have to transform these values into
preference ratings by looking at the sign of the
difference between the ratings of two outputs (see
Appendix C). This leads to a few problems. First,
there are only few draws, since metrics rarely re-
turn the exact same floating point value for two
different outputs. Second, we disregard the mag-
nitude of the scalar value. The magnitude can be
used to assess the certainty of the preference of one
output against another. In preliminary experiments
we tried including a minimal threshold that the dif-
ference needs to surpass in order to be regarded as
a preference decision. This will have to be explored
in more detail in future work.

Current Metric performance. Since the current
metrics are not yet of high enough quality, the im-
pact they have on the protocol is small. This might
give the impression that the protocol does not of-
fer any remedy. However, the results show that
our Bayesian model is able to rectify the overcon-
fidence of low-performance metrics, and in cases
where a metric is of low quality, its impact is re-
duced.
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A Derivations

Dirichlet. We will first explain the usage of
Dirichlet distributions in Equations 3 and 4.
The Dirichlet distribution of order K is defined
for all K dimensional probability vectors p =
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(p1, . . . , pK) such that
∑K

i=1 pi = 1 and pi ≥ 0.
It has K parameters α = (α1, . . . , αK) and its
density is:

p(p|α) =
1

B(α)

K∏

i=1

pαi−1
i

, where B(α) is the multivariate Beta function
used to normalize the distribution. Note that if
all αi = 1 then the distribution is constant at all
points p, meaning it is equivalent to the uniform
distribution in that case. Our main interest in us-
ing the Dirichlet distribution is because it is the
conjugate prior of the Multinomial distribution. In
Section 3 the counts from the oracle ratings n>,
n=, and n< follow a Multinomial distribution with
unknown probabilities p = (p>, p=, p<), meaning
that:

P (N+ = n+, N= = n=, N< = n<|p)

=
(n> + n= + n<)

n>!n=!n<!
p
n>
> pn=

= p
n<
<

If we assume a Dirichlet prior for p ∼
Dirichlet(α>, α=, α<) then we can compute its
posterior:

p(p|N) ∝ P (N |p)p(p)
∝ p

n>
> pn=

= p
n<
< p

α>−1
> pα=−1

= p
α<−1
<

∝ p
α<+n<−1
> pα=+n=−1

= p
α<+n<−1
<

We left out the normalization constants in this
derivation. We can see that on the final line we
arrive at the density of an updated Dirichlet distri-
bution Dirichlet(α> + n>, α= + n=, α< + n<).
Setting αi = 1 we get our result in Equation 3.

We can apply the same principle to the columns
of µ. The first column µ·> = (µ>>, µ=>, µ<>)

T

denotes the conditional probabilities of getting a
specific outcome from the metric conditioned on
the oracle rating being >. The associated confu-
sion counts n>>, n=>, and n<> again follow a
Trinomial distribution with outcome probabilities
of µ·>. If we again assume a uniform prior for µ·>
then we can derive the posteriors in Equation 4.

Mixture. In Sections 3.2 and 3.3 we use the fact
that the probabilities associated with the counts
of metric ratings is p̂ = µp. We know that
p̂> = P (M(ij , o

a
j , o

b
j) = >). Using the law of

total probability:

p̂> =
∑

c∈{>,=,<}
P (M(ij , o

a
j , o

b
j) = >|Ω(ij , oaj , obj) = c)

P (Ω(ij , o
a
j , o

b
j) = c)

We note that P (Ω(ij , o
a
j , o

b
j) = c) = pc, and there-

fore p̂> =
∑

c∈{>,=,<} µ>cpc and analogously for
p̂= and p̂<. This leads us to our original statement
p̂ = µp.

Using Annotations multiple times. In Algo-
rithm 1 it can be unclear which subsets of anno-
tations should be used for the various counts. In
general, the test set of inputs I can be split into
three subsets: IM,A, the samples for which we
have paired ratings from both the metric and hu-
mans, IM , the samples for which we have only
ratings from the automated metric, and IA, the
samples for which we only have human ratings. It
is relatively obvious that we can use IM to count
m>,m=,m<, IA for n>, n=, n<, and IM,A for
the confusion counts ncc′ . The question is whether
it is sound to use the ratings from IM,A to augment
nc and mc. In general, it should not be an issue to
use the human ratings in IM,A as additional counts
for n>, n=, n<. But we must not use the metric
ratings to get additional counts m>,m=,m<. This
means that, in principal, IA could be empty.

B Markov Chain Monte Carlo (MCMC)
Sampling

Markov Chain Monte Carlo (MCMC) methods are
often used in Bayesian modelling when there is
no analytic closed form solution for the resulting
posterior. The main idea is that expected values
of functions of the posterior can be reasonably ap-
proximated by averaging over samples drawn from
it (Metropolis and Ulam, 1949). Samples are gen-
erated sequentially, and the next sample is usually
generated by first modifying the current sample
randomly and then either accepting or rejecting it
based on its likelihood. We refer the interested
reader to Andrieu et al. (2003) for an introduction.

We use the Numpyro (Bingham et al., 2019; Phan
et al., 2019) library to implement the framework
laid out in Section 3. We use the built-in No-
U-Turn (NUTS) Sampler (Hoffman and Gelman,
2014). When running the decision function laid
out in Algorithm 1, we run 5 chains in parallel. We
use a warm-up period of 2000 samples per chain,
which are discarded, and draw 10000 samples per
chain to keep and compute the difference in win
rates.

C Case Study Details

For the case studies, we require two types of ratings:
preference ratings made by humans to simulate the
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oracle Ω, and metric ratings for the error-prone
ratings M. We collect this data for three types of
domains: Conversational Dialogue Systems, Auto-
mated Text Summarization, and Machine Transla-
tion.

Since most metrics return a scalar value, we need
to transform them into a preference rating, which
is done as follows:

Definition 4 (Scalar Metric). We call real val-
ued functions of inputs and outputs scalar metrics:
Ms : I × O → R.

A preference metric can be constructed from a
scalar metric as follows:
Definition 5. The derived comparison metric M
of a given scalar metric Ms is defined as

M(i, o1, o2) =





> Ms(i, o1) >Ms(i, o2)

= otherwise
< Ms(i, o1) <Ms(i, o2)

C.1 Dialog System Data Collection

For the Dialog domain, we used the ParlAI frame-
work (Miller et al., 2017) to generate the outputs of
systems. For this, we selected 5 state-of-the-art di-
alog systems, and used ParlAI to generate response
for a static context. The Dialogue Systems are:

• Blenderbot 1.0 - 400distill (BL400distill).
BlenderBot 1.0 (Shuster et al., 2022b) is
a transformer-based encoder-decoder bot
trained on the Blended Skill Task (BST)
data (Smith et al., 2020).

• Blenderbot 2.0 - 3B Params (BL2-3B). The
BlenderBot 2.0 extends Blenderbot 1.0 with
internet access (Komeili et al., 2022) and a
long-term memory (Xu et al., 2022).

• DialoGPT. DialoGPT (Zhang et al., 2020) is
a decoder-only dialogue system that fine-tunes
GPT-2 (Radford et al.) on the Reddit dataset
proposed by the DialoGPT authors.

• PolyEncoder. The PolyEnocder (Humeau
et al., 2020) is a retrieval based dialogue sys-
tem, which selects the most suitable response
from a set of candidates.

• SeekerDial3B. SeekerDial (Shuster et al.,
2022a) improves on the internet search pro-
posed in BlenderBot 2.0

We used ParlAI to generate the response of each
of the dialogue systems for 1000 static contexts
from the Blended Skill Task (BST) test set. From
this set, we selected 50 contexts, and generated all
pairwise outputs between all 5 dialogue systems

and the human reference. That is, for each context,
there are 15 pairs of outputs to be rated.

We let workers on Amazon Mechanical Turk 4

perform a preference rating. That is, for each pair
of output, the workers decided, which output is
more appropriate. Figure 3 shows the annotation
tool. Each sample was annotated by three workers.
Each worker is payed 15 cents per annotation, and
at a rate of 1.5 annotations per minute on average,
they achieve a wage of 12$ per hour. We used
workers with the Master status and restricted their
geographic location to English-speaking countries
(USA, UK, Canada, Ireland, and Australia). In Fig-
ure 4 shows the instructions given to the annotators.
The annotations are ratings on the overall adequacy
of the utterances. Since each sample is annotated
by three different workers, we aggregate the rat-
ings using the MACE (Hovy et al., 2013) software,
which computes a trustworthiness score for each
annotator and generates a weighted average to get
the final label. Note that this annotation scheme
directly yields preference ratings according to our
framework.

In order to generate the metric ratings, we used
the DialEval framework by (Yeh et al., 2021),
which integrates a large pool of metrics. We se-
lected five metrics that were easy to setup and
achieved decent correlations to human judgments
in the evaluation by (Yeh et al., 2021). Since the
metrics return scalar values for each sample, we
create preference ratings as suggested in Defini-
tion 5. Since the scalar metrics yield real numbered
values, there are almost no cases where the derived
preference rating yields a draw.

C.2 Summarization Data Collection

For the Summarization domain, we use the data pro-
vided by the SummEval framework (Fabbri et al.,
2021). It contains data from the Dailymail/CNN
dataset (Nallapati et al., 2016), which contains a
test set of 11k samples. The SummEval framework
contains the outputs of 23 summarization systems
(for a detailed description of these systems, we re-
fer the reader to Section 3.2 of (Fabbri et al., 2021)).
For 16 of the 23 summarization systems, the au-
thors let 100 generated outputs be rated by three
experts on the four characteristics: fluency, consis-
tency, coherence, and relevance. Since these ratings
are on a Likert-scale, we transformed those ratings
into preference ratings by averaging the three rat-

4https://www.mturk.com
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Figure 3: Screenshot of the Dialogue Annotation Tool.

Figure 4: Screenshot of the Instruction of the Dialogue
Annotation Tool.

ings per sample, and applying the transformation
proposed in definition 5.

We chose 7 automated metrics based on their
popularity and ease of setup. We applied the Sum-
mEval framework to generate the automated ratings
for each of the 16 summarization systems on the
full test set. Analogous to above, we converted
the scalar ratings to pairwise ratings by applying
definition 5.

C.3 Machine Translation Data Collection

For the Machine Translation domain, we used the
WMT-21 (Freitag et al., 2021) metrics task data.
For space limitations, we used the EN→DE sec-
tion of the data only. The WMT-21 dataset consists
of 15 different metrics for 8 machine translation
systems and 3 human references. The human an-
notations consist of 500 MQM ratings (Lommel
et al., 2014) done by expert translators. To create
preference ratings, we computed the average score
of a sample, and compared the score of two out-
puts of two different systems for the same input by
applying definition 5.

The WMT-21 dataset already contains the rat-
ings of the automated metrics for 1000 samples, out
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Metric Corr. Inv. Omi. Ins. KLD
Chatbot Domain

deb 0.60 0.00 0.07 0.33 0.39
grade 0.53 0.07 0.20 0.20 0.53
holistic 0.27 0.20 0.13 0.40 0.57
maude 0.40 0.13 0.13 0.34 0.42
usl 0.53 0.07 0.00 0.40 0.40

Summeval Coherence Domain
BertScore 0.58 0.22 0.00 0.20 0.35
BLANC 0.45 0.29 0.02 0.24 0.33
CIDEr 0.38 0.36 0.02 0.24 0.43
ROUGE-L 0.45 0.33 0.00 0.22 0.34
S3 0.53 0.24 0.01 0.22 0.35
SummaQA 0.53 0.19 0.07 0.21 0.31
SUPERT 0.45 0.25 0.06 0.24 0.38

Summeval Consistency Domain
BertScore 0.49 0.16 0.00 0.35 1.92
BLANC 0.44 0.15 0.02 0.39 1.74
CIDEr 0.30 0.30 0.02 0.38 2.17
ROUGE-L 0.35 0.25 0.02 0.38 1.98
S3 0.46 0.17 0.01 0.37 1.90
SummaQA 0.55 0.09 0.03 0.33 1.81
SUPERT 0.46 0.13 0.04 0.38 1.76

Summeval Fluency Domain
BertScore 0.46 0.14 0.00 0.40 1.03
BLANC 0.40 0.16 0.01 0.43 0.98
CIDEr 0.34 0.21 0.02 0.43 1.08
ROUGE-L 0.41 0.18 0.00 0.42 0.99
S3 0.42 0.16 0.01 0.42 1.03
SummaQA 0.48 0.08 0.05 0.39 0.97
SUPERT 0.43 0.12 0.03 0.42 1.06

Summeval Relevance Domain
BertScore 0.64 0.13 0.01 0.22 0.26
BLANC 0.51 0.23 0.02 0.25 0.25
CIDEr 0.43 0.29 0.03 0.25 0.35
ROUGE-L 0.52 0.24 0.01 0.23 0.25
S3 0.62 0.15 0.01 0.23 0.26
SummaQA 0.61 0.11 0.07 0.22 0.23
SUPERT 0.51 0.20 0.05 0.24 0.35
Ideal-M 0.75 0.00 0.00 0.25 0.02

WMT21 Domain
BleuRT 0.47 0.02 0.13 0.38 0.46
C-SPEC 0.78 0.00 0.07 0.15 0.53
COMET 0.40 0.09 0.13 0.38 0.65
BLEU 0.44 0.16 0.07 0.33 0.43

Table 4: Frequency of Error Types for all metrics if
metrics are applied naively. Correct (Cor.), Inverted
(Inv.), Omission (Omi.), Insertion (Ins.), and the fraction
of annotations needed with the protocol (Ann.).

of which 500 overlap with the samples annotated
by humans. Thus, we generated pairwise ratings
by applying definition 5.

D Full Results

Tables 4 and 5 show the results for all the metrics
over all tasks and features. Figure 5 shows the
pairwise errors when applying our protocol.

Metric Corr. Inv. Omi. Ins. KLD Ann.
Chatbot Domain

Human 0.93 0.00 0.00 0.07 0.05 0.59
DEB 0.93 0.00 0.00 0.07 0.06 0.49
GRADE 0.87 0.00 0.00 0.13 0.05 0.53
HOLISTIC 0.87 0.00 0.00 0.13 0.05 0.52
MAUDE 0.87 0.00 0.00 0.13 0.05 0.53
USL-H 0.87 0.00 0.00 0.13 0.05 0.52

Summeval Coherence Domain
Human 0.97 0.00 0.00 0.03 0.04 0.42
BertScore 0.96 0.00 0.00 0.04 0.04 0.38
BLANC 0.96 0.00 0.00 0.04 0.03 0.40
CIDEr 0.95 0.00 0.00 0.05 0.04 0.39
ROUGE-L 0.96 0.00 0.00 0.04 0.03 0.40
S3 0.97 0.00 0.00 0.03 0.03 0.41
SummaQA 0.94 0.00 0.01 0.05 0.04 0.39
SUPERT 0.94 0.00 0.00 0.06 0.04 0.38

Summeval Consistency Domain
Human 0.93 0.00 0.00 0.07 0.02 0.53
BertScore 0.88 0.00 0.00 0.12 0.02 0.45
BLANC 0.88 0.00 0.00 0.12 0.02 0.48
CIDEr 0.87 0.00 0.01 0.13 0.02 0.46
ROUGE-L 0.88 0.00 0.00 0.12 0.02 0.46
S3 0.88 0.00 0.00 0.12 0.02 0.46
SummaQA 0.90 0.00 0.00 0.10 0.02 0.47
SUPERT 0.88 0.00 0.00 0.12 0.02 0.46

Summeval Fluency Domain
Human 0.95 0.00 0.00 0.05 0.03 0.60
BertScore 0.91 0.00 0.01 0.08 0.04 0.56
BLANC 0.91 0.00 0.01 0.08 0.02 0.58
CIDEr 0.93 0.00 0.00 0.07 0.04 0.55
ROUGE-L 0.93 0.00 0.00 0.07 0.04 0.57
S3 0.92 0.00 0.01 0.08 0.04 0.57
SummaQA 0.92 0.00 0.01 0.08 0.03 0.58
SUPERT 0.88 0.00 0.01 0.11 0.04 0.54

Summeval Relevance Domain
Human 0.95 0.00 0.00 0.05 0.07 0.43
BertScore 0.95 0.00 0.01 0.04 0.06 0.40
BLANC 0.90 0.00 0.03 0.07 0.05 0.42
CIDEr 0.94 0.00 0.02 0.04 0.06 0.42
ROUGE-L 0.94 0.00 0.01 0.05 0.05 0.41
S3 0.95 0.00 0.01 0.04 0.06 0.41
SummaQA 0.93 0.00 0.01 0.06 0.05 0.41
SUPERT 0.93 0.00 0.02 0.05 0.06 0.39
Ideal-M 0.85 0.00 0.00 0.15 0.02 0.38

WMT21 Domain
Human 0.65 0.00 0.00 0.35 0.06 0.34
BleuRT 0.65 0.00 0.00 0.35 0.06 0.34
C-SPEC 0.65 0.00 0.00 0.35 0.06 0.33
COMET 0.65 0.00 0.00 0.35 0.06 0.34
BLEU 0.65 0.00 0.00 0.35 0.05 0.34

Table 5: Frequency of Error Types for all metrics if
the protocol is applied. Correct (Cor.), Inverted (Inv.),
Omission (Omi.), Insertion (Ins.), and the fraction of
annotations needed with the protocol (Ann.).

E Ideal Metric

Since the real-world metrics that we use in this
work are not yet of very high quality, we also gen-
erated synthetic data for the SummEval-Relevance
domain. That is, we simulated a metric using a
fixed µsim =

( 0.8 0.25 0.1
0.1 0.5 0.1
0.1 0.25 0.8

)
. For this, we used the

6471



BL
2_

3B

BL
40

0d
ist

ill

Di
al

oG
PT

La
rg

e

Po
ly

En
co

de
r

Se
ek

er
Di

al
3B

hu
m

an

BL2_3B

BL400distill

DialoGPTLarge

PolyEncoder

SeekerDial3B

human

(a) Chatbot DEB

Fa
ce

bo
ok

-A
I

Hu
aw

ei
TS

C

Ne
m

o

On
lin

e-
W

UE
di

n

Vo
lcT

ra
ns

-A
T

Vo
lcT

ra
ns

-G
LA

T

eT
ra

ns
la

tio
n

re
f-A

re
f-B

re
f-D

Facebook-AI

HuaweiTSC

Nemo

Online-W

UEdin

VolcTrans-AT

VolcTrans-GLAT

eTranslation

ref-A

ref-B

ref-D

(b) WMT21 COMET
M

0
M

1
M

10
M

11
M

12
M

13
M

14
M

15
M

17
M

2
M

20
M

22
M

23
M

5
M

8
M

9

M0
M1

M10
M11
M12
M13
M14
M15
M17
M2

M20
M22
M23
M5
M8
M9

(c) SummEval Coherence
Rouge

M
0

M
1

M
10

M
11

M
12

M
13

M
14

M
15

M
17

M
2

M
20

M
22

M
23

M
5

M
8

M
9

M0
M1

M10
M11
M12
M13
M14
M15
M17
M2

M20
M22
M23
M5
M8
M9

(d) SummEval Consis-
tency BertScore

Figure 5: Pairwise Errors for the application of auto-
mated metrics with the protocol.

human win-rates p to randomly assign labels for
each pair of system for the 11k samples. That is,
for each sample, we randomly chose rating r p.
These sampled labels are treated as the ground-
truth, which has the same distribution as the human
labels. Then we used p̂ = µsimp to generate cor-
rupted labels, which correspond to metric ratings.
Since µsim makes less mistakes than the existing
metrics, and it makes no Omission or Inversion
Errors. We added the ideal metric to the full results
in Table 4 and 5. It also achieves a very good KLD
score when applied naively. However, such a met-
ric is currently out of scope and this only serves to
illustrate an upper bound for automated metrics.
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