
Findings of the Association for Computational Linguistics: ACL 2023, pages 555–568
July 9-14, 2023 ©2023 Association for Computational Linguistics

Farewell to Aimless Large-scale Pretraining: Influential Subset Selection
for Language Model

Xiao Wang⋆∗, Weikang Zhou⋆∗, Qi Zhang⋆†, Jie Zhou⋆, Songyang Gao⋆,
Junzhe Wang⋆, Menghan Zhang♦, Xiang Gao♣, Yunwen Chen♣, Tao Gui♦ †

⋆ School of Computer Science, Fudan University, Shanghai, China
♦ Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China

♣ DataGrand Information Technology (Shanghai) Co., Ltd.
{xiao_wang20,qz,tgui}@fudan.edu.cn

Abstract

Pretrained language models have achieved re-
markable success in various natural language
processing tasks. However, pretraining has
recently shifted toward larger models and larger
data, and this has resulted in significant com-
putational and energy costs. In this paper,
we propose Influence Subset Selection (ISS)
for language model, which explicitly utilizes
end-task knowledge to select a tiny subset of
the pretraining corpus. Specifically, the ISS
selects the samples that will provide the most
positive influence on the performance of the
end-task. Furthermore, we design a gradient
matching based influence estimation method,
which can drastically reduce the computation
time of influence. With only 0.45% of the data
and a three-orders-of-magnitude lower compu-
tational cost, ISS outperformed pretrained mod-
els (e.g., RoBERTa) on eight datasets covering
four domains.

1 Introduction

Pretrained language models (PTMs) (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019), trained
on massive and heterogeneous corpora, have sig-
nificantly improved the state-of-the-art across a
variety of natural language processing tasks (Wang
et al., 2022, 2023). Kaplan et al. (2020) found
power laws relating cross entropy loss to the sizes
of language models and their training datasets. As
a result, the field has recently shifted toward larger
models and large data (Brown et al., 2020; Rae
et al., 2021; Smith et al., 2022; Chowdhery et al.,
2022) in hopes of improving performance.

However, training a state-of-the-art language
model requires substantial computational resources
which demand considerable energy, along with
the associated financial and environmental costs
(Strubell et al., 2019). For example, RoBERTa-
Large (Liu et al., 2019), which was trained on

∗∗ Equal contribution.
†Corresponding Author

PLMs TLM ISS

Training Data The entire D Subset of D
& task data T

Subset of D
& task data T

Compute Cost
240000
GPU·hours

240
GPU·hours

80
GPU·hours

Generality Task-Agnostic X-Dep X&Y -Dep

Table 1: Qualitative comparison between PLMs, TLM,
and ISS(ours). X/Y-Dep means the pretraining data is
X/Y dependent.

1000 V100 GPUs for approximately one day, has a
computational cost of 4.36×1021 FLOPs. Recently,
Chowdhery et al. (2022) proposes PaLM, which
consumes 580 times more FLOPs than RoBERTa-
Large. PaLM was trained on 6144 TPU v4 chips
for more than 1200 hours, which is unaffordable for
most researchers. Therefore, finding ways to speed
up pretraining is crucial for the development of
pretrained model research.

In general, there are three main strategies used
to speed up pretraining in NLP: parallel archi-
tectures, efficient model architectures, and novel
pretraining tasks. The first one is to train a single
model utilizing multiple GPUs distributed in many
computational nodes (Wang et al., 2020b; Shazeer
et al., 2018; Huang et al., 2019). Unfortunately,
the gains in efficiency of this strategy depend
entirely on the amount of computing hardware
used. The second strategy is to improve model
structures to reduce the computational complexity
and therefore improve efficiency (Wang et al.,
2020a; Katharopoulos et al., 2020; Roy et al., 2021).
The last one explores more challenging pretraining
tasks to accelerate a model’s convergence (Clark
et al., 2019; Joshi et al., 2020; Levine et al., 2020).
However, their improvements are limited, with a
reduction of less than an order of magnitude in
computational expenses (measured in FLOPs).

In this paper, we aim to reduce the computational
costs from data level (See Table 1). The PLMs are
trained on the entire pretraining corpus D, which
is task-agnostic. To take the downstream task

555



into account, we hope to select the most relevant
samples from the pretraining corpus based on the
downstream data. Recently, Yao et al. (2022) pro-
poses TLM, which retrieves data from a pretraining
corpus using task data as queries. However, TLM
remains task-agnostic, because it only considers
text (i.e., X) similarities and ignores the label (i.e.,
Y) information.

Motivated by influence function (Cook and Weis-
berg, 1982; Koh and Liang, 2017), we propose
Influential Subset Selection (ISS) for language
model, i.e. selecting the samples with the most
positive influence on the downstream task. To cal-
culate the label-aware influence value, ISS utilizes
the derivation chain rule from a test objective to
training samples. Nevertheless, directly applying
the chain rule leads to computing the inverse of
Hessian with the complexity of O(nq2 + q3)(n is
the number of examples and q is parameter size),
which is computationally expensive and may run
out-of-memory in neural networks. To address
this problem, we propose a gradient matching
based influence approximation method for select-
ing pretraining data, which estimates the influence
score by matching the gradient values of pretrain-
ing samples and end-task samples. Our method
avoids the computation of the inverse of Hessian
and significantly speeds up the estimation time of
influence.

Our main contributions are summarized as fol-
lows:

• We propose Influential Subset Selection for lan-
guage model, which explicitly utilizes knowledge
of the end-task to select the pretraining corpus.

• We design a simple, efficient, gradient matching
based method for influence estimation, which
avoids the calculation of the inverse of Hessian
and significantly speeds up the estimation time.

• We evaluate the effectiveness of our method on
eight tasks covering four domains. Notably,
ISS outperforms PTMs (e.g. RoBERTa) with
only 0.45% of the data and three orders of
magnitude reduced FLOPS. Our code can be
found at https://github.com/nitwtog/ISS.

2 Preliminaries

2.1 Definition
We assume an end-task dataset rep-
resented as T = (Zt) where Zt =

{
(x1t , y

1
t ), (x

2
t , y

2
t ), . . . , (x

m
t , ymt )

}
represents

a set of texts with their ground truth labels. And we
assume a large-scale pretraining corpus D = (Zp),
where Zp =

{
x1p, x

2
p, . . . , x

M
p

}
represents

unlabeled data. We define f = f (head) ◦ f (feat),
such that f (feat)(·; θ ∈ Θ) is a feature extractor
that is transferable across learning stages (e.g.
pretraining to finetuning) and f (head)(·;ϕ ∈ Φ) is a
task-specific head that is not transferable. And we
assume lp(zp, θ, ϕp) and lt(zt, θ, ϕt) are the loss
functions of pretraining and end-task.

2.2 Influence Function

Influence function (Cook and Weisberg, 1982;
Koh and Liang, 2017) provides an efficient way
to estimate the importance of a training sample.
Considering a training sample z was weighted
by a small ϵ during training, the empirical risk
minimizer can be written as

θ̂ϵ,z = argmin
θ∈Θ

1

n

∑

zi∈D
l (zi, θ) + ϵ · l(z, θ) (1)

Assigning − 1
n to ϵ is equivalent to removing the

training example zp. Then, the influence of weight-
ing zp on the parameters is given by

Iparam (z) =
dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θl(z, θ̂) (2)

where Hθ̂ = 1
n

∑
zi∈D ∇2

θl
(
zi, θ̂

)
is the Hessian

and positive definite by assumption, Iparam (z) ∈
RN , N is the number of network parameters. Then,
we can linearly approximate the parameter change
due to removing z without retraining the model by
computing θ̂−z − θ̂ ≈ − 1

nIparam (z).

3 Methodology

We investigate an influence-based subset selection
method to perform efficient pretraining while at-
tempting to minimize accuracy loss on the end-task
dataset (Section 3.1). Due to the high computa-
tional costs of influence function (Koh and Liang,
2017), we design an influence approximation strat-
egy to speed up the calculation (Section 3.2).

3.1 Influence of Pretraining Corpus

PTMs used in previous works usually adopt lan-
guage modeling as pretraining tasks, lacking task-
specific prior knowledge. However, we often
know the end-task beforehand, so we can make

556

https://github.com/nitwtog/ISS


specific choices about our pretraining regimen to
improve end-task performance. Under this setting,
we introduce Influential Subset Selection for lan-
guage model, which measures the importance of
pretraining samples by considering the X and Y
information of the end-task simultaneously.

Specifically, pretraining sample zp affects the
prediction of end-task sample zt by influencing
the parameters of the feature encoder θ. We can
apply the chain rule to measure the influence of
upweighting pretraining sample zp on the loss at
end-task sample zt.

I (zp, zt) ≜
dl

(
zt, θ̂ϵ,z

)

dϵ

∣∣∣∣∣∣
ϵ=0

= ∇θl
(
zt, θ̂

)⊤ dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −∇θl
(
zt, θ̂

)⊤
H−1

θ̂
∇θl(zp, θ̂)

(3)

The more negative I (zp, zt) is, the more posi-
tive influence zp can provide. However, computing
the Hessian for the full training dataset is expensive,
and inverting it is similarly prohibitive: with n
training data points and p parameters, this com-
putation requires O(n ∗ p2 + p3) operations. It
means that evaluating the influence of large-scale
pretrained corpus is not achievable. Thus, we
propose an influence approximation algorithm to
speed up the estimation time.

3.2 Influence Approximation
Motivated by calculus, the update of the model
parameters is the result of cumulative updates over
several training iterations. Similarly, the difference
between the loss of test point zt at the end of
training versus at the beginning of training can
be decomposed along the path taken by the training
process. Thus, we hypothesize that the influences
of all training examples on a fixed test point zt is
exactly the total reduction in loss on zt.

Assume that we train the feature encoder by
minimizing the pertaining loss lp(zp; θ, ϕ), via an
iterative optimization procedure (such as SGD)
which utilizes one training example zp in iteration
t. The parameters of the feature encoder before and
after iteration t are θt and θt+1 respectively. The
influence of zt on zp can be approximated in the
following way.

I (zp, zt) = lt (zp, θt)− lt (zp, θt+1) (4)

𝜃
𝑔!

𝑔"
𝑔#

𝑔" # 𝑔# > 𝑔! # 𝑔#

: loss landscape of pre-training

: loss landscape of end-task

: gradient of pre-training sample
: gradient of end-task sample

Figure 1: Illustration of gradient matching based influ-
ence approximation. g1 and g2 are the loss gradients of
two different pretrained samples respectively, while g′ is
the loss gradient of the end-task sample. The influence
of a pretrained sample is measured by how a small step
based on its gradient affects the loss on the end-task
sample. Compared to g1, the update step of g2 is more
generalized.

Suppose we are at point θt, and we make a first-
order Taylor expansion of function lp (zp, θt+1).

lt (zp, θt+1) =lt (zp, θt) +∇θlt (zp, θt) · (θt+1 − θt)

+O
(
∥θt+1 − θt∥2

)

(5)
Assuming the model employs SGD as the opti-

mizer, then the update in parameters is θt+1− θt =
−ηt∇θlp (zt, θt), where ηt is the learning rate at
iteration t. Eq. (5) guarantees approximation
precision as long as the update magnitude of θ
is sufficiently small. By substituting the parameter
update formula and disregarding the higher-order
term, we arrive at the following first-order approxi-
mation.

lt
(
z′, θt

)
− lt

(
z′, θt+1

)
≈ ηt∇θlt

(
z′, θt

)
· ∇θlp (zt, θt)

(6)

We refer to this first-order approximation as gradi-
ent matching-based influence estimation. The full
algorithm is provided in Algorithm 1.

Visualisation We visualize our influence es-
timation method in Fig 1. g1 and g2 are the
loss gradients of two different pretrained samples
respectively, while g′ is the loss gradient of the
end-task sample. The influence of a pretrained
sample can be viewed as the dot product of its
gradient and the gradient of the end-task sample.
Higher influence suggests that a network is learning
parameters that generalize.

557



Algorithm 1: Influential Subset Selection
for Language Model
Require: Pretraining corpus D; task

training set Tt and validation set
Tv; learning rate α; initial subset
S; candidates size k.

Random initialize network θ, ϕp, ϕt

θ̂, ϕ̂p, ϕ̂t = argmin 1
n

∑
zi∈Tt

lp (zi) + lt(zi)

for zp ∈ D do
Compute ∇θlp

(
zp, θ̂, ϕ̂p

)

end
for z′ ∈ Tv do

Compute ∇θlt

(
z′, θ̂, ϕ̂t,

)

for zp ∈ D do
I (zp, z

′) =

∇θlp

(
zp, θ̂, ϕ̂p

)
· ∇θlt

(
z′, θ̂, ϕ̂t,

)

end
Sort pretraining samples based on influence
Add top k influential samples to S

end
Return influential subset S

3.3 Implementation Details
Based on the influence score, we select the most
relevant samples from the pretraining corpus. Fol-
lowing TLM, we first select a subset via a BM25
retrieval method. Then, we compute the influence
score based on this subset to make ISS scalable and
efficient.

Moreover, the number of parameters in large-
scale language models is very large, leading to very
high dimensional gradients. To tackle this problem,
we adopt a last-layer gradient approximation by
only considering the last layer gradients of pre-
trained encoder. We select a subset of mini-batches
by matching the weighted sum of mini-batch pre-
training gradients to the mini-batch task gradients.
Let Bp and Bt be the batch size of pretraining and
end-task. The use of mini-batches considerably
reduces the number of selection rounds during the
ISS algorithm by a factor of B, resulting in Bp ∗Bt

speed up.

4 Experimental Setup

To evaluate the efficiency and generality of our
approach, we conduct experiments in two settings:
pretraining from scratch, and further pretraining.

4.1 Pretraining from Scratch
Datasets. Following the setting of Gururangan
et al. (2020); Yao et al. (2022), we conduct ex-

periments on eight tasks covering four domains,
including biomedical science, computer science,
news, and reviews. The tasks represent both
high- and low-resource (≤ 5K samples) settings,
including CHEMPROT (Kringelum et al., 2016),
RCT (Dernoncourt and Lee, 2017), ACL-ARC
(Jurgens et al., 2018), SCIERC (Luan et al., 2018),
HyPERPARTISAN (Kiesel et al., 2019), AGNEws
(Zhang et al., 2015), HELPFULNESS (McAuley
et al., 2015), IMDB (Maas et al., 2011). Table 2
reports the statistic results of various target datasets.
Similar to TLM (Yao et al., 2022), we collect
two pretraining corpora that respectively match the
original corpora of BERT and RoBERTa. We name
them CBERT and CRoBERTa, respectively.

Baselines. We focus on comparison with general
PLMs and TLM. Following Yao et al. (2022), we
finetuned both BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) of base and large scales
as our baselines. And we finetuned the released
TLM models as baselines.

Evaluation Strategy. The results of the experi-
ment are the average performance of three random
seeds with the standard deviations. Following
Gururangan et al. (2020), we report the test micro-
F1 for ChemProt and RCT, and macro-F1 for the
rest of datasets. Following TLM (Yao et al., 2022),
we set three pretraining scales, namely small,
medium, and large scales. Differently, at the
same scale, our method only utilizes 20% size of
the TLM data. More detailed settings are shown in
Table A.1 in Appendix.

Training Details. We utilize the randomly
initialized BERT of base scale as our starter mod-
els. We mostly follow optimization, and hyper-
parameters choices used in Yao et al. (2022). All ex-
periments were conducted on 4 NVIDIA GeForce
RTX 3090 GPUs. Detailed hyper-parameters are
provided in Table A.1 in Appendix.

Domain Task Train Dev. Test Classes

BIOMED
CHEMPROT 4169 2427 3469 13
† RCT 18040 30212 30135 5

CS
ACL-ARC 1688 114 139 6
SCIERC 3219 455 974 7

NEWS
HYPERPARTISAN 515 65 65 2
† AGNEWS 115000 5000 7600 4

REVIEWS
† HELPFULNESS 115251 5000 25000 2
† IMDB 20000 5000 25000 2

Table 2: Statistics of various target datasets. † indicates
high-resource settings.

558



Model Param Data1 FLOPs2 AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT Avg.

Bert-Base 109M 16G 2.79E19
93.50
±0.15

91.93
±1.74

69.11
±0.17

93.77
±0.22

69.45
±2.90

80.98
±1.07

81.94
±0.38

87.00
±0.06

83.46

Bert-Large 355M 16G 9.07E19
93.51
±0.40

91.62
±0.69

69.39
±1.14

94.76
±0.09

69.13
±2.93

81.37
±1.35

83.64
±0.41

87.13
±0.09

83.82

TLM(Small) 109M 0.91G 2.74E18
93.74
±0.20

93.53
±1.61

70.54
±0.39

93.08
±0.17

69.84
±1.53

80.51
±1.53

81.99
±0.42

86.99
±0.03

83.78

TLM(Small-20%)3 109M 0.18G 1.82E18
93.57
±0.21

93.11
±0.46

70.02
±0.40

93.20
±0.03

67.27
±2.85

78.87
±0.63

80.80
±0.63

86.65
±0.01

82.93

ISS(Small-scale) 109M 0.18G 1.82E18
93.78
±0.06

93.53
±0.00

70.78
±0.29

93.25
±0.07

72.41
±0.66

80.56
±0.43

81.71
±0.10

86.99
±0.02

84.11

RoBERTa-Base 125M 160G 1.54E21
94.02
±0.15

93.53
±1.61

70.45
±0.24

95.43
±0.16

68.34
±7.27

81.35
±0.63

82.60
±0.53

87.23
±0.09

84.12

TLM(Medium) 109M 1.21G 8.30E18
93.96
±0.18

94.05
±0.96

70.90
±0.73

93.97
±0.10

72.37
±2.11

81.88
±1.92

83.24
±0.36

87.28
±0.10

84.71

TLM(Medium-20%)3 109M 0.18G 4.15E18
93.78
±0.02

93.53
±0.00

71.11
±0.05

93.20
±0.06

68.82
±3.56

80.35
±0.54

81.05
±0.07

87.00
±0.05

83.58

ISS(Medium-scale) 109M 0.18G 4.15E18
93.92
±0.08

93.53
±0.00

71.51
±0.31

93.61
±0.06

73.42
±0.58

82.20
±0.40

83.42
±0.11

87.30
±0.02

84.86

RoBERTa-large 355M 160G 4.36E21
94.30
±0.23

95.16
±0.00

70.73
±0.62

96.20
±0.19

72.80
±0.62

82.62
±0.68

84.62
±0.50

87.53
±0.13

85.50

TLM(Large) 4 109M 3.64G 2.33E19
94.15
±0.01

93.92
±0.72

71.83
±0.11

94.44
±0.10

74.18
±0.29

82.77
±0.72

83.60
±0.08

87.49
±0.02

85.31

TLM(Large-20%)3 109M 0.72G 8.30E18
93.79
±0.31

92.72
±0.783

71.50
±0.28

94.49
±0.04

73.42
±1.75

81.77
±0.54

82.63
±0.11

87.36
±0.10

84.71

ISS(Large-scale) 109M 0.72G 8.30E18
94.22
±0.04

93.53
±0.00

72.27
±0.20

94.57
±0.06

74.53
±1.38

83.12
±0.16

83.31
±0.36

87.41
±0.02

85.36

1 For ISS, data size is reported by averaging over eight tasks.
2 The training compute (FLOPs) is calculated by (6 × Training Tokens × Parameter Size) as in Kaplan et al. (2020).
3 ISS utilizes 20% of the TLM size data, so we implemented the TLM model with the same size version.
4 For a fair comparison, we implement TLM(Large) with BERT base and TLM large scale dataset.

Table 3: Evaluation results for ISS at three different training scales. For each task, we report the average F1 score
across three random seeds with standard deviations as subscripts. We also show the number of parameters, the total
training compute (FLOPs), and the size of training corpus for comparison.

4.2 Further Pretraining

Datasets. We perform further pretraining in
biomedical science and computer science domains.
Specifically, we conduct experiments on four
datasets, including CHEMPROT (Kringelum et al.,
2016), RCT (Dernoncourt and Lee, 2017), ACL-
ARC (Jurgens et al., 2018), SCIERC (Luan et al.,
2018). For the pretraining stage, we collect the
unlabeled datasets from S2ORC (Lo et al., 2020).

Baselines. We select general PTMs (Devlin
et al., 2019; Liu et al., 2019) and domain-specific
further pretraining models (Lee et al., 2020; Belt-
agy et al., 2019; Gururangan et al., 2020) as our
baselines. Finetuning on the end-task occurs after
further pretraining on domain unlabeled corpora.

Evaluation Strategy. Similar to pretraining
from scratch, we report the average performance
across three random seeds. And we report the

micro-F1 for ChemProt and RCT, and macro-F1
for ACL-ARC and SCIERC.

Training Details. In this setting, we perform
further pretraining on off-the-shelf pretrained mod-
els, such as BERT and RoBERTa. All experiments
were conducted on 4 NVIDIA GeForce RTX 3090
GPUs. Detailed hyper-parameters are provided in
Table A.2 in Appendix.

5 Experimental Results

In this section, we will discuss the results of
comparing our methods against other baselines.

5.1 Pretraining from Scratch

Table 3 shows the main results of ISS with the ac-
cording TLM and PLMs baselines at three different
scales. The followings are the related comparison
and analysis we conducted: 1) ISS could achieve re-

559



10000 40000 70000 100000 130000
pretrain steps

65

66

67

68

69

70

71

72

F1
-s

co
re

ISS
TLM

(a) Helpfullness

10000 40000 70000 100000 130000
pretrain steps

72

74

76

78

80

82

F1
-s

co
re

ISS
TLM

(b) Chemprot

10000 40000 70000 100000 130000
pretrain steps

68

70

72

74

76

78

80

82

F1
-s

co
re

ISS
TLM

(c) SciERC

10000 40000 70000 100000 130000
pretrain steps

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

F1
-s

co
re

ISS
TLM

(d) ACL-ARC

Figure 2: Comparison of ISS and TLM at different pretraining steps. The experiments were conducted on the
small-scale dataset, and notably, the data scale of TLM was five times larger than ours.

Model Param Data FLOPs
BIOMED CS

Avg.
RCT Chem ACL SciERC

BERT-Base 109M 16G 2.79E19 87.00 81.94 69.45 80.98 79.84

RoBERTa-base 125M 160G 1.54E21 87.23 82.60 68.34 81.35 79.88

SciBERT 109M 15G 2.65E19 - 83.64 70.98 79.97 -

BioBERT 109M 96G 1.80E20 - 76.46 - - -

DAPT 125M 47G 1.58E18 87.6 84.2 75.4 80.8 82.00

DAPT+TAPT 125M 47G 1.77E18 87.8 84.4 75.6 81.3 82.28

ISS-DAPT(BERT) 109M 1.7G 6.9E17
87.36

±0.02

83.90

±0.10

76.06

±0.70

83.91

±0.38

82.81

ISS-DAPT(RoBERTa) 125M 1.7G 7.9E17
87.57

±0.06

84.88

±0.10

76.70

±0.25

82.23

±0.30

82.85

Table 4: Evaluation results for ISS in further pretraining.
We report the average F1 score across three random
seeds with standard deviations as subscripts.

sults that are better than or comparable to the PLM
baselines with significant reductions in FLOPs and
the size of training data. At the large scale, ISS
achieves comparable results to RoBERTa-large,
with an average of 0.19% of FLOPs and 0.45%
of the training corpus. At the small and medium
scales, ISS improves the performance by 0.29
and 0.74 points on average respectively; 2) At
the same data scale, ISS significantly outperforms
TLM, which indicates that task label information
is crucial. And the influence-based subset selection
can select more influential pertaining samples; 3)
ISS could offer limited performance gains on high-
resource datasets. It demonstrates that the influence
of the pretraining samples would be decreased as
the task data grows sufficiently.

5.2 Further Pretraining

We compared ISS with other domain-specific fur-
ther pretraining methods. Differently, we initialize
the network with off-the-shelf pretrained models to
provide initialization and select influential subsets
from the domain corpus. Table 4 shows the main

AGNews SciERC Chemprot

ISS TLM ISS TLM ISS TLM

10%
94.34

±0.08

94.08

±0.07

80.82

±0.41

81.41

±0.16

80.80

±0.34

80.15

±0.32

20%
94.40
±0.06

94.16

±0.09

83.70
±0.31

81.21

±0.44

82.82
±0.41

81.51

±0.55

40%
94.14

±0.05

94.05

±0.18

83.16

±0.07

82.48

±0.43

81.98

±0.14

81.75

±0.04

60%
94.08

±0.02

94.07

±0.09

82.51

±0.29

83.05
±0.20

82.08

±0.22

81.80

±0.41

80%
94.17

±0.04

94.27
±0.09

81.71

±0.24

81.75

±0.15

81.83

±0.30

81.86
±0.47

Table 5: Results on the development set with different
data scales.

results. In conclusion, our method outperforms
all the baselines, with significant reductions in
FLOPs and the size of training data by one order
of magnitude or more. It proves our approach is
feasible.

5.3 Comparison of Pretraining Steps
To validate the effect of pretraining steps, we
compare the performance of ISS with TLM at
different pretraining steps. The test results on the
four tasks with different pretraining steps are shown
in Figure 3. We observe that ISS could achieve the
best performance with fewer steps on most of the
datasets.

5.4 Subset Size for Pretraining
To compare the performance at different data scales,
we extracted subsets from the TLM small-scale
corpus at different scales via ISS and TLM, re-
spectively. The results are shown in Table 5. We
can observe that the performance of TLM becomes
better as the dataset grows, but the best results are
still lower than those of our method. In ISS, the
F1-score would reach the top at the 20%-40% scale
and gradually decrease as the data size grows. We

560



embeddinglayer3 layer6 layer9 layer12
Layer name

0.800

0.805

0.810

0.815

0.820

F1
-s

co
re

(a) Chemprot

embeddinglayer3 layer6 layer9 layer12
Layer name

0.785

0.790

0.795

0.800

0.805

0.810

F1
-s

co
re

(b) SciERC

Figure 3: F1-score results of ISS with gradients of
different layers (i.e., Embedding layer, 3/6/9/12-th
Transformer Block) over Chemprot and SciERC.

Related-Label PMI
AGNews

ISS(small) /% TLM(small) /%

immigration World 1.341 0.0072 0.0070

policy World 1.187 0.0493 0.0401

china World 0.382 0.0836 0.0695

medals Sports 1.400 0.0139 0.0136

golds Sports 1.400 0.0009 0.0008

sports Sports 1.293 0.0459 0.0454

financial Business 1.054 0.0717 0.0567

commerce Business 0.844 0.0097 0.0081

business Business 0.710 0.1170 0.0952

automation Sci/Tech 1.420 0.0043 0.0028

internet Sci/Tech 1.224 0.0729 0.0524

technology Sci/Tech 1.115 0.0864 0.0661

Table 6: Comparison of the frequency of task influential
words in different subsets.

believe that as the dataset expands, task-irrelevant
or noisy data is added.

5.5 Last Better than First

As explained in Section 3.3, the last layer of
gradients of the model encoder is only considered
to speed up the computation. We have studied the
relationship between the gradients at the different
layers used in ISS and the corresponding perfor-
mances. Table 3 shows the results on Chemprot and
SciERC. We can observe that the closer the layer, to
the task head, the better the selected subset works.
The phenomena suggest that different layers in the
language model can capture different information,
with layers closer to the task head learning more
information about the task.

Table 7 shows the times required by ISS calcu-
lating influences at the different layers. Overall,
the time cost of selecting a subset is negligible
compared to pretraining. In addition, the computa-
tional speed based on the last layer would be nearly

Layer name
Cost times

Small Large

Embedding 2.0 hours 5.2 hours

3-th Transformer 1.8 hours 4.8 hours

6-th Transformer 1.6 hours 4.4 hours

9-th Transformer 1.4 hours 4.0 hours

12-th Transformer 1.1 hours 3.6 hours

Table 7: Comparison of the speed of computing in-
fluences using different layers. The experiments were
conducted on Chemport dataset.

double, compared to that at the embedding layer.

6 Analysis

6.1 Visualization of Pretrained Model

We visualize the task data on ISS-small, BERT,
and RoBERTa, using the t-SNE algorithm (Van der
Maaten and Hinton, 2008). The results are shown
in Figure 4. We can observe that the different
classes of deep features in ISS-small formed tighter
clusters, suggesting that ISS provides better initial-
ization for downstream tasks. In contrast, the fea-
tures learned by BERT and Roberta are distributed
respectively in separate clusters with overlapping
parts that could not be distinguished.

6.2 Analyzing of Task-influential Words

We compute the point-wise mutual information
(PMI) (Levy and Goldberg, 2014) between words
and their corresponding labels in the task dataset.
Briefly, PMI is used to measure the likelihood of
two events occurring together, so the higher the
PMI a word has, the more likely it is to be task-
influential. We select words with high PMI as task-
influential words, and compare their frequency in
ISS-small and TLM-small datasets, respectively.
As shown in Table 6, the word frequency in the
ISS-small dataset is higher than that in the TLM-
small dataset. Thus, ISS may focus more on task-
influential words.

7 Related Work

7.1 Efficient Pretraining for PLMs

Many attempts have been made to improve the
efficiency of pretraining. Parallel architectures
(Shazeer et al., 2018; Wang et al., 2020b) are com-
monly used in pretraining. However, parallelism

561



0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
y

label
0
1
2
3
4
5

(a) ISS

0.25 0.00 0.25 0.50 0.75 1.00 1.25
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

label
0
1
2
3
4
5

(b) BERT

0.25 0.00 0.25 0.50 0.75 1.00 1.25
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

label
0
1
2
3
4
5

(c) RoBERTa

Figure 4: Visualization of sentence representation on Chemprot using the t-SNE algorithm (Van der Maaten and
Hinton, 2008). Each color denotes a class.

would not actually reduce computational costs in
terms of FLOPs. For most Transformer-based
PTMs, as their input sequence goes longer, their
efficiency is limited by the computation of attention
weights. Choromanski et al. (2020) and Wang et al.
(2020a) design low-rank kernels to theoretically
approximate the original attention weights. Child
et al. (2019) and Roy et al. (2021) introduce spar-
sity into attention mechanisms by limiting the view
of each token to a fixed size and separating tokens
into several chunks. ELECTRA (Clark et al., 2019)
applies the replaced token detection which is more
challenging. PMI-Masking (Levine et al., 2020)
selectively masks tokens based on their importance.
However, their improvements are limited, with less
than an order of magnitude reduction in computa-
tional expenses (measured in FLOPs). Orthogonal
to these works, ISS investigates reducing training
data redundancy by the influence of pretraining
data points.

7.2 Further Pretraning in NLP

Continually pretraining can effectively improve
PTMs’ performance on new domains or down-
stream tasks (Gururangan et al., 2020). To achieve
it, most previous works continually optimize the
pretrained model parameters on a large number
of corpora collected from the target domain (e.g.,
scientific (Beltagy et al., 2019), finance(Araci,
2019) and bio-media (Lee et al., 2020)). However,
it is computationally expensive to further pretrain
the model on a large amount of unlabeled data and
it may not be feasible to collect such a large scale
of unlabeled data on certain domains. In contrast,
ISS does not need any additional domain data
and only utilizes the general corpus. In addition,
our approach can also be employed for further
pretraining, as we demonstrate in our experiments.

7.3 Dataset Pruning

Dataset pruning is closely related to the coreset
selection methods (Mirzasoleiman et al., 2020;
Agarwal et al., 2004), which try to identify the most
representative training samples. Several works
(Killamsetty et al., 2021; Rebuffi et al., 2017;
Toneva et al., 2018) have studied dataset pruning
for efficient training of deep learning models in
supervised learning and active learning scenarios.
Dataset pruning methods typically rely on a pre-
defined criterion to compute a scalar score for each
training example, e.g. the compactness (Rebuffi
et al., 2017), diversity (Sener and Savarese, 2017),
and forgetfulness (Toneva et al., 2018), and then
rank and select the training data according to the
computed score. Recently, Yao et al. (2022) pro-
posed TLM for transfer learning, which retrieves a
subset from the pretraining corpus that is more
similar to the task corpus. However, these methods
are heuristic and lack of generalization guarantee,
they also discard the influence interaction between
the collected samples. Our proposed method over-
comes these shortcomings.

8 Conclusion

In this paper, we propose Influential Subset Selec-
tion for language model, which aims to reduce the
computational costs of pretraining from data level.
Specifically, we introduce influence function to
measure the importance of each pretraining sample.
Moreover, we design a simple, efficient, gradient
matching-based method for influence estimation,
which significantly speeds up the estimation time.
Experiments on various datasets demonstrate that
our method achieves comparable performance with
PTMs, with a reduction of training FLOPs by three
orders of magnitude.

562



Limitations

There are two potential risks with our method. First,
ISS trades generality for efficiency by learning
only task-specific representations. Consequently,
it may not be suitable for other tasks. Secondly,
our method is hardly practical for few-shot or zero-
shot learning, as few or no task data are available
as anchor points. These potential risks are left to
future work.

Ethics Statement

Pretraining from scratch and further pretraining
such as DAPT need large-scale unlabeled corpus
to learn general knowledge, which results in cor-
responding greenhouse emissions due to energy
consumption (Strubell et al., 2019). However, as
shown in Section 5, our new efficient algorithms
greatly increase the data efficiency of PTMs, re-
ducing these harms as well as the various harms
associated with labor for data collection. Our
work introduces a new subset selection algorithm
but leverages pre-existing datasets and models.
Overall, this work inherits some of the risks of the
original work upon which it is implemented, (such
as bias (Bender et al., 2021) or privacy leakage
(Carlini et al., 2021).

Acknowledgements

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation of
China (No.62206057,61976056,62076069), Shang-
hai Rising-Star Program (23QA1400200), Natural
Science Foundation of Shanghai (23ZR1403500),
Program of Shanghai Academic Research Leader
under grant 22XD1401100, and CCF-Zhipu AI
Large Model Fund.

References
Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R

Varadarajan. 2004. Approximating extent measures
of points. Journal of the ACM (JACM), 51(4):606–
635.

Dogu Araci. 2019. Finbert: Financial sentiment analy-
sis with pre-trained language models. arXiv preprint
arXiv:1908.10063.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3615–3620,
Hong Kong, China. Association for Computational
Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al. 2020. Rethinking
attention with performers. In International Confer-
ence on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

R Dennis Cook and Sanford Weisberg. 1982. Residuals
and influence in regression. New York: Chapman
and Hall.

Franck Dernoncourt and Ji Young Lee. 2017. PubMed
200k RCT: a dataset for sequential sentence classi-
fication in medical abstracts. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 308–313, Taipei, Taiwan. Asian Federation
of Natural Language Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

563

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/I17-2052
https://aclanthology.org/I17-2052
https://aclanthology.org/I17-2052
https://doi.org/10.18653/v1/N19-1423


deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural
information processing systems, 32.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
bert: Improving pre-training by representing and
predicting spans. Transactions of the Association
for Computational Linguistics, 8:64–77.

David Jurgens, Srijan Kumar, Raine Hoover, Dan Mc-
Farland, and Dan Jurafsky. 2018. Measuring the
evolution of a scientific field through citation frames.
Transactions of the Association for Computational
Linguistics, 6:391–406.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine
Learning, pages 5156–5165. PMLR.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 829–839, Minneapolis,
Minnesota, USA. Association for Computational
Linguistics.

Krishnateja Killamsetty, S Durga, Ganesh Ramakr-
ishnan, Abir De, and Rishabh Iyer. 2021. Grad-
match: Gradient matching based data subset selection
for efficient deep model training. In International
Conference on Machine Learning, pages 5464–5474.
PMLR.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak,
Ole Lund, Tudor I Oprea, and Olivier Taboureau.
2016. Chemprot-3.0: a global chemical biology
diseases mapping. Database, 2016.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend,
Kevin Leyton-Brown, Moshe Tennenholtz, and Yoav
Shoham. 2020. Pmi-masking: Principled masking
of correlated spans. In International Conference on
Learning Representations.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. Advances
in neural information processing systems, 27.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney
Kinney, and Daniel Weld. 2020. S2ORC: The se-
mantic scholar open research corpus. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4969–4983, Online.
Association for Computational Linguistics.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on
research and development in information retrieval,
pages 43–52.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
2020. Coresets for data-efficient training of machine
learning models. In International Conference on
Machine Learning, pages 6950–6960. PMLR.

564

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1162/tacl_a_00028
https://doi.org/10.1162/tacl_a_00028
https://doi.org/10.18653/v1/S19-2145
https://doi.org/10.18653/v1/S19-2145
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://aclanthology.org/P11-1015


Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–
68.

Ozan Sener and Silvio Savarese. 2017. Active learn-
ing for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning
for supercomputers. Advances in neural information
processing systems, 31.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using
deepspeed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of example
forgetting during deep neural network learning. In
International Conference on Learning Representa-
tions.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020a. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788.

Xiao Wang, Shihan Dou, Limao Xiong, Yicheng Zou,
Qi Zhang, Tao Gui, Liang Qiao, Zhanzhan Cheng,
and Xuanjing Huang. 2022. MINER: Improving
out-of-vocabulary named entity recognition from an
information theoretic perspective. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5590–5600, Dublin, Ireland. Association for
Computational Linguistics.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, et al. 2023. Instructuie: Multi-
task instruction tuning for unified information extrac-
tion. arXiv preprint arXiv:2304.08085.

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and
Zhilin Yang. 2022. Nlp from scratch without large-
scale pretraining: A simple and efficient framework.
In International Conference on Machine Learning,
pages 25438–25451. PMLR.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

A Detailed Experiment Settings

Table A.1 lists the detailed hyperparameters of
ISS at different scales for each task on the pre-
training task. On each task, we perform a grid
search for Bp ∈ {1, 2, 4, 8} and Batch size(task)
∈ {1,2,4,8,16} and adjust the training step, batch
size, and sequence length to minimize the training
cost while maintaining competitive performance.

Table A.2 lists the detailed hyperparameters of
ISS for each task on further pretraining task.

565

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2022.acl-long.383
https://doi.org/10.18653/v1/2022.acl-long.383
https://doi.org/10.18653/v1/2022.acl-long.383


Hyper-Parameters AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT

Small

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small

Training Data Size2 0.22GB 0.04GB 0.1GB 0.18GB 0.3GB 0.32GB 0.13GB 0.16GB

Training Steps 5E4 2E4 1E5 1E5 1E5 1E5 1E5 5E4

ρ1 1 99 1 19 999 999 999 3

ρ2 100 20 100 100 100 20 20 20

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

Medium

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small CTLM−small

Training Data Size2 0.22GB 0.04GB 0.1GB 0.18GB 0.3GB 0.32GB 0.13GB 0.16GB

Training Steps 1.5E5 5E4 1.5E5 1.5E5 1.5E5 1.5E5 1.5E5 1.5E5

ρ1 1 99 1 19 999 999 999 3

ρ2 100 20 100 100 100 20 20 20

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

Large

Scale

Bp 4 1 4 4 4 4 4 4

Bt 16 1 16 16 2 4 8 16

Source Corpus1 CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large CTLM−large

Training Data Size2 0.62GB 0.18GB 0.34GB 2.20GB 0.70GB 0.84GB 0.5GB 0.44GB

Training Steps 3E5 1E5 3E5 3E5 3E5 3E5 3E5 3E5

ρ1 3 99 1 99 999 999 999 3

ρ2 100 100 1000 100 20 20 100 100

Batch Size 256 256 256 256 256 256 256 256

Sequence Length 128 128 128 512 128 128 128 128

1 CTLM−small and CTLM−large are provided by TLM(Yao et al., 2022).
2 ISS only uses a tiny subset of the source general corpus for training. We list the data size that are actually used for ISS training.

Table A.1: Detailed hyper-parameters for ISS of different scales for each task

Hyper-Parameters RCT Chem. Acl. SciERC

Bp 16 8 2 4

Bt 4 4 4 4

Source Corpus1 CS2ORC CS2ORC CS2ORC CS2ORC

Train Data Size2 1.5G 1.5G 1.9G 1.9G

Training Steps 5E4 5E4 5E4 5E4

Batch Size 256 256 256 256

Sequence Length 128 128 128 128
1 CS2ORC is provided by S2ORC(Lo et al., 2020).
2 ISS only uses a tiny subset of the source general corpus for training. We list the data size that are
actually used for ISS training.

Table A.2: Detailed hyper-parameters for ISS in further
pretraining

566



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations section

�3 A2. Did you discuss any potential risks of your work?
Limitations section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

567

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 4

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Section 4

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section 4

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Section 4

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

568


