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Abstract

Pretrained language models have achieved re-
markable success in various natural language
processing tasks. However, pretraining has
recently shifted toward larger models and larger
data, and this has resulted in significant com-
putational and energy costs. In this paper,
we propose Influence Subset Selection (ISS)
for language model, which explicitly utilizes
end-task knowledge to select a tiny subset of
the pretraining corpus. Specifically, the ISS
selects the samples that will provide the most
positive influence on the performance of the
end-task. Furthermore, we design a gradient
matching based influence estimation method,
which can drastically reduce the computation
time of influence. With only 0.45% of the data
and a three-orders-of-magnitude lower compu-
tational cost, ISS outperformed pretrained mod-
els (e.g., RoBERTa) on eight datasets covering
four domains.

1 Introduction

Pretrained language models (PTMs) (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019), trained
on massive and heterogeneous corpora, have sig-
nificantly improved the state-of-the-art across a
variety of natural language processing tasks (Wang
et al., 2022, 2023). Kaplan et al. (2020) found
power laws relating cross entropy loss to the sizes
of language models and their training datasets. As
a result, the field has recently shifted toward larger
models and large data (Brown et al., 2020; Rae
et al., 2021; Smith et al., 2022; Chowdhery et al.,
2022) in hopes of improving performance.

However, training a state-of-the-art language
model requires substantial computational resources
which demand considerable energy, along with
the associated financial and environmental costs
(Strubell et al., 2019). For example, RoBERTa-
Large (Liu et al., 2019), which was trained on
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PLMs TLM ISS

Training Data The entire D Subset of D
& task data T

Subset of D
& task data T

Compute Cost
240000
GPU·hours

240
GPU·hours

80
GPU·hours

Generality Task-Agnostic X-Dep X&Y -Dep

Table 1: Qualitative comparison between PLMs, TLM,
and ISS(ours). X/Y-Dep means the pretraining data is
X/Y dependent.

1000 V100 GPUs for approximately one day, has a
computational cost of 4.36×1021 FLOPs. Recently,
Chowdhery et al. (2022) proposes PaLM, which
consumes 580 times more FLOPs than RoBERTa-
Large. PaLM was trained on 6144 TPU v4 chips
for more than 1200 hours, which is unaffordable for
most researchers. Therefore, finding ways to speed
up pretraining is crucial for the development of
pretrained model research.

In general, there are three main strategies used
to speed up pretraining in NLP: parallel archi-
tectures, efficient model architectures, and novel
pretraining tasks. The first one is to train a single
model utilizing multiple GPUs distributed in many
computational nodes (Wang et al., 2020b; Shazeer
et al., 2018; Huang et al., 2019). Unfortunately,
the gains in efficiency of this strategy depend
entirely on the amount of computing hardware
used. The second strategy is to improve model
structures to reduce the computational complexity
and therefore improve efficiency (Wang et al.,
2020a; Katharopoulos et al., 2020; Roy et al., 2021).
The last one explores more challenging pretraining
tasks to accelerate a model’s convergence (Clark
et al., 2019; Joshi et al., 2020; Levine et al., 2020).
However, their improvements are limited, with a
reduction of less than an order of magnitude in
computational expenses (measured in FLOPs).

In this paper, we aim to reduce the computational
costs from data level (See Table 1). The PLMs are
trained on the entire pretraining corpus D, which
is task-agnostic. To take the downstream task
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into account, we hope to select the most relevant
samples from the pretraining corpus based on the
downstream data. Recently, Yao et al. (2022) pro-
poses TLM, which retrieves data from a pretraining
corpus using task data as queries. However, TLM
remains task-agnostic, because it only considers
text (i.e., X) similarities and ignores the label (i.e.,
Y) information.

Motivated by influence function (Cook and Weis-
berg, 1982; Koh and Liang, 2017), we propose
Influential Subset Selection (ISS) for language
model, i.e. selecting the samples with the most
positive influence on the downstream task. To cal-
culate the label-aware influence value, ISS utilizes
the derivation chain rule from a test objective to
training samples. Nevertheless, directly applying
the chain rule leads to computing the inverse of
Hessian with the complexity of O(nq2 + q3)(n is
the number of examples and q is parameter size),
which is computationally expensive and may run
out-of-memory in neural networks. To address
this problem, we propose a gradient matching
based influence approximation method for select-
ing pretraining data, which estimates the influence
score by matching the gradient values of pretrain-
ing samples and end-task samples. Our method
avoids the computation of the inverse of Hessian
and significantly speeds up the estimation time of
influence.

Our main contributions are summarized as fol-
lows:

• We propose Influential Subset Selection for lan-
guage model, which explicitly utilizes knowledge
of the end-task to select the pretraining corpus.

• We design a simple, efficient, gradient matching
based method for influence estimation, which
avoids the calculation of the inverse of Hessian
and significantly speeds up the estimation time.

• We evaluate the effectiveness of our method on
eight tasks covering four domains. Notably,
ISS outperforms PTMs (e.g. RoBERTa) with
only 0.45% of the data and three orders of
magnitude reduced FLOPS. Our code can be
found at https://github.com/nitwtog/ISS.

2 Preliminaries

2.1 Definition
We assume an end-task dataset rep-
resented as T = (Zt) where Zt =

{
(x1t , y

1
t ), (x

2
t , y

2
t ), . . . , (x

m
t , ymt )

}
represents

a set of texts with their ground truth labels. And we
assume a large-scale pretraining corpus D = (Zp),
where Zp =

{
x1p, x

2
p, . . . , x

M
p

}
represents

unlabeled data. We define f = f (head) ◦ f (feat),
such that f (feat)(·; θ ∈ Θ) is a feature extractor
that is transferable across learning stages (e.g.
pretraining to finetuning) and f (head)(·;ϕ ∈ Φ) is a
task-specific head that is not transferable. And we
assume lp(zp, θ, ϕp) and lt(zt, θ, ϕt) are the loss
functions of pretraining and end-task.

2.2 Influence Function

Influence function (Cook and Weisberg, 1982;
Koh and Liang, 2017) provides an efficient way
to estimate the importance of a training sample.
Considering a training sample z was weighted
by a small ϵ during training, the empirical risk
minimizer can be written as

θ̂ϵ,z = argmin
θ∈Θ

1

n

∑

zi∈D
l (zi, θ) + ϵ · l(z, θ) (1)

Assigning − 1
n to ϵ is equivalent to removing the

training example zp. Then, the influence of weight-
ing zp on the parameters is given by

Iparam (z) =
dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θl(z, θ̂) (2)

where Hθ̂ = 1
n

∑
zi∈D ∇2

θl
(
zi, θ̂

)
is the Hessian

and positive definite by assumption, Iparam (z) ∈
RN , N is the number of network parameters. Then,
we can linearly approximate the parameter change
due to removing z without retraining the model by
computing θ̂−z − θ̂ ≈ − 1

nIparam (z).

3 Methodology

We investigate an influence-based subset selection
method to perform efficient pretraining while at-
tempting to minimize accuracy loss on the end-task
dataset (Section 3.1). Due to the high computa-
tional costs of influence function (Koh and Liang,
2017), we design an influence approximation strat-
egy to speed up the calculation (Section 3.2).

3.1 Influence of Pretraining Corpus

PTMs used in previous works usually adopt lan-
guage modeling as pretraining tasks, lacking task-
specific prior knowledge. However, we often
know the end-task beforehand, so we can make
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specific choices about our pretraining regimen to
improve end-task performance. Under this setting,
we introduce Influential Subset Selection for lan-
guage model, which measures the importance of
pretraining samples by considering the X and Y
information of the end-task simultaneously.

Specifically, pretraining sample zp affects the
prediction of end-task sample zt by influencing
the parameters of the feature encoder θ. We can
apply the chain rule to measure the influence of
upweighting pretraining sample zp on the loss at
end-task sample zt.

I (zp, zt) ≜
dl

(
zt, θ̂ϵ,z

)

dϵ

∣∣∣∣∣∣
ϵ=0

= ∇θl
(
zt, θ̂

)⊤ dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −∇θl
(
zt, θ̂

)⊤
H−1

θ̂
∇θl(zp, θ̂)

(3)

The more negative I (zp, zt) is, the more posi-
tive influence zp can provide. However, computing
the Hessian for the full training dataset is expensive,
and inverting it is similarly prohibitive: with n
training data points and p parameters, this com-
putation requires O(n ∗ p2 + p3) operations. It
means that evaluating the influence of large-scale
pretrained corpus is not achievable. Thus, we
propose an influence approximation algorithm to
speed up the estimation time.

3.2 Influence Approximation
Motivated by calculus, the update of the model
parameters is the result of cumulative updates over
several training iterations. Similarly, the difference
between the loss of test point zt at the end of
training versus at the beginning of training can
be decomposed along the path taken by the training
process. Thus, we hypothesize that the influences
of all training examples on a fixed test point zt is
exactly the total reduction in loss on zt.

Assume that we train the feature encoder by
minimizing the pertaining loss lp(zp; θ, ϕ), via an
iterative optimization procedure (such as SGD)
which utilizes one training example zp in iteration
t. The parameters of the feature encoder before and
after iteration t are θt and θt+1 respectively. The
influence of zt on zp can be approximated in the
following way.

I (zp, zt) = lt (zp, θt)− lt (zp, θt+1) (4)

𝜃
𝑔!

𝑔"
𝑔#

𝑔" # 𝑔# > 𝑔! # 𝑔#

: loss landscape of pre-training

: loss landscape of end-task

: gradient of pre-training sample
: gradient of end-task sample

Figure 1: Illustration of gradient matching based influ-
ence approximation. g1 and g2 are the loss gradients of
two different pretrained samples respectively, while g′ is
the loss gradient of the end-task sample. The influence
of a pretrained sample is measured by how a small step
based on its gradient affects the loss on the end-task
sample. Compared to g1, the update step of g2 is more
generalized.

Suppose we are at point θt, and we make a first-
order Taylor expansion of function lp (zp, θt+1).

lt (zp, θt+1) =lt (zp, θt) +∇θlt (zp, θt) · (θt+1 − θt)

+O
(
∥θt+1 − θt∥2

)

(5)
Assuming the model employs SGD as the opti-

mizer, then the update in parameters is θt+1− θt =
−ηt∇θlp (zt, θt), where ηt is the learning rate at
iteration t. Eq. (5) guarantees approximation
precision as long as the update magnitude of θ
is sufficiently small. By substituting the parameter
update formula and disregarding the higher-order
term, we arrive at the following first-order approxi-
mation.

lt
(
z′, θt

)
− lt

(
z′, θt+1

)
≈ ηt∇θlt

(
z′, θt

)
· ∇θlp (zt, θt)

(6)

We refer to this first-order approximation as gradi-
ent matching-based influence estimation. The full
algorithm is provided in Algorithm 1.

Visualisation We visualize our influence es-
timation method in Fig 1. g1 and g2 are the
loss gradients of two different pretrained samples
respectively, while g′ is the loss gradient of the
end-task sample. The influence of a pretrained
sample can be viewed as the dot product of its
gradient and the gradient of the end-task sample.
Higher influence suggests that a network is learning
parameters that generalize.
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Algorithm 1: Influential Subset Selection
for Language Model
Require: Pretraining corpus D; task

training set Tt and validation set
Tv; learning rate α; initial subset
S; candidates size k.

Random initialize network θ, ϕp, ϕt

θ̂, ϕ̂p, ϕ̂t = argmin 1
n

∑
zi∈Tt

lp (zi) + lt(zi)

for zp ∈ D do
Compute ∇θlp

(
zp, θ̂, ϕ̂p

)

end
for z′ ∈ Tv do

Compute ∇θlt

(
z′, θ̂, ϕ̂t,

)

for zp ∈ D do
I (zp, z

′) =

∇θlp

(
zp, θ̂, ϕ̂p

)
· ∇θlt

(
z′, θ̂, ϕ̂t,

)

end
Sort pretraining samples based on influence
Add top k influential samples to S

end
Return influential subset S

3.3 Implementation Details
Based on the influence score, we select the most
relevant samples from the pretraining corpus. Fol-
lowing TLM, we first select a subset via a BM25
retrieval method. Then, we compute the influence
score based on this subset to make ISS scalable and
efficient.

Moreover, the number of parameters in large-
scale language models is very large, leading to very
high dimensional gradients. To tackle this problem,
we adopt a last-layer gradient approximation by
only considering the last layer gradients of pre-
trained encoder. We select a subset of mini-batches
by matching the weighted sum of mini-batch pre-
training gradients to the mini-batch task gradients.
Let Bp and Bt be the batch size of pretraining and
end-task. The use of mini-batches considerably
reduces the number of selection rounds during the
ISS algorithm by a factor of B, resulting in Bp ∗Bt

speed up.

4 Experimental Setup

To evaluate the efficiency and generality of our
approach, we conduct experiments in two settings:
pretraining from scratch, and further pretraining.

4.1 Pretraining from Scratch
Datasets. Following the setting of Gururangan
et al. (2020); Yao et al. (2022), we conduct ex-

periments on eight tasks covering four domains,
including biomedical science, computer science,
news, and reviews. The tasks represent both
high- and low-resource (≤ 5K samples) settings,
including CHEMPROT (Kringelum et al., 2016),
RCT (Dernoncourt and Lee, 2017), ACL-ARC
(Jurgens et al., 2018), SCIERC (Luan et al., 2018),
HyPERPARTISAN (Kiesel et al., 2019), AGNEws
(Zhang et al., 2015), HELPFULNESS (McAuley
et al., 2015), IMDB (Maas et al., 2011). Table 2
reports the statistic results of various target datasets.
Similar to TLM (Yao et al., 2022), we collect
two pretraining corpora that respectively match the
original corpora of BERT and RoBERTa. We name
them CBERT and CRoBERTa, respectively.

Baselines. We focus on comparison with general
PLMs and TLM. Following Yao et al. (2022), we
finetuned both BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) of base and large scales
as our baselines. And we finetuned the released
TLM models as baselines.

Evaluation Strategy. The results of the experi-
ment are the average performance of three random
seeds with the standard deviations. Following
Gururangan et al. (2020), we report the test micro-
F1 for ChemProt and RCT, and macro-F1 for the
rest of datasets. Following TLM (Yao et al., 2022),
we set three pretraining scales, namely small,
medium, and large scales. Differently, at the
same scale, our method only utilizes 20% size of
the TLM data. More detailed settings are shown in
Table A.1 in Appendix.

Training Details. We utilize the randomly
initialized BERT of base scale as our starter mod-
els. We mostly follow optimization, and hyper-
parameters choices used in Yao et al. (2022). All ex-
periments were conducted on 4 NVIDIA GeForce
RTX 3090 GPUs. Detailed hyper-parameters are
provided in Table A.1 in Appendix.

Domain Task Train Dev. Test Classes

BIOMED
CHEMPROT 4169 2427 3469 13
† RCT 18040 30212 30135 5

CS
ACL-ARC 1688 114 139 6
SCIERC 3219 455 974 7

NEWS
HYPERPARTISAN 515 65 65 2
† AGNEWS 115000 5000 7600 4

REVIEWS
† HELPFULNESS 115251 5000 25000 2
† IMDB 20000 5000 25000 2

Table 2: Statistics of various target datasets. † indicates
high-resource settings.
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Model Param Data1 FLOPs2 AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT Avg.

Bert-Base 109M 16G 2.79E19
93.50
±0.15

91.93
±1.74

69.11
±0.17

93.77
±0.22

69.45
±2.90

80.98
±1.07

81.94
±0.38

87.00
±0.06

83.46

Bert-Large 355M 16G 9.07E19
93.51
±0.40

91.62
±0.69

69.39
±1.14

94.76
±0.09

69.13
±2.93

81.37
±1.35

83.64
±0.41

87.13
±0.09

83.82

TLM(Small) 109M 0.91G 2.74E18
93.74
±0.20

93.53
±1.61

70.54
±0.39

93.08
±0.17

69.84
±1.53

80.51
±1.53

81.99
±0.42

86.99
±0.03

83.78

TLM(Small-20%)3 109M 0.18G 1.82E18
93.57
±0.21

93.11
±0.46

70.02
±0.40

93.20
±0.03

67.27
±2.85

78.87
±0.63

80.80
±0.63

86.65
±0.01

82.93

ISS(Small-scale) 109M 0.18G 1.82E18
93.78
±0.06

93.53
±0.00

70.78
±0.29

93.25
±0.07

72.41
±0.66

80.56
±0.43

81.71
±0.10

86.99
±0.02

84.11

RoBERTa-Base 125M 160G 1.54E21
94.02
±0.15

93.53
±1.61

70.45
±0.24

95.43
±0.16

68.34
±7.27

81.35
±0.63

82.60
±0.53

87.23
±0.09

84.12

TLM(Medium) 109M 1.21G 8.30E18
93.96
±0.18

94.05
±0.96

70.90
±0.73

93.97
±0.10

72.37
±2.11

81.88
±1.92

83.24
±0.36

87.28
±0.10

84.71

TLM(Medium-20%)3 109M 0.18G 4.15E18
93.78
±0.02

93.53
±0.00

71.11
±0.05

93.20
±0.06

68.82
±3.56

80.35
±0.54

81.05
±0.07

87.00
±0.05

83.58

ISS(Medium-scale) 109M 0.18G 4.15E18
93.92
±0.08

93.53
±0.00

71.51
±0.31

93.61
±0.06

73.42
±0.58

82.20
±0.40

83.42
±0.11

87.30
±0.02

84.86

RoBERTa-large 355M 160G 4.36E21
94.30
±0.23

95.16
±0.00

70.73
±0.62

96.20
±0.19

72.80
±0.62

82.62
±0.68

84.62
±0.50

87.53
±0.13

85.50

TLM(Large) 4 109M 3.64G 2.33E19
94.15
±0.01

93.92
±0.72

71.83
±0.11

94.44
±0.10

74.18
±0.29

82.77
±0.72

83.60
±0.08

87.49
±0.02

85.31

TLM(Large-20%)3 109M 0.72G 8.30E18
93.79
±0.31

92.72
±0.783

71.50
±0.28

94.49
±0.04

73.42
±1.75

81.77
±0.54

82.63
±0.11

87.36
±0.10

84.71

ISS(Large-scale) 109M 0.72G 8.30E18
94.22
±0.04

93.53
±0.00

72.27
±0.20

94.57
±0.06

74.53
±1.38

83.12
±0.16

83.31
±0.36

87.41
±0.02

85.36

1 For ISS, data size is reported by averaging over eight tasks.
2 The training compute (FLOPs) is calculated by (6 × Training Tokens × Parameter Size) as in Kaplan et al. (2020).
3 ISS utilizes 20% of the TLM size data, so we implemented the TLM model with the same size version.
4 For a fair comparison, we implement TLM(Large) with BERT base and TLM large scale dataset.

Table 3: Evaluation results for ISS at three different training scales. For each task, we report the average F1 score
across three random seeds with standard deviations as subscripts. We also show the number of parameters, the total
training compute (FLOPs), and the size of training corpus for comparison.

4.2 Further Pretraining

Datasets. We perform further pretraining in
biomedical science and computer science domains.
Specifically, we conduct experiments on four
datasets, including CHEMPROT (Kringelum et al.,
2016), RCT (Dernoncourt and Lee, 2017), ACL-
ARC (Jurgens et al., 2018), SCIERC (Luan et al.,
2018). For the pretraining stage, we collect the
unlabeled datasets from S2ORC (Lo et al., 2020).

Baselines. We select general PTMs (Devlin
et al., 2019; Liu et al., 2019) and domain-specific
further pretraining models (Lee et al., 2020; Belt-
agy et al., 2019; Gururangan et al., 2020) as our
baselines. Finetuning on the end-task occurs after
further pretraining on domain unlabeled corpora.

Evaluation Strategy. Similar to pretraining
from scratch, we report the average performance
across three random seeds. And we report the

micro-F1 for ChemProt and RCT, and macro-F1
for ACL-ARC and SCIERC.

Training Details. In this setting, we perform
further pretraining on off-the-shelf pretrained mod-
els, such as BERT and RoBERTa. All experiments
were conducted on 4 NVIDIA GeForce RTX 3090
GPUs. Detailed hyper-parameters are provided in
Table A.2 in Appendix.

5 Experimental Results

In this section, we will discuss the results of
comparing our methods against other baselines.

5.1 Pretraining from Scratch

Table 3 shows the main results of ISS with the ac-
cording TLM and PLMs baselines at three different
scales. The followings are the related comparison
and analysis we conducted: 1) ISS could achieve re-
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Figure 2: Comparison of ISS and TLM at different pretraining steps. The experiments were conducted on the
small-scale dataset, and notably, the data scale of TLM was five times larger than ours.

Model Param Data FLOPs
BIOMED CS

Avg.
RCT Chem ACL SciERC

BERT-Base 109M 16G 2.79E19 87.00 81.94 69.45 80.98 79.84

RoBERTa-base 125M 160G 1.54E21 87.23 82.60 68.34 81.35 79.88

SciBERT 109M 15G 2.65E19 - 83.64 70.98 79.97 -

BioBERT 109M 96G 1.80E20 - 76.46 - - -

DAPT 125M 47G 1.58E18 87.6 84.2 75.4 80.8 82.00

DAPT+TAPT 125M 47G 1.77E18 87.8 84.4 75.6 81.3 82.28

ISS-DAPT(BERT) 109M 1.7G 6.9E17
87.36

±0.02

83.90

±0.10

76.06

±0.70

83.91

±0.38

82.81

ISS-DAPT(RoBERTa) 125M 1.7G 7.9E17
87.57

±0.06

84.88

±0.10

76.70

±0.25

82.23

±0.30

82.85

Table 4: Evaluation results for ISS in further pretraining.
We report the average F1 score across three random
seeds with standard deviations as subscripts.

sults that are better than or comparable to the PLM
baselines with significant reductions in FLOPs and
the size of training data. At the large scale, ISS
achieves comparable results to RoBERTa-large,
with an average of 0.19% of FLOPs and 0.45%
of the training corpus. At the small and medium
scales, ISS improves the performance by 0.29
and 0.74 points on average respectively; 2) At
the same data scale, ISS significantly outperforms
TLM, which indicates that task label information
is crucial. And the influence-based subset selection
can select more influential pertaining samples; 3)
ISS could offer limited performance gains on high-
resource datasets. It demonstrates that the influence
of the pretraining samples would be decreased as
the task data grows sufficiently.

5.2 Further Pretraining

We compared ISS with other domain-specific fur-
ther pretraining methods. Differently, we initialize
the network with off-the-shelf pretrained models to
provide initialization and select influential subsets
from the domain corpus. Table 4 shows the main

AGNews SciERC Chemprot

ISS TLM ISS TLM ISS TLM

10%
94.34

±0.08

94.08

±0.07

80.82

±0.41

81.41

±0.16

80.80

±0.34

80.15

±0.32

20%
94.40
±0.06

94.16

±0.09

83.70
±0.31

81.21

±0.44

82.82
±0.41

81.51

±0.55

40%
94.14

±0.05

94.05

±0.18

83.16

±0.07

82.48

±0.43

81.98

±0.14

81.75

±0.04

60%
94.08

±0.02

94.07

±0.09

82.51

±0.29

83.05
±0.20

82.08

±0.22

81.80

±0.41

80%
94.17

±0.04

94.27
±0.09

81.71

±0.24

81.75

±0.15

81.83

±0.30

81.86
±0.47

Table 5: Results on the development set with different
data scales.

results. In conclusion, our method outperforms
all the baselines, with significant reductions in
FLOPs and the size of training data by one order
of magnitude or more. It proves our approach is
feasible.

5.3 Comparison of Pretraining Steps
To validate the effect of pretraining steps, we
compare the performance of ISS with TLM at
different pretraining steps. The test results on the
four tasks with different pretraining steps are shown
in Figure 3. We observe that ISS could achieve the
best performance with fewer steps on most of the
datasets.

5.4 Subset Size for Pretraining
To compare the performance at different data scales,
we extracted subsets from the TLM small-scale
corpus at different scales via ISS and TLM, re-
spectively. The results are shown in Table 5. We
can observe that the performance of TLM becomes
better as the dataset grows, but the best results are
still lower than those of our method. In ISS, the
F1-score would reach the top at the 20%-40% scale
and gradually decrease as the data size grows. We
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Figure 3: F1-score results of ISS with gradients of
different layers (i.e., Embedding layer, 3/6/9/12-th
Transformer Block) over Chemprot and SciERC.

Related-Label PMI
AGNews

ISS(small) /% TLM(small) /%

immigration World 1.341 0.0072 0.0070

policy World 1.187 0.0493 0.0401

china World 0.382 0.0836 0.0695

medals Sports 1.400 0.0139 0.0136

golds Sports 1.400 0.0009 0.0008

sports Sports 1.293 0.0459 0.0454

financial Business 1.054 0.0717 0.0567

commerce Business 0.844 0.0097 0.0081

business Business 0.710 0.1170 0.0952

automation Sci/Tech 1.420 0.0043 0.0028

internet Sci/Tech 1.224 0.0729 0.0524

technology Sci/Tech 1.115 0.0864 0.0661

Table 6: Comparison of the frequency of task influential
words in different subsets.

believe that as the dataset expands, task-irrelevant
or noisy data is added.

5.5 Last Better than First

As explained in Section 3.3, the last layer of
gradients of the model encoder is only considered
to speed up the computation. We have studied the
relationship between the gradients at the different
layers used in ISS and the corresponding perfor-
mances. Table 3 shows the results on Chemprot and
SciERC. We can observe that the closer the layer, to
the task head, the better the selected subset works.
The phenomena suggest that different layers in the
language model can capture different information,
with layers closer to the task head learning more
information about the task.

Table 7 shows the times required by ISS calcu-
lating influences at the different layers. Overall,
the time cost of selecting a subset is negligible
compared to pretraining. In addition, the computa-
tional speed based on the last layer would be nearly

Layer name
Cost times

Small Large

Embedding 2.0 hours 5.2 hours

3-th Transformer 1.8 hours 4.8 hours

6-th Transformer 1.6 hours 4.4 hours

9-th Transformer 1.4 hours 4.0 hours

12-th Transformer 1.1 hours 3.6 hours

Table 7: Comparison of the speed of computing in-
fluences using different layers. The experiments were
conducted on Chemport dataset.

double, compared to that at the embedding layer.

6 Analysis

6.1 Visualization of Pretrained Model

We visualize the task data on ISS-small, BERT,
and RoBERTa, using the t-SNE algorithm (Van der
Maaten and Hinton, 2008). The results are shown
in Figure 4. We can observe that the different
classes of deep features in ISS-small formed tighter
clusters, suggesting that ISS provides better initial-
ization for downstream tasks. In contrast, the fea-
tures learned by BERT and Roberta are distributed
respectively in separate clusters with overlapping
parts that could not be distinguished.

6.2 Analyzing of Task-influential Words

We compute the point-wise mutual information
(PMI) (Levy and Goldberg, 2014) between words
and their corresponding labels in the task dataset.
Briefly, PMI is used to measure the likelihood of
two events occurring together, so the higher the
PMI a word has, the more likely it is to be task-
influential. We select words with high PMI as task-
influential words, and compare their frequency in
ISS-small and TLM-small datasets, respectively.
As shown in Table 6, the word frequency in the
ISS-small dataset is higher than that in the TLM-
small dataset. Thus, ISS may focus more on task-
influential words.

7 Related Work

7.1 Efficient Pretraining for PLMs

Many attempts have been made to improve the
efficiency of pretraining. Parallel architectures
(Shazeer et al., 2018; Wang et al., 2020b) are com-
monly used in pretraining. However, parallelism
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Figure 4: Visualization of sentence representation on Chemprot using the t-SNE algorithm (Van der Maaten and
Hinton, 2008). Each color denotes a class.

would not actually reduce computational costs in
terms of FLOPs. For most Transformer-based
PTMs, as their input sequence goes longer, their
efficiency is limited by the computation of attention
weights. Choromanski et al. (2020) and Wang et al.
(2020a) design low-rank kernels to theoretically
approximate the original attention weights. Child
et al. (2019) and Roy et al. (2021) introduce spar-
sity into attention mechanisms by limiting the view
of each token to a fixed size and separating tokens
into several chunks. ELECTRA (Clark et al., 2019)
applies the replaced token detection which is more
challenging. PMI-Masking (Levine et al., 2020)
selectively masks tokens based on their importance.
However, their improvements are limited, with less
than an order of magnitude reduction in computa-
tional expenses (measured in FLOPs). Orthogonal
to these works, ISS investigates reducing training
data redundancy by the influence of pretraining
data points.

7.2 Further Pretraning in NLP

Continually pretraining can effectively improve
PTMs’ performance on new domains or down-
stream tasks (Gururangan et al., 2020). To achieve
it, most previous works continually optimize the
pretrained model parameters on a large number
of corpora collected from the target domain (e.g.,
scientific (Beltagy et al., 2019), finance(Araci,
2019) and bio-media (Lee et al., 2020)). However,
it is computationally expensive to further pretrain
the model on a large amount of unlabeled data and
it may not be feasible to collect such a large scale
of unlabeled data on certain domains. In contrast,
ISS does not need any additional domain data
and only utilizes the general corpus. In addition,
our approach can also be employed for further
pretraining, as we demonstrate in our experiments.

7.3 Dataset Pruning

Dataset pruning is closely related to the coreset
selection methods (Mirzasoleiman et al., 2020;
Agarwal et al., 2004), which try to identify the most
representative training samples. Several works
(Killamsetty et al., 2021; Rebuffi et al., 2017;
Toneva et al., 2018) have studied dataset pruning
for efficient training of deep learning models in
supervised learning and active learning scenarios.
Dataset pruning methods typically rely on a pre-
defined criterion to compute a scalar score for each
training example, e.g. the compactness (Rebuffi
et al., 2017), diversity (Sener and Savarese, 2017),
and forgetfulness (Toneva et al., 2018), and then
rank and select the training data according to the
computed score. Recently, Yao et al. (2022) pro-
posed TLM for transfer learning, which retrieves a
subset from the pretraining corpus that is more
similar to the task corpus. However, these methods
are heuristic and lack of generalization guarantee,
they also discard the influence interaction between
the collected samples. Our proposed method over-
comes these shortcomings.

8 Conclusion

In this paper, we propose Influential Subset Selec-
tion for language model, which aims to reduce the
computational costs of pretraining from data level.
Specifically, we introduce influence function to
measure the importance of each pretraining sample.
Moreover, we design a simple, efficient, gradient
matching-based method for influence estimation,
which significantly speeds up the estimation time.
Experiments on various datasets demonstrate that
our method achieves comparable performance with
PTMs, with a reduction of training FLOPs by three
orders of magnitude.
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Limitations

There are two potential risks with our method. First,
ISS trades generality for efficiency by learning
only task-specific representations. Consequently,
it may not be suitable for other tasks. Secondly,
our method is hardly practical for few-shot or zero-
shot learning, as few or no task data are available
as anchor points. These potential risks are left to
future work.

Ethics Statement

Pretraining from scratch and further pretraining
such as DAPT need large-scale unlabeled corpus
to learn general knowledge, which results in cor-
responding greenhouse emissions due to energy
consumption (Strubell et al., 2019). However, as
shown in Section 5, our new efficient algorithms
greatly increase the data efficiency of PTMs, re-
ducing these harms as well as the various harms
associated with labor for data collection. Our
work introduces a new subset selection algorithm
but leverages pre-existing datasets and models.
Overall, this work inherits some of the risks of the
original work upon which it is implemented, (such
as bias (Bender et al., 2021) or privacy leakage
(Carlini et al., 2021).
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A Detailed Experiment Settings

Table A.1 lists the detailed hyperparameters of
ISS at different scales for each task on the pre-
training task. On each task, we perform a grid
search for Bp ∈ {1, 2, 4, 8} and Batch size(task)
∈ {1,2,4,8,16} and adjust the training step, batch
size, and sequence length to minimize the training
cost while maintaining competitive performance.

Table A.2 lists the detailed hyperparameters of
ISS for each task on further pretraining task.
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Hyper-Parameters AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT

Small

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small

Training Data Size2 0.22GB 0.04GB 0.1GB 0.18GB 0.3GB 0.32GB 0.13GB 0.16GB

Training Steps 5E4 2E4 1E5 1E5 1E5 1E5 1E5 5E4

ρ1 1 99 1 19 999 999 999 3

ρ2 100 20 100 100 100 20 20 20

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

Medium

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small

Training Data Size2 0.22GB 0.04GB 0.1GB 0.18GB 0.3GB 0.32GB 0.13GB 0.16GB

Training Steps 1.5E5 5E4 1.5E5 1.5E5 1.5E5 1.5E5 1.5E5 1.5E5

ρ1 1 99 1 19 999 999 999 3

ρ2 100 20 100 100 100 20 20 20

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

Large

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large

Training Data Size2 0.62GB 0.18GB 0.34GB 2.20GB 0.70GB 0.84GB 0.5GB 0.44GB

Training Steps 3E5 1E5 3E5 3E5 3E5 3E5 3E5 3E5

ρ1 3 99 1 99 999 999 999 3

ρ2 100 100 1000 100 20 20 100 100

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

1 CTLM−small and CTLM−large are provided by TLM(Yao et al., 2022).
2 ISS only uses a tiny subset of the source general corpus for training. We list the data size that are actually used for ISS training.

Table A.1: Detailed hyper-parameters for ISS of different scales for each task

Hyper-Parameters RCT Chem. Acl. SciERC

Bp 16 8 2 4

Bt 4 4 4 4

Source Corpus1 CS2ORC CS2ORC CS2ORC CS2ORC

Train Data Size2 1.5G 1.5G 1.9G 1.9G

Training Steps 5E4 5E4 5E4 5E4

Batch Size 256 256 256 256

Sequence Length 128 128 128 128
1 CS2ORC is provided by S2ORC(Lo et al., 2020).
2 ISS only uses a tiny subset of the source general corpus for training. We list the data size that are
actually used for ISS training.

Table A.2: Detailed hyper-parameters for ISS in further
pretraining
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