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Abstract

In real-world applications, pre-trained language
models are typically deployed on the cloud,
allowing clients to upload data and perform
compute-intensive inference remotely. To
avoid sharing sensitive data directly with
service providers, clients can upload numerical
representations rather than plain text to the
cloud. However, recent text reconstruction tech-
niques have demonstrated that it is possible to
transform representations into original words,
suggesting that privacy risk remains. In this
paper, we propose TextObfuscator, a novel
framework for preserving inference privacy
by applying random perturbations to clustered
representations. The random perturbations
make each word representation indistinguish-
able from surrounding functionally similar rep-
resentations, thus obscuring word information
while retaining the original word functionality.
To achieve this, we utilize prototypes to
learn clustered representations, where words
of similar functionality are encouraged to be
closer to the same prototype during training.
Additionally, we design different methods to
find prototypes for token-level and sentence-
level tasks, which can improve performance by
incorporating semantic and task information.
Experimental results on token and sentence
classification tasks show that TextObfuscator
achieves improvement over compared methods
without increasing inference cost.

1 Introduction

Pre-trained language models (PLMs) have achieved
impressive performance on various NLP down-
stream tasks (Devlin et al., 2018; Brown et al.,
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Figure 1: Illustration of the inference services
and privacy risks. Although clients upload word
representations instead of plain text to the cloud server,
privacy attackers can still transform representations into
original texts. Clients are still at privacy risk.

2020; Qiu et al., 2020), but they also come with
increased model size and significant computational
requirements. In real-world applications, these
large-scale models are often offered as an inference
service (Altman, 2022). The service providers train
PLMs for target tasks and deploy them on the cloud.
Clients who lack high-computation resources can
query these service with their input and obtains the
desired responses (DALE, 2015).

Unfortunately, current inference services are
plagued by serious privacy concerns (Lehmkuhl
et al., 2021). Client data may contain sensitive
information such as names, addresses, and even
trade secrets, sharing such information with service
providers compromises the privacy of clients. To
address privacy risks, a naive solution is for clients
to generate shallow representations on their devices
and upload numerical representations to the cloud
for subsequent inference, as shown in Figure 1.
However, recent text reconstruction methods (Song
and Raghunathan, 2020; Pan et al., 2020) have
shown that word representations can be easily
transformed into raw texts, indicating privacy
risk remains. Inference service without privacy
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guarantees is not only unacceptable for clients but
also illegal for service providers1.

Recent literature has proposed various methods
to mitigate privacy leakage in representation. For
example, Chen et al. (2022b) and Hao et al. (2022)
have applied homomorphic encryption (Gentry,
2009) to transformer-based models, which enables
computations to be performed on encrypted data.
But homomorphic encryption often incurs signifi-
cant computation time and communication costs
(Gilad-Bachrach et al., 2016), making it impractical
for real-world applications. Alternatively, several
studies have adapted differential privacy (Lyu et al.,
2020a; Hoory et al., 2021; Yue et al., 2021a) and
adversarial training (Li et al., 2018; Coavoux et al.,
2018; Plant et al., 2021) to reduce the privacy
information contained in representations. However,
in our scenario, the privacy information pertains to
each word, and reducing word information in the
shallow layer can harm subsequent inference,
thus degrading performance (Jawahar et al.,
2019), especially in token-level tasks.

In this paper, we propose TextObfuscator, a
novel paradigm for privacy-preserving inference.
The key idea of our method is to learn private repre-
sentations that obscure original word information
while preserving original word functionality.
Specifically, we find prototypes for each word
and encourage functionally similar words close to
the same prototype during training. Subsequently,
random perturbations are applied to these clustered
representations, which yields two key benefits.
Firstly, it obscures original word information as
the perturbed representations are indistinguishable
from those clustered around them, making it harder
for privacy attackers to reconstruct original words,
thus protecting privacy. Secondly, it maintains
the original word functionality as the perturbed
representations stay within the same functional
clusters, leading to improved performance.

To learn clustered representations, we have de-
signed different methods to find suitable prototypes
for token and sentence classification. For token-
level tasks, each word is assigned a label that
serves as a prototype indicator (Snell et al., 2017).
But for sentence-level tasks, there is no explicit
prototype indicator for words. Therefore, the
clustering algorithm is used for word assignment.
Based on clustering results, we take the cluster

1https://www.consilium.europa.eu/en/policies/data-
protection/data-protection-regulation/

centers as prototypes and assign semantically
similar words to the same prototype. However,
semantic-based clustering may lead to keywords
from different classes being clustered together,
hindering target tasks. For example, if “good”
and “bad” play the same role, the sentiment of
a sentence will be ambiguous. To address this,
we utilize TF-IDF to identify keywords from
different classes and use these keywords to re-
divide the clustering results. Our codes are
publicly available at https://github.com/
xzhou20/TextObfuscator.

Our contribution can be summarized as follows:

• We propose TextObfuscator, a novel represen-
tation learning method for privacy-preserving
inference by obfuscating representations.

• We propose to combine semantic and task
information for finding prototypes, which
leads to improved performance.

• We evaluate TextObfuscator on several NLP
tasks including token and sentence classifica-
tion, and demonstrate its effectiveness in pro-
tecting privacy while improving performance.

2 Preliminaries

2.1 Inference as Service
Suppose a client wants to query the inference
service without leaking privacy, client can perform
acceptable computations on their device (such
as intelligent chips, smartphones, and personal
computers) to obtain the word representations H =
fθc(X), where fθc is the client model released by
service provider. Then numerical H instead of
plain text X are uploaded to the cloud. The PLM
fθs deployed on the server performs subsequent
compute-intensive inference Y = fθs(H) and
sends predictions Y back to the client. In this
scenario, only representations are shared with
service providers, avoiding the leakage of text.

2.2 Privacy Threats
Privacy threats in the inference phase mainly come
from service providers, who have access to the
client model fθc , server model fθs and client’s
word representation H. Recently studies (Song
and Raghunathan, 2020) have shown that the word
information in the representation is sufficient to
reconstruct the original text. For example, the
shallow representations are usually similar to their
embedding, privacy attackers can compare the
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Figure 2: Overview of the proposed method. In the first step, we find the task-related prototype using semantic
and task information. Prototypes get initialized, and each word is assigned to a prototype. In the second step,
we use word representation from the client model to calculate cluster loss, which encourages functionally similar
representations clustered together. Then random perturbations are applied to representations to mislead privacy
attackers, and we send these perturbed representations to the server model for task loss. Finally, we optimize the
small client and large server models via cluster loss and task loss.

representation and embedding matrices to identify
the most similar word. Furthermore, service
providers can generate word representations via
client model and train a powerful inversion model
to directly transform the representations back into
the original text X = fθinv

(H), even if privacy-
preserving methods have been applied on H. The
challenge in private inference lies in ensuring fθinv

cannot learn useful word information from H to
reconstruct X , while that the information in H is
sufficient for subsequent inference.

3 Our Method

3.1 Overview
In this section, we present TextObfuscator, a novel
framework for privacy-preserving inference. Our
method learns private representation from a new
perspective, which aims to obfuscate rather than re-
duce word information. The overall framework of
TextObfuscator is shown in Figure 2. We first find
prototypes for each word using semantic and task
information, these prototypes are used to encourage
functionally similar words to cluster together in
the training phase. Then random perturbations
are applied to each representation, making them
indistinguishable from the surrounding clustered
word representations. Even if privacy attackers get
representation, they cannot establish the correct

connection between the obfuscated representations
and original words. Furthermore, these repre-
sentations maintain original word functionality as
they remain close to their prototype. Next, we
introduce how to find prototypes and learn private
representation.

3.2 Find Task-Related Prototypes
In step one, we introduce two crucial components.
One is M(xi) = pxi , which assigning word xi to
its prototype pxi , refered as word assignment. The
other is obtaining initial prototypes P = {pi}np

i=1,
refered as prototype initialization. We enhance
word assignment and prototype initialization from
the semantic and task perspective, as the function
of a word is not solely determined by its semantics,
but also by its role in the target task.

3.2.1 Token-Level Task
In the token-level task, each word is assigned a
label, which corresponds to the initial definition of
the prototype (Snell et al., 2017; Ji et al., 2022).
As the result, we take the label of the word as the
indicator of prototype for token-level tasks.

Given a token-level dataset Dt = {(Xi, Yi)}Ni=1,
where (Xi, Yi) = {xj , yj}nj=1, we first use
the client model fθc to traverse the dataset Dt

and obtain the representations {Hi}Ni=1 where
Hi = fθc(Xi). These contextual representations
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can provide semantic information for prototype
initialization. Then we assign words with the
identical label to the same prototype and take the
average representation of words within a particular
class as the initial prototype. Suppose there are k
representations belong to the label c, the prototype
pc of label c can be represented as:

pc =
1

k

k∑

j=1

hc
j , (1)

where hc
j is the j-th representation of label c and k

is the number of representations in label c.
In this way, we leverage the task information

from the label to guide the word assignment M,
and subsequently utilize the semantic information
from the word representations to obtain the
prototype initialization P = {pi}np

i=1, where np

denotes the number of labels.

3.2.2 Sentence-Level Task
Unlike token-level tasks, there are no natural
prototype indicators for words in the sentence-level
dataset. To tackle this problem, we perform a
clustering algorithm on the representations, using
the clustering results to indicate word assignment
and prototype initialization.

To perform clustering, we need to prepare a
representation for each word. Similar to the
token-level task, we first use client model fθc
to traverse sentence-level dataset Ds and obtain
{Hi}Ni=1. For word xi that appears repeatedly
in different contexts, we calculate the average
of their representations to obtain the final word
representation x̂i =

1
k

∑k
j=1 h

x
i , where hxi

j is the
j-th word representation of word xi and k is the
number of words xi occurs in Ds. Finally, we get
X̂ = {x̂i}nx

i=1 where nx is the number of unique
words in Ds, and perform K-Means on X̂:

M,P = Kmeans(X̂), (2)

the clustering algorithm assigns semantically simi-
lar words to the same cluster, thus completing the
word assignment M. The centroid of the clusters is
used as the prototypes initialization P = {pi}np

i=1

where np here is the pre-defined number of clusters.
However, it is not appropriate to assign all

semantically similar words to the same cluster.
For example, in sentiment analysis, the word
representations of "good" and "bad" may be similar
in representation space and are often assigned to

the same cluster, but if they play the same role in a
sentence, it can lead to ambiguity in the sentiment
of the sentence. We refer to words that are highly
relevant to specific classes as task-related words,
and it is important to ensure that task-related words
from different classes are assigned to different
prototypes.

To identify task-related words for each class,
we use the TF-IDF (Salton and Buckley, 1988), a
numerical statistic that reflects a word’s importance
in a document. In this case, we treat all sentences
within a class as one document and use TF-IDF to
find the keywords for each class. Subsequently, the
resulting keywords are used to re-divide M and
update P , the algorithm of re-division is shown in
Appendix A.3.

3.3 Private Representation Training
In the training phase, we use prototypes to encour-
age functionally similar word representations to
be clustered in the representation space and apply
random perturbation for preserving privacy.
Clustering Loss. Given the input text X =
{xi}ni=1 and word assigniment M, we first use
client model fθc to get the word representation
H = {hi}ni=1, then use center loss (Wen et al.,
2016) to make representation close to its prototype:

Lclose =
1

2

n∑

i=1

||hi − pxi ||22, (3)

where pxi = M(xi) is the prototype of xi.
Furthermore, we also pull away the distance
between different prototypes to prevent these
prototypes collapse during training (Li et al.,
2021a), thus enhancing task performance. The
prototype distance loss is formulated as:

Laway =
2

np(np − 1)

np∑

i=1

np∑

j=i+1

||pi − pj ||22, (4)

where np is the number of prototypes. We refer to
Lclose and Laway together as Lcluster.
Random Perturbation. We apply a random
perturbation to each representation hi, which
shifts the representation to another point near its
prototype. Following Plant et al. (2021), we take
the Laplace Noise as the random perturbation. The
perturbed representations are sent to the server
model fθs for subsequent computation:

Ŷ = fθs(H+ Lap(ϵ)), (5)
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where Ŷ is the prediction results and ϵ is the
hyperparameter to control the scale of noise. The
perturbation is applied in both the training and
inference phases. Because each perturbation is
random, it is difficult for a privacy attacker to es-
tablish a link between the perturbed representation
and the original word. Perturbed representations
deviate from the original words but still serve
original functions, thus preserving privacy while
maintaining performance.
Overall Loss. The supervised task loss Ltask is
joint learning in a multi-task learning manner, the
overall loss for our model is:

L = Ltask + γ1Lclose + γ2Laway, (6)

where γ1 and γ2 are weighting factors. Inspired
by Li et al. (2021a), we perform the clustering
algorithm at the beginning of each epoch to
make clustering results more accurate. During
the training phase, the client model and server
model are optimized together by service providers.
During the inference phase, the client performs
lightweight inference using the client model, then
shares obfuscated representations with service
providers and potential privacy attackers. Aside
from perturbations, the inference phase of our
method is the same as standard PLMs, thus, we
do not introduce additional inference time.

4 Experiment

4.1 Datasets

To verify the effectiveness of our methods, we con-
duct experiments on both token classification and
sentence classification tasks, covering named entity
recognition: CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003) and OntoNotes5.0 (Weischedel
et al., 2013), sentiment analysis: SST-2 (Socher
et al., 2013) and topic classification: AGNEWS,
(Zhang et al., 2015). These tasks are close to real-
world applications, which can verify the actual
utility of our methods. The statistics of datasets are
shown in Appendix A.1.

4.2 Baselines

4.2.1 Attack Methods
We use three recently proposed text reconstruction
methods for privacy attacks. KNN-Attack (Qu
et al., 2021) computes the distance between each
representation and public word embedding matrix
and takes the nearest word in the embedding matrix

as the attack result. The attacker can be anyone
who has access to the client’s representation.
Inversion-Attack (Höhmann et al., 2021) requires
the attacker to train an inversion model, which
directly transforms the client representation to a
word in a one-to-one manner. The attacker can
be the service provider with access to the client
and server model to generate training data for
the inversion model. MLC-Attack (Song and
Raghunathan, 2020) also trains an inversion model
like Inversion-Attack, but it runs in a multi-label
classification manner and predicts a set of words in
the sentence independent of their word ordering.

4.2.2 Defence Methods

We compare our TextObfuscator with three repre-
sentative privacy-preserving methods and standard
Fine-tune (Devlin et al., 2018). DPNR (Lyu et al.,
2020b) uses differential privacy and word dropout
to provide a privacy guarantee. CAPE (Plant
et al., 2021) further adopts differential privacy and
adversarial training to reduce privacy information
in representation. SanText+ (Yue et al., 2021b)
replaces the sensitive words in plain text based on
differential privacy and word frequency.

4.3 Privacy Metrics

TopK is a token-level metric that measures the
percentage of correct words in the attacker’s top k
predictions. RougeL (Lin, 2004) is a generation
metric that measures the overlap between two
sentences. We follow Gupta et al. (2022) and take it
as a sentence-level metric to measure the coherence
of attack results. Set is a metric specific to MLC-
Attack, which quantifies the proportion of words in
original sentence that are present in prediction set.
Details of metrics are shown in Appendix A.2.

4.4 Experimental Settings

In our experiments, all methods are implemented
based on robertabase (Liu et al., 2019). We divide
the model into a smaller client model fθc with
three transformer layers and a large server model
fθs with the remaining nine transformer layers.
The privacy attack methods are all performed
in the output representations of fθc , which will
be shared with service providers and under the
risk of privacy leakage. For the privacy defence
methods, DPNR, CAPE, and our TextObfuscator
are applied to the output representation of fθc , and
SanText+ is applied to the input text directly. The
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Dataset Method Acc/F1 ↑ KNN-Attack ↓ Inversion-Attack ↓ MLC-Attack ↓
Top1 Top5 Rouge Top1 Top5 Rouge Set

CoNLL2003

Fine-tune 91.72 87.33 97.72 90.89 99.99 100 99.90 41.41
DPNR 79.14 0.03 0.47 0.99 14.60 28.91 11.54 10.21
CAPE 84.47 0.03 0.51 0.82 10.39 22.28 8.94 9.37
SanText+ 76.94 60.59 75.29 50.80 81.54 87.68 69.18 13.36
Ours 89.11 0.24 1.42 1.01 6.18 18.56 5.44 8.32

OntoNotes5

Fine-tune 89.68 80.18 98.17 92.65 100 100 100 71.13
DPNR 72.38 0.07 0.73 1.72 18.18 33.94 17.62 15.87
CAPE 85.89 0.05 0.82 1.31 14.57 30.02 14.25 13.62
SanText+ 71.57 57.35 73.40 51.21 78.99 86.07 68.05 46.90
Ours 87.17 0.68 2.31 2.13 7.97 22.22 9.88 13.62

SST-2

Fine-tune 94.38 88.21 98.75 96.04 100 100 100 62.09
DPNR 87.84 0.02 1.76 0.87 4.39 16.39 5.72 16.82
CAPE 89.44 0.03 1.86 0.70 5.06 16.15 6.37 17.12
SanText+ 87.27 70.78 75.95 60.05 81.79 89.01 69.17 52.73
Ours 91.51 0.05 0.47 0.87 5.48 17.97 11.35 15.74

AGNEWS

Fine-tune 94.71 89.45 98.87 96.37 100 100 100 86.13
DPNR 93.12 0.02 2.32 1.79 3.97 13.53 6.82 15.86
CAPE 93.99 0.02 3.41 1.58 3.39 12.60 2.22 14.26
SanText+ 91.92 59.31 64.58 51.57 78.20 85.11 70.86 61.36
Ours 94.52 0.04 0.53 1.12 3.38 12.37 2.01 13.16

Table 1: Main results on privacy and task performance evaluation. Task metric for SST-2 and AGNEWS is accuracy
and for CoNLL2003 and OntoNotes5 is F1. Bold term means the best result except Fine-tune. Acc/F1 higher is
better, meaning high task performance. Top1, Top5 and Rouge lower is better, meaning low privacy leakage.

implementation details and hyperparameters are
shown in Appendix A.4.

4.5 Main Results

Table 1 shows the main results of our method
and all baselines. We can observe that: (1)
Representations without defence method are
vulnerable to privacy attacks. In the absence
of any privacy defence methods, all privacy attacks
on Fine-tune are highly successful. Inversion-
attack even achieves 100% top-1 attack accuracy,
indicating that privacy is fully compromised. (2)
Resisting Inversion-Attacks is key to protecting
privacy. Most defence methods can resist KNN-
Attack, it only achieves nearly 0 Top1 and Top5
attack accuracy for all tasks. In the case of MLC-
Attack, the attack results are a set of disordered
words that may contain redundancy. It is hard to
reconstruct the correct sequence from such words.
However, for Inversion-Attack, the representation
is transformed into the original word one-to-one,
and it achieves the highest attack accuracy, which
is the most likely to compromise privacy. (3)
Previous defence methods achieve limited task
performance. CAPE and DPNR show good
privacy on sentence-level tasks, Inversion-attack on

these methods only achieve about 5% top 1 attack
accuracy on SST2 and AGNEWS. But for token-
level tasks which require richer word information,
these methods not only degraded privacy but
also suffered significantly from task performance.
We speculate that these methods reduce the
privacy information, i.e., word information, in the
representation, which hinders the understanding of
the sentence. There is an inherent contradiction
between reducing word information on shallow
representations and maintaining task performance,
especially on token-level tasks. (4) With equal
or better privacy, our proposed TextObfuscator
shows a task performance improvement over
baselines. The advantage of the TextObfuscator
is that we do not reduce private information but
rather obfuscate clustered representations, which
misleads privacy attackers while still preserving
functionality for each word representation, thus
achieving better task performance while maintain-
ing privacy.

5 Analysis

5.1 Ablation Study
Effect of Different Components. To verify the
effectiveness of the different components (Lclose,
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Laway and random perturbation) in our method, we
conduct a series of ablation experiments and show
the results in Table 2. We can observe that: (1)
Without cluster loss (Lclose and Laway), random
perturbation alone is inadequate as a defence
against privacy attacks. We speculate that the
perturbation applied to unclustered representations
can only provide limited obfuscation to the attacker.
Most perturbed words still maintain a distance from
other words, providing attackers the opportunity to
distinguish between them. (2) Cluster loss without
random perturbation is completely indefensible
against Inversion-Attack. The powerful inversion
model can still distinguish different words from
clustered representations. Only the combination
of clustered representations and random pertur-
bations can effectively mislead privacy attackers.
(3) Without the Laway, some prototypes tend to
collapse to one point, resulting in a decline in task
performance but a privacy boost.

Dataset Method Task↑ KNN ↓ Inversion ↓

SST-2

TextObfuscator 91.17 0.05 6.01

w/o Laway 90.37 0.00 6.47

w/o Lcluster 90.13 4.29 31.44

w/o Perturb 93.12 0.00 100

CoNLL03

TextObfuscator 89.11 0.26 7.02

w/o Laway 88.44 0.23 7.41

w/o Lcluster 89.06 2.21 31.60

w/o Perturb 91.42 0.05 100

Table 2: Ablation Study on our method. KNN and
Inversion-attack use Top1 accuracy.

Effect of Clustering Algorithms. Sentence clas-
sification tasks require two additional processes,
clustering and re-division algorithms. We conduct
experiments on SST-2 to verify the performance
and privacy impact of the cluster number and
TF-IDF-based re-division. From experimental
results shown in Figure 3, we can observe that re-
division (KMeans-TFIDF) consistently improves
task performance and privacy for all cluster
numbers. Besides that, we find that a large cluster
number can damage privacy (lower Top1 means
better privacy), and a small cluster number can lead
to a degradation in task performance. Therefore, a
moderate cluster number is deemed to be optimal.

5.2 Visualisation
Representation Visualisation. To intuitively
show the influence of the cluster loss and random
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Figure 3: Privacy and task performance under different
cluster numbers. Accuracy is used for performance and
Top1 under Inversion-Attack is used for privacy.

perturbation, we employed T-SNE (Van der Maaten
and Hinton, 2008) to visualize representations
of TextObfuscator. Specifically, we select six
classes from the CoNLL2003 dataset and utilized
the full test set to generate these representations.
From the visualization results in Figure 4, we
can observe that, before perturbing (triangular
point), functionally similar representations are
clustered together while maintaining a certain
distance from other clusters. After perturbing
(round point), the representations are shifted and
mixed with surrounding representations but remain
within their respective functional clusters. Such
representations obfuscate word information as
they are indistinguishable from each other, but
maintain word function as they still perform the
same function in the representation space. We
take NER as an example, perturbing the word
representation of "John" may result in it being
similar to another word, such as "Mike". However,
a privacy attacker will only be able to establish
a false association between the representation of
"Mike" and the original word "John", thereby
effectively protecting privacy. But for NER task,
both words "John" and "Mike" serve the same
role as "PER (Person)" and do not negatively
impact the model’s ability to classify them. These
visualization results provide empirical evidence for
the principles and effectiveness of TextObfuscator.

Attack Results Visualisation. To intuitively
show the effectiveness of our privacy-preserving
method, we visualize the results of privacy attacks
for one sample from OntoNotes5. As shown in
Table 3, we can observe that the attack results on
TextObfuscator are largely unreadable, with only
some high-frequency words “the” and wrong words

5465



Input text: President Bush called his attention to the matter during the Italian leader’s visit here last week.

Fine-tune
KNN: President Bush his attention to matter during Italian leader ’s visit here last week.
Inversion: President Bush called his attention to the matter during the Italian leader’s visit here last week.
MLC: { Bush | President | visit | Italian | week | last | ’ | s | the | called | here | during | to | his | . | this }

Text
Obfuscator

KNN: ...... anybody ls <= our Israeliibble >ancial clinicians, Wednesday Sag Jin relocation teleport.
Inversion: the The Putin the the the the the the the the Israeli the the the the the next year,
MLC: { to | the | . | in, }

Table 3: Results of privacy attack. Text in red represents successfully recovered words. Text in bold means privacy
information. Attacks on TextObfuscator only recover meaningless words, no useful information is leakaged.

Representation Visualization
B-PER
I-PER
B-ORG
I-ORG
B-LOC
I-LOC

B-PER-perturbed
I-PER-perturbed
B-ORG-perturbed
I-ORG-perturbed
B-LOC-perturbed
I-LOC-perturbed

B-PER-prototype
I-PER-prototype
B-ORG-prototype
I-ORG-prototype
B-LOC-prototype
I-LOC-prototype

Figure 4: Visualization of representations. Obfuscated
representations are indistinguishable from surrounding
word representations but still remain in their clusters.

such as “Putin” being recovered. Keywords such as
people, places, and time that may contain privacy
have not been recovered correctly, indicating that
our method is effective in protecting privacy.

6 Related Work

The high performance and computational cost
of PLMs have accelerated the development of
inference services (Soifer et al., 2019; Pais et al.,
2022). These services enable clients to perform
compute-intensive PLM inference in the cloud by
uploading personal data, which brings convenience
but also raises concerns about privacy (Zhang et al.,
2021; Liu et al., 2020a).

In order to mitigate privacy leakage, many
sought to upload representations that have been pri-
vatized by privacy-preserving technologies instead
of the original text to the cloud (DALE, 2015). One
method is to encrypt the representation, using either
homomorphic encryption (Chen et al., 2022b)
or a customized encryption protocol (Hao et al.,

2022) to enable computations to be performed on
the encrypted representation. Encryption-based
methods often require high computation time
and communication costs (Gilad-Bachrach et al.,
2016) and may not be practical for real-world
applications. Therefore, we did not compare this
method in our experiments. Another method is to
use Differential privacy (Xu et al., 2020; Lyu et al.,
2020a; Yue et al., 2021a; Hoory et al., 2021) and
adversarial training (Coavoux et al., 2018; Plant
et al., 2021; Chen et al., 2022a) to learn private
representation, which reduces privacy attributes in
representation. Applying these works to reduce
word information leads to limited performance,
as the word information in the shallow layer is
important for subsequent inference. Our method
proposes to obfuscate word information while
maintaining word functionality, thus providing
better performance and privacy. Recently, Zhou
et al. (2022a) propose TextFusion, which utilizes
token fusion to hinder privacy attackers from
training a targeted inversion model. We explore a
stronger and more realistic setting than TextFusion,
where the privacy attacker is the service provider
itself. As the service provider is aware of
TextFusion’s defense strategies, they can design
targeted privacy attack methods to disclose more
sensitive information. We did not compare our
method with TextFusion due to different settings.

In addition to NLP, there are also many works
for protecting inference privacy in computer vision
(Xiang et al., 2019; Osia et al., 2020; Liu et al.,
2020b), However, most of these methods cannot be
used directly in NLP because they only consider
one single image, and we need to protect the
privacy of a sequence of words. The popularity of
transformer structures (Dosovitskiy et al., 2020) in
computer vision may alleviate this situation, but the
adaptation of these methods still requires further
exploration.
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7 Conclusion

In this paper, we propose TextObfuscator, a
novel representation learning method for privacy-
preserving inference. The main idea of our method
is to obfuscate word information and maintain word
functionality. We achieve this by applying random
perturbations to the clustered representations. The
perturbed representations are indistinguishable
from the surrounding representations but still
around their functional clusters. To learn clustered
representation, we find prototypes for each word
and encourage the word representation to be
close to its prototype. Additionally, we propose
different methods to find prototypes for token-level
and sentence-level tasks, utilizing semantic and
task information. Through experiments on token
and sentence classification tasks, we evaluate the
effectiveness of TextObfuscator and provide further
analysis of the principles of our proposed method.
Overall, our results suggest that TextObfuscator is a
promising method for preserving inference privacy.

8 Limitations

We summarize the limitations of our method
as follows: (1) TextObfuscator was designed to
protect word privacy in the inference phase, and
we did not verify its ability to preserve other
privacy attributes and training phase privacy. (2)
Although we have done empirical experiments and
visualizations to demonstrate the effectiveness of
our method, a mathematical proof would enhance
its privacy guarantees. (3) Our method requires
more training steps than fine-tuning, resulting in an
increased computational cost.
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A Appendix

A.1 Statistics of Dataset
We use four English datasets, including SST-2
(Socher et al., 2013) for sentiment classification
(Li et al., 2021b; Zhou et al., 2022b), AG-
NEWS (Zhang et al., 2015) for topic classification,
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) and OntoNotes5 (Weischedel et al., 2013)
for named entity recognition (Yu et al., 2020; Ma
et al., 2022). We follow the official dataset split for
AGNEWS, CoNLL2003 and OntoNotes5. The test
set for SST-2 is not publicly available, the reported
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results of SST-2 tasks are tested on the official
development set. The statistics of datasets in our
experiments are shown in Table 4.

Dataset Domain # Train #Test #Labels

SST-2 Movie 67349 872 2
AGNEWS News 120000 7600 4

CoNLL2003 News 14041 3453 9
OntoNotes5 General 59924 8262 37

Table 4: Statistics of the datasets.

A.2 Privacy Metrics
In our experiments, we use three metrics to measure
privacy. Next, we will describe these three metrics
in a formulaic way.

TopK. Top-K accuracy is defined as the propor-
tion of times that the real words is among the top
K predictions made by the attack model, where K
is a pre-defined parameter. Mathematically, it can
be represented as:

TopK =
1

N

N∑

i=1

[yi ∈ topk(pi)] (7)

where N is the total number of representation, yi is
the real word of representation i, pi is the predicted
probability distribution of the attack model, and
topk(pi) is the set of top k words with highest
probability for representation i.

RougeL (Lin, 2004). RougeL is a widely used
metric to evaluate the quality of text summarization.
So we do not describe the details of RougeL, but
just state that we take the top1 word of the attack
results to compose the sentences for calculating
RougeL.

Set. The attack results of MLC-Attack are un-
ordered sets of words, a one-to-one metric like
TopK cannot be used for this attack, so we use Set
to measure the attack success rate of MLC-Attack.
Given that set A is different words in a sentence,
the set B is the prediction results of MLC-Attack,
the Set metirc can be represented as:

Set =
|A ∩B|
|A| (8)

This metric measures how many words in the
original sentence are in the set of predicted results
of the MLC-Attack.

Algorithm 1 Re-division Algorithm

Require: Representations Matrices X̂; Word
Assignment M; Prototype Initialization P;
Task-Related Words T .

1: for tc ∈ T do
2: // Set of prototypes assigned to other classes
3: conflict← {M(x) ∈ T |x /∈ tc}
4: for x ∈ tc do
5: // Divide x to other prototype if conflict occurs
6: ifM(x) ∈ conflict then
7: x̂← get representation of x from X̂
8: M(x)← argminj /∈conflict d(x̂,pj)
9: end if

10: end for
11: end for
12: // Update P based on the newM
13: for pi ∈ P do
14: Pi ← {x ∈ X̂|M(x) = pi}
15: pi ← 1

|Pi|
∑

x∈Pi
x

16: end for
17: return M, P

A.3 Re-division Algorithm

As mentioned in Section 3.2.2, after we find
the category-related words T = {tc}nc

c=1 for each
category using TF-IDF, we re-divide the word
Assignment M and prototype Initialization P .
The algorithm is inspired by constrained K-means
clustering (Wagstaff et al., 2001), but we only apply
it once after clustering. The process of re-division
is shown in Algorithm 1.

A.4 Implementation Details

In this subsection, we describe the implementation
details and the replication process of both attack
and defence methods. All methods are based on
Robertabase with 125 million parameters. Dataset
and models are all loaded from huggingface2. Our
experiments are conducted on NVIDIA GeForce
RTX 3090.

Details for Defence Methods. We reference pub-
licly available code, implement DPNR3, CAPE4

and SanText+5 ourselves. We also conduct a grid
search on the hyperparameters to reproduce the
baselines on our setting. For each defence method,
we train 50 epochs on SST2, CoNLL2003 and
Ontonotes5, 30 epochs on AGNews to guarantee
convergence, the AdamW optimizer and a linear
learning rate scheduler are used during training.

2https://huggingface.co/
3https://github.com/xlhex/dpnlp
4https://github.com/NapierNLP/CAPE
5https://github.com/xiangyue9607/SanText
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The default learning rate is 5e-5, we do not
adjust the learning rate unless we encounter the
case of non-convergence. For DPNR, we search
noise scale ϵ on [0.05, 0.1, 0.5, 1, 5] and the
word dropout rate on [0, 0.1, 0.3]. For CAPE,
we search the adversarial training weights λ on
[0.01, 0.05, 0.1, 0.5, 1, 5] and noise scale ϵ on
[0.05, 0.1, 0.5, 1, 5]. For Santext+, we follow
the author’s setting and use GloVe (Pennington
et al., 2014) to guide the word replacement, the
probability of non-sensitive words to be sanitized
p defaults to 0.3 and the sensitive word percentage
w defaults to 0.9. We search the privacy parameter
ϵ on [1, 2, 3]. For TextObfuscator, we use the
K-Means to cluster representation for sentence-
level tasks, and the number of clusters defaults
to 100. We search the close loss weights γ1 from
[0.1, 0.5, 1] and away loss weights γ2 from [0.1,
0.3, 0.5]. Although the noise scale can also be
adjusted, we found that the most commonly used
parameter (ϵ=1) is sufficient, so we kept the noise
scale constant in all experiments. We select the
best performance and privacy (but prefer privacy)
results from the experimental results to report. The
best hyperparameters we tuned are shown in Table
5.

Dataset Method lr bsz λadv ϵn ϵw ϵp γ1 γ2

CoNLL2003

Finetune 2e-5 32 - - - - - -
DPNR 1e-5 64 - 5 0.1 - - -
CAPE 1e-5 32 0.1 5 - - - -
Santext+ 1e-5 64 - - - 3 - -
TextObfuscator 5e-5 128 - 1 - - 0.5 0.3

OntoNotes

Finetune 2e-5 32 - - - - - -
DPNR 1e-5 64 - 5 0.1 - - -
CAPE 1e-5 32 0.05 5 - - - -
Santext+ 1e-5 64 - - - 3 - -
TextObfuscator 5e-5 128 - - - - 0.5 0.3

SST-2

Finetune 2e-5 32 - - - - - -
DPNR 1e-5 64 - 0.5 0.1 - - -
CAPE 1e-5 32 0.1 0.5 - - - -
Santext+ 1e-5 64 - - - 3 - -
TextObfuscator 1e-5 256 - - - - 0.5 0.1

AGNEWS

Finetune 2e-5 32 - - - - - -
DPNR 1e-5 64 - 1 0.1 - - -
CAPE 1e-5 32 0.1 0.5 - - - -
Santext+ 1e-5 64 - - - 1 - -
TextObfuscator 5e-5 168 - - - - 0.5 0.1

Table 5: Hyperparameters of best restults for defence
methods. - means the hyperparameter is not used
in this method. λadv is the adversarial training
weights for CAPE. ϵn is the noise scale used in CAPE,
DPNR and TextObfuscator. ϵw and ϵp are used in
Santext+, representing the word dropout rate and privacy
parameter, respectively. γ1 and γ2 are the close loss
weight and away loss weight for TextObfuscator.

Details for Attack Methods. In our implementa-
tion of the KNN-Attack, we employed the use
of the embedding matrix of the robertabase to
calculate the Euclidean distance between the client
representation. When attack the CAPE and DPNR
methods, which employ max-min normalization
on the representation, we also applied the same
normalization technique on the embedding matrix
before calculating distance. For Inversion-Attack
and MLC-Attack, the training data is generated by
the client model to be attacked on the training set
of the target task. We use the Robertabase model
as the backbone for the inversion model and search
the learning rate from [1e-4, 1e-5, 1e-6] and train
10 epochs to guarantee convergence. We take the
words with a probability higher than 0.5 as the
prediction result of MLC.
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