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Abstract

A critical task for constructing event knowl-
edge graphs is event detection (ED), which
aims to identify events of certain types in plain
text. Neural models have achieved great suc-
cess on ED, thus coming with a desire for
higher interpretability. Existing works mainly
exploit words or phrases of the input text to ex-
plain models’ inner mechanisms. However, for
ED, the event structure, comprising of an event
trigger and a set of arguments, provides more
enlightening clues to explain model behaviors.
To this end, we propose a Trigger-Argument
based Explanation method (TAE), which can
utilize event structure knowledge to uncover a
faithful interpretation for the existing ED mod-
els at neuron level. Specifically, we design
group, sparsity, support mechanisms to con-
struct the event structure from structuralization,
compactness, and faithfulness perspectives. We
evaluate our model on the large-scale MAVEN
and the widely-used ACE 2005 datasets, and
observe that TAE is able to reveal the process
by which the model predicts. Experimental re-
sults also demonstrate that TAE can not only
improve the interpretability on standard evalua-
tion metrics, but also effectively facilitate the
human understanding.

1 Introduction

Event Detection (ED) aims at identifying event
triggers with specific event types, which is the first
and fundamental step for extracting semantic and
structural knowledge from plain text (Ahn, 2006;
Nguyen and Grishman, 2015). For instance, event
mention “The train driver was beaten over the head
by a thug.” in Figure 1 comprises an event trig-
ger “beaten” and a set of arguments such as “the
train driver”, “the head” and “a thug”. An ideal
ED system is expected to detect “beaten” as an
event trigger of the type Bodily_harm. Recently,
with the growth of open source annotated datasets
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Figure 1: Different explanations. For (a) and (b), fea-
tures with deeper colors are considered more important
by previous work. The usefulness of event triggers and
arguments are illustrated in (c) and (d). “arg” refers to
“argument”. Bodily_harm and Competition are two
event types in MAVEN.

(Walker et al., 2006; Wang et al., 2020) and the
development of deep learning technologies, deep
approaches have become popular for tackling the
ED problem (Nguyen et al., 2016; Wang et al.,
2021). Despite their great performance, they are
still opaque for people to comprehend the inner
mechanisms.

Although there exist many works that focus on
explaining the model behavior on natural language
processing (NLP) problems, such as text classi-
fication (Lei et al., 2016), text matching (Jiang
et al., 2021) and machine reading comprehension
(Ju et al., 2021), very little progress has been made
to interpret ED models. We identify two major
limitations that prevent the existing explanation
methods from being applied to ED models.

Neglecting event structured knowledge. Exist-
ing methods mainly focus on assessing the contribu-
tions of individual input unit (e.g., word or phrase)
to generate explanations for neural networks (Li
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et al., 2016; Jiang et al., 2021). As shown in Fig-
ure 1(a) and (b), both explanations provide insights
of which words (e.g., “beaten”) or phrases (e.g.,
“beaten over the head”) contribute to the prediction.
However, neither of them is suitable to explain ED
models as an event is represented as a structure
comprising an event trigger and a set of arguments.
Thus, the trigger-argument structures are more sen-
sible clues to explain ED systems. In Figure 1(c),
“beaten” is an ambiguous word that may evoke com-
pletely dissimilar events such as Bodily_harm and
Competition. In this case, trigger word “beaten”
and its arguments (e.g., “the head” and “a thug”
which refer to Body_part and Agent) work to-
gether for the prediction Bodily_harm. Thus, how
to take advantage of the event structure knowledge
for ED model explanation is a non-trivial task.

Explanations cannot reflect the decision-
making process. Models usually provide impor-
tant features which are words or phrases selected
from an input text as explanations, but they do not
further elaborate the function of these features, i.e.,
why models produce the prediction according to
these features. It poses challenges to interpret an
explanation and connect it to model prediction. For
example, in Figure 1(a) and (b), models may assign
high relevance score to “train driver” or “thug”, but
it is still confused why these features can lead to
the prediction Bodily_harm. In fact, “train driver”
and “thug” serve as Victim and Agent, which com-
pose together for the Bodily_harm event in which
“An Agent injures a Victim” in Figure 1(c). Fur-
thermore, Figure 1(d) provides an example that
wrongly classifies Competition as Bodily_harm,
because models take “Harley” and “John” as
Agent and Victim rather than Participant_1 and
Participant_2. Thus, exploring explanations that
can not only identify important features but also re-
veal how these features contribute to the prediction
are urgently needed.

To address the aforementioned challenges, we
propose TAE, a Trigger-Argument based Explana-
tion method, to generate structure level explana-
tions for ED models. Specifically, TAE focuses on
utilizing neuron features of ED models to construct
explanations based on trigger-argument knowledge.
It has three core sub-modules: Group Modeling
aims to divide neurons into different groups, where
each group is regarded as an event structure, in
such a way that each neuron corresponds to one
argument and works together with other neurons

that belong to the same event structure to explain
the prediction of ED models; Sparsity Modeling
aims to compact explanations by designing dif-
ferentiable masking mechanisms to automatically
filter out useless features generated by the group
mechanism, and the intuition behind this module is
that a good explanation should be short for under-
standing or reading (Miller, 2019); Support Model-
ing aims to ensure that the explanations generated
by the group and sparsity mechanisms are faithful
to the predictive model. Note we utilize FrameNet,
a well-defined linguistic knowledge base by ex-
perts, to assist TAE identify event structures and
help humans understand the decision-making pro-
cess. The contributions of this paper are as follows:

• We propose a model-agnostic method, called
TAE ( Trigger-Argument based Explanation),
to construct structure-level explanations for
Event Detection (ED) systems. To the best of
our knowledge, this is the first exploration to
explain ED with structure knowledge.

• TAE adopts three strategies, namely, Group
Modeling, Sparsity Modeling and Support
Modeling to characterize the trigger-argument
based explanations from structuralization,
compactness, and faithfulness perspectives.

• We utilize FrameNet (Baker et al., 2006), a
well-defined knowledge base, to help com-
plete the event structure in MAVEN. The an-
notated data is released for further research1.

• Experimental results on the large-scale
MAVEN and widely-used ACE 2005 datasets
show that TAE can generate more faithful and
human-understandable explanations.

2 Related Work

In this section, we review the related works on
Event Detection and Interpretation Methods.

Event Detection. Event detection is a key task
for Event Knowledge Graph (Pan et al., 2017)
construction. Traditional methods for ED have
employed feature based techniques (Ji and Grish-
man, 2008; Li et al., 2013). These approaches
mainly rely on elaborately designed features and
NLP tools. Later, advanced deep learning methods
have been applied for ED, such as convolutional
neural networks (Chen et al., 2015), bidirectional

1https://github.com/neuroninterpretation/TAE
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recurrent neural networks (Nguyen et al., 2016),
which can take advantage of neural networks to
learn features automatically. Since pre-trained lan-
guage models (PLMs) are capable of capturing the
meaning of words dynamically by considering their
context, they have proven successful on a range of
NLP tasks including ED (Tong et al., 2020; Wang
et al., 2021, 2020). Although neural networks and
PLMs bring incredible performance gains on ED
task, they offer little transparency concerning the
inner workings.

Interpretation Methods. There has been grow-
ing interests in producing explanations for deep
learning systems in recent years, enabling humans
to understand the intrinsic mechanism. In general,
the explanations from these methods can typically
be categorized as post-hoc explanations that aim
to explain a trained model and reveal how model
arrives at prediction (Lipton, 2016). Among them,
gradient-based, attention-based and erasure-based
methods are three typical methods.

Gradient-based methods are model-aware inter-
pretation methods using gradients to measure fea-
ture importance (Shrikumar et al., 2017). Since
a token index is not ordinal, methods simply sum
up the relevance scores of each representation di-
mension. Because the score can have a negative or
positive sign, the score may become zero even if it
does contribute to prediction (Arras et al., 2017).

Attention-based methods attempt to use attention
weights as feature importance scores (Vashishth
et al., 2019). However, attention is argued to not be
an optimal method to identify the attribution for an
output as its validity is still controversial (Bastings
and Filippova, 2020).

Erasure-based methods are widely-used ap-
proaches where a subset of features is considered
irrelevant if it can be removed without affecting the
model prediction (Feng et al., 2018). A straightfor-
ward approach is to erase each token by replacing
it with a predefined value such as zero (Li et al.,
2016). However, these erasure methods usually
generate explanations by calculating the contribu-
tion of individual unit to the predictions, which are
not suitable for ED as an event is often correctly
identified with event structure.

In this paper, we attempt to generate explana-
tions for ED models by considering semantic struc-
tured knowledge (Chen et al., 2018) entailed in the
input at neuron level, which is complementary to
the aforementioned approaches.

3 Preliminaries

3.1 Event Detection
An event refers to “a specific occurrence involving
one or more participants” in automatic content ex-
tractions.To facilitate the understanding of the ED
task, we introduce related terminologies as follows:

Event Trigger: the main word which most clearly
expresses an event that happens.

Event Arguments: the entities that are involved
in an event that serves as a participant.

Event Mention: a phrase or sentence within
which an event is described.

For event mention “The train driver was beaten
over the head by a thug”, an event extractor is
expected to identify an Bodily_harm event trig-
gered by “beaten” and extract corresponding ar-
guments with different roles such as “the train
driver” (Victim) and “a thug” (Agent). In this
paper, instead of explaining the overall standard
event extraction models, we concentrate only on
the ED task. That is, for this example, our goal is
to explain why ED models can classify the event
as Bodily_harm or not.

3.2 Problem Formulation
ED explanation aims to explain a trained ED model
and reveal how the model arrives at the prediction.
For an event mention x = {x1, x2, ..., xi, ..., xn}
with n words, a given pre-trained neural network
(NN) f maps x to the corresponding label yj , where
yj ∈ {y1, y2, ..., yj , ..., ym} is corresponding event
type which has unique trigger-arguments Fx ∈ F .

Assume that the NN model f = g(h(x)) can be
decomposed into two-stages: (1) utilizes h(·) to
map the input x to the intermediate layer h(x) =
{h1(x), h2(x), ..., hk(x), ..., hN (x)} with N neu-
rons, such that h(·) ∈ R(N ·d), and hk(x) is the k-th
neuron in h(x); and (2) uses g(·) to map the inter-
mediate layer h(x) to the output g(h(x)), which is
the probability of input x being predicted as label
yj by NN model, as shown in top part of Figure 2.

To better understand neurons, recent work at-
tempts to identify the closest features to explain
its behavior. The correlations between neuron and
feature are obtained as follows:

Neu(hk(x)) = arg max ρ(hk(x), F ) (1)

where F are features of the input x, such as key
words, POS, and trigger-arguments. Neu(hk(x))
is the most related feature selected in x to repre-
sent hk(x). ρ is an arbitrary correlation calculation
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Figure 2: Architecture of TAE.

function, and we use IoU (intersection over union)
in this paper. Following the existing work (Ghor-
bani et al., 2019; Mu and Andreas, 2020), we select
the closest layer to the classifier that already learns
more abstract information for prediction, to detect
the neuron behavior2.

4 Method

In this paper, we propose TAE, a trigger-argument
based explanation method for event detection,
which attempts to utilize event structure knowl-
edge to explain model predictions at neuron level.
The overview of our method is shown in Figure
2, which contains three modules: (1) The Group
module captures structured knowledge of events;
(2) The Sparsity module encourages models to se-
lect few but key features in the event structure; (3)
The Support module is a fundamental module that
guarantees explanations generated by Group and
Sparsity consistent with the original prediction.

The loss function of an structured explanation for
an event is obtained by an optimization problem:

L = arg min λgLg + λsLs + λsdLsd (2)

where (Lg, Ls and Lsd) are from the group, sparsity
and support modules, while λg, λs and λsd are
hyper-parameters controlling weights of different
losses.

4.1 Group Modeling
The Group module aims to divide neurons into
different groups, and each group corresponds to a
trigger-argument structure. Some existing works
try to aggregate related features according to the

2For a NN model, it has been shown that lower layers
usually encode word and position information, and the higher
layers can learn hierarchically-oriented information.

distance information, such as encouraging the
highly overlapping regions of the image (Varsh-
neya et al., 2021), or gathering the neighbor words
to enhance the current word (De Cao et al., 2020;
Jiang et al., 2021). However, these methods might
not work, as arguments of event types can be scat-
tered in different positions and usually not adjacent
to each other in input texts.

To solve this problem, we propose a group loss
objective that constructs event structures by ag-
gregating neurons corresponding to the related ar-
guments. We first use the clustering algorithm k-
means (Hartigan and Wong, 1979; Ghorbani et al.,
2019) to automatically cluster neurons with the
nearest mean into the same group.

G = K-means ({hk(x)}) (3)

where G ∈ {G1, G2, ..., GL} is the group set and
L is group number.

Then, for individual group Gl, we use the IoU to
measure the contribution ϕ(hli(x)) of neuron hli(x)
in the group.

ϕ(hli(x)) =
2||hli(x)− Fx||1

||hli(x)||1 + ||Fx||1 + ||Fx − hli(x)||1
(4)

where Fx is the trigger-argument feature of input
x, and hli(·) is the i-th neuron in group Gl.

Finally, the group objective Lg is to minimize the
intra-cluster sum of the distances from each neuron
to the labeled feature in the input (Varshneya et al.,
2021), given by the following equation:

Lg =

L∑

l

1

|Gl|
∑

i

ϕ(hli(x)) (5)

During train phase, for each batch, we extract the
trigger-arguments on the whole batch while calcu-
lating the Lg. It means that the neuron can learn the
batch data features rather than individual features,
which can enhance the generalization ability.

4.2 Sparsity Modeling
The Sparsity module aims to produce compact and
human-friendly explanations. This is achieved by
removing “dead neurons” (Mu and Andreas, 2020),
which are useless for model prediction, while only
keeping the key information to explain predictions.

To this end, following the existing work (De Cao
et al., 2020), we use the differentiable masking
mechanism to filter out the useless neuron features.
Specially, for each extracted neuron, a classifier
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with a sigmoid activation function is added to de-
termine whether the neuron should to be masked
or not. During training phase, we directly use L1
norm (Jiang et al., 2021) to minimize the number
of the neurons as follows:

Ls = min
∑

k

φ(hk(x)) (6)

where φ(·) is the neuron classifier. The straightfor-
ward idea is to minimize the non-zero position.

4.3 Support Modeling
The support module aims to ensure the faithfulness
of explanations generated by Group and Sparsity.
A desirable interpretable event detection model
should satisfy the intuition that a prediction is di-
rectly dependent on the selected features. For an
ED model, we choose the neurons in h(x) to gener-
ate explanations. Group and Sparsity are utilized to
select neuron features µ containing structured and
important information. Thus the goal of Support is
to measure whether µ can depict the true profile of
how the model works. Specifically, function h′(·)
maps µ to the new hidden states h′(µ), and g(·)
maps the new hidden states h′(µ) to the new output
g(h′(µ)), as shown in the bottom part of Figure 2.

We introduce an optimization objective to guar-
antee the support modeling. Different from the ex-
isting work matching the current prediction, we di-
rectly ask the reconstructed representation to meet
the ground truth distribution3.

Lsd = P(ŷ|g(h′(µ), θ)) (7)

s.t. KL(g(h(x)), g(h′(µ))) (8)

where ŷ and θ are the ground truth labels and train-
able parameters respectively. KL represents Kull-
back–Leibler divergence.

Note h′(·) can be any current popular network ar-
chitectures, such as LSTM, Transformer and PLMs.
In our setting, to maintain the interpretability, we
use the simple linear projection and MLP (mul-
tilayer perceptron) to build the network, and the
computation is much more efficient since we don’t
need to optimize the whole backbone (Yeh et al.,
2020). In addition, in this way, it mainly focuses on
learning the neuron behavior instead of sacrificing
the performance of the pre-trained CNN models.

3Assume that we extract neurons from the pre-trained
model, and the neuron exactly meets the current prediction.
If we detect the trigger-argument information to be useful for
model decision and remove the useless neurons, a reasonable
explanation may meets or better than the current prediction.

Methods
MAVEN ACE 2005

P R F1 P R F1
LSTM 51.3 52.4 51.5 63.4 66.8 64.8
LSTM+CNN 53.5 54.2 52.3 65.6 67.2 64.9
BERT 52.6 63.5 57.7 69.9 72.2 70.5
DMBERT 53.1 65.2 58.6 71.9 74.7 71.4
DeBERTa 58.7 65.6 60.8 73.7 74.4 72.1

Table 1: Model performance on MAVEN and ACE. P
and R refer to Precision and Recall respectively.

5 Experiment

5.1 Datasets

We evaluate our models on MAVEN (Wang et al.,
2020) and ACE 2005 dataset (Walker et al., 2006).

MAVEN is a manually annotated dataset4 for
event detection task without annotated arguments,
which contains 168 event types and 4,480 doc-
uments. The event types are manually derived
from the frames defined in FrameNet (Baker et al.,
1998; Guan et al., 2021b,a). To satisfy our needs,
we utilize the automatic frame parser SEMAFOR
(Das et al., 2014) to parse the MAVEN data. We
select the data that have event type in MAVEN,
and regard the corresponding frame elements (Guo
et al., 2020) as the event arguments. Finally,
we collect 12,649 event mentions, and randomly
split them into train/dev/test sets with sizes of
8,469/2,000/2,000.

ACE 2005 is also a manually annotated dataset5,
which contains 8 event types, 35 argument roles
and 599 English documents (Li et al., 2020). We
further remove the data without arguments, and
finally select 3,014 examples. Since the data size
is relatively small, and cannot use it to learn a bet-
ter NN model. So we directly utilize the models
trained on MAVEN to test on ACE 2005, which
can also verify the models’ generalization ability.6

5.2 ED Models

Our TAE is a model-agnostic method to explain
ED models. In this paper, we first select two typ-
ical NN models, namely LSTM (Hochreiter and
Schmidhuber, 1997) which contains 2 layers with
300 hidden states, LSTM+CNN (Tan et al., 2015)
which has 2 layers with 300 hidden states. More-
over, we also select three PLM-based models which

4https://github.com/THU-KEG/MAVEN-dataset
5https://github.com/limanling/m2e2
6Because the event types on MAVEN and ACE 2005 are

different, and can not directly test ACE data by the model
which trained on MAVEN data. We use the mapping between
ACE 2005 and MAVEN from (Wang et al., 2020) to get the
final prediction.
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Models Explanations
ACE 2005 MAVEN

Support Sparsity Support Sparsity

AORC AOPC SUPP SPAR AORC AOPC SUPP SPAR

LSTM

LEAVE-ONE-OUT 0.988 0.623 0.003 33.92 1.101 0.634 0.002 38.34
BACKSELECT 1.103 0.614 0.005 36.72 1.124 0.682 0.005 40.17
LIME 0.955 0.659 0.005 34.04 0.904 0.772 0.001 37.51
DIFFMASK 0.913 0.717 0.019 4.967 0.903 0.891 0.013 5.163
TAE(OURS) 0.872 0.812 0.027 5.220 0.886 1.057 0.015 5.313

LSTM+CNN

LEAVE-ONE-OUT 0.943 0.764 0.012 33.60 0.935 0.821 0.014 37.17
BACKSELECT 0.981 0.776 0.018 33.89 0.954 0.846 0.011 38.65
LIME 0.886 0.742 0.017 32.54 0.823 0.928 0.016 35.22
DIFFMASK 0.801 0.799 0.021 4.841 0.778 1.116 0.027 3.738
TAE(OURS) 0.737 0.971 0.035 3.494 0.725 1.136 0.031 4.244

BERT

LEAVE-ONE-OUT 0.841 0.893 0.026 26.06 0.915 1.076 0.040 29.29
BACKSELECT 0.775 0.922 0.026 25.14 0.873 1.091 0.037 27.33
LIME 0.714 0.954 0.035 23.44 0.809 1.139 0.041 26.07
DIFFMASK 0.679 1.247 0.058 3.862 0.764 1.326 0.041 4.791
TAE(OURS) 0.535 1.453 0.072 2.471 0.693 1.557 0.048 2.926

DMBERT

LEAVE-ONE-OUT 0.829 0.966 0.033 22.81 0.874 1.115 0.043 25.52
BACKSELECT 0.767 0.979 0.029 21.47 0.822 1.156 0.044 23.82
LIME 0.667 1.097 0.038 19.54 0.737 1.241 0.047 22.29
DIFFMASK 0.517 1.207 0.048 2.733 0.662 1.464 0.046 3.429
TAE(OURS) 0.477 1.528 0.066 1.246 0.572 1.626 0.051 1.582

DeBERTa

LEAVE-ONE-OUT 0.730 0.945 0.036 23.55 0.781 1.014 0.040 23.90
BACKSELECT 0.700 0.971 0.033 20.15 0.743 1.002 0.043 23.35
LIME 0.692 1.083 0.048 19.54 0.716 1.156 0.050 21.82
DIFFMASK 0.616 1.221 0.054 1.938 0.719 1.155 0.058 2.437
TAE(OURS) 0.525 1.674 0.073 1.148 0.623 1.774 0.069 1.603

Table 2: Support and Sparsity evaluation of different methods on ACE 2005 and MAVEN.

achieve promising performance on ED, including
BERT (Devlin et al., 2019) which has 12 layers
and 768 hidden states, DMBERT (Wang et al.,
2019) which also applied on BERT-base version
with 768 hidden states, and DeBERTa (He et al.,
2021) which has 24 layers and 1,536 hidden states.
Table 1 shows the results (P, R, F1) of different
models on both datasets in our experiments, where
DeBERTa outperforms the other four models with
higher F1 scores.

5.3 Support Evaluation
We adopt three metrics to evaluate support degree
(i.e., faithfulness): two metrics from prior expla-
nation work including area over reservation curve
(AORC) (DeYoung et al., 2020) and area over the
perturbation curve (AOPC) (Nguyen, 2018), and a
new defined evaluation metric called support-score
(SUPP).

AORC calculates the distance between the origi-
nal predicted logits and the masked ones by reserv-
ing top k% neuron features which are identified by
trigger-arguments as follows:

AORC =

K∑

k=0

||P(ŷ|x)− P(k)
′′(ŷ|x)||2 (9)

where P(k)
′′(ŷ|x) means the prediction which re-

serves the top k% neuron features. Under this met-
ric, lower AORC scores are better.

AOPC score calculates the average change in
prediction probability on the predicted class over

all test data by deleting the top r% neuron features.

AOPC =
1

N

N∑

i=1

{P(ŷ|x)− P(r)
′′(ŷ|x)} (10)

where P(r)
′′(ŷ|x) is the prediction which remove

the top r% neuron features. N denotes the number
of examples. In our experiment, r is set to 20.
Under this metric, the larger scores are better.

We propose SUPP score to verify whether the
new prediction g(h′(µ)) is positive to the original
ones g(h(x)). Under this metric, the larger SUPP

scores are better.

SUPP =
1

N

∑
{g(h′(µ)− g(h(x))} (11)

We compare TAE with four competitive base-
lines, namely LEAVE-ONE-OUT (Li et al., 2016),
LIME (Ribeiro et al., 2016), BACKSELECT (Carter
et al., 2019) and DIFFMASK (De Cao et al., 2020),
utilizing AORC, AOPC and SUPP metrics.

Automatic support evaluation results are shown
in Table 2, and we have the following three obser-
vations:

(1) TAE achieves better performance in most
cases across all the three metrics on both datasets.
For metric SUPP, all methods achieve positive re-
sults, indicating our method can identify important
features and make a positive contribution to model
predictions.

(2) Compare to LSTM- and CNN- based meth-
ods, BERT-based methods achieve significantly bet-
ter performance. It is perhaps because BERT has
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Methods Attack Arriving Statement Motion Process_start Creating Death Giving Avg.
LSTM 0.0542 0.0628 0.0354 0.0478 0.0602 0.0686 0.0537 0.0489 0.0540

LSTM+Group 0.0564 0.0675 0.0381 0.0453 0.0633 0.0705 0.0526 0.0545 0.0560
LSTM+CNN 0.0564 0.0536 0.0430 0.0508 0.0627 0.0439 0.0556 0.0376 0.0505

LSTM+CNN+Group 0.0615 0.0557 0.0426 0.0513 0.0725 0.0437 0.0598 0.0447 0.0540
BERT 0.0746 0.0662 0.0577 0.0692 0.0701 0.0720 0.0510 0.0653 0.0658

BERT+Group 0.0763 0.0683 0.0581 0.0758 0.0712 0.0739 0.0629 0.0772 0.0705
DMBERT 0.0763 0.0651 0.0497 0.0833 0.0614 0.0720 0.0624 0.0668 0.0671

DMBERT+Group 0.0789 0.0651 0.0586 0.0917 0.0721 0.0733 0.0640 0.0766 0.0725
DeBERTa 0.0782 0.0654 0.0517 0.0862 0.0638 0.0695 0.0601 0.0676 0.0677

DeBERTa+Group 0.0822 0.0655 0.0588 0.0917 0.0799 0.0710 0.0615 0.0747 0.0731

Table 3: IoU scores for the 8 event types.

already preserved a large amount of general knowl-
edge by training on large-scale data.

(3) Compared with MAVEN, the results on
ACE are equally remarkable. Overall, our model
achieves very strong results on different types of
data and methods, proving that it is a good model-
agnostic approach.

5.4 Sparsity Evaluation
For evaluating the sparsity, we directly report the
sparsity score, which obtained in Equation 6 just
like the explanation work (Jiang et al., 2021), as
the metric. In this criterion, the score means the
degree of sparsity, and the lower scores are better.
The intuition behind this criterion is that a good
explanation should be short for understanding.

The results are reported in Table 2. We can see
TAE achieves the lowest SPAR values in most cases
for the automatic evaluation, for example, the SPAR

of our TAE + DEBERTA on ACE and MAVEN are
1.603 and 1.148, while the SPAR of LEAVE-ONE-
OUT are 23.90 and 23.55, which indicates that TAE

can effectively discover the useless neurons.

5.5 Group Evaluation
In order to verify the effectiveness of the group
mechanism, we use two metrics for explanations.
First, following the previous explanation work (Bau
et al., 2017; Varshneya et al., 2021), for each pre-
defined group, we compute the number of unique
trigger-argument in the group as the interpretability
score. Second, for trigger-argument structure, we
average the IoU score which is computed in Equa-
tion 1 to represent its explanation quality score like
(Mu and Andreas, 2020).

Figure 3 shows the comparison of the inter-
pretability score with different groups. With the
group number increasing, the number of trigger-
arguments detected by the model gradually in-
creases, indicating grouping mechanism can im-
prove the model interpretability. However, the num-
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Figure 3: Interpretability
score for TAE.
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Figure 4: IoU scores w/
and w/o trigger-arguments.

ber of trigger-arguments remains constant after the
group number exceeds 50. A major reason is the
uneven distribution of the data, which mainly con-
centrates on 20% of the event types. Note, the
maximum group number is limited to event type
number, such as for MAVEN, the maximum group
number is 168.

Table 3 shows the IoU score of 8 event types. In
this setting, we separate test for each event type.
The score increases with the group mechanism on
most cases, which can further prove the effective-
ness of the group mechanism.

5.6 Analysis on Trigger-Argument
To further verify the effectiveness of the trigger-
arguments, we introduce features used in Mu and
Andreas (2020) as comparison, such as POS (part-
of-speech), most common words, and entity. They
suggest that neuron cannot be regarded as a sim-
ple detector (Bau et al., 2017) but may express the
meaning of multiple concepts. So they use com-
position operations such as OR, AND and NOT to
expand the neuron behavior. We use the average
IoU score of whole neurons on different formula
lengths as one metric:

SLi =
1

|hx|
∑

j=0

arg max IoU(hj(x), F ) (12)

where SLi is the IoU score of the formula length
i, and F is the feature set. hj(·) denotes the j-

5052



Causation

Process_start

arg:Cause arg:Effect
The crash sparked a review of helicopter safety

The crash sparked a review of helicopter safety

Event Type

Attack

Catastrophe

arg:Assailant arg:Victim

The troops stormed the French-held bridgehead

Event Type

The troops stormed the French-held bridgehead

  Event Detection

sparked

sparked

stormed

 Prediction

Figure 5: Examples of deleting important arguments.

th neuron feature and |hx| is the neuron number.
Under this metric, larger IoU scores are better.

Figure 4 shows the results with (w/) and with-
out (w/o) trigger-arguments, and we obtain the fol-
lowing two findings: (1) with the help of trigger-
argument, the IoU scores are larger than that w/o
trigger-argument on each formula length. The re-
sults demonstrate that trigger-argument can help
generate more faithfulness explanations compared
to word level features. That’s because each ar-
gument expresses complete meaning which may
contain a semantic span rather than an individual
word. (2) as the max formula length keeps getting
larger, the IoU score keeps getting larger. When the
formula length is greater than 10, the score is no
longer changing, indicating the maximum represen-
tation capacity of neuron is 10 trigger-arguments
for the model.

We further perform a qualitative analysis by
deleting the arguments with high support scores.
As shown in Figure 5, event mention “The crash
sparked a review of helicopter safety” belongs to
Causation. Explanation of our TAE model is that
“The crash” and “sparked a review of helicopter
safety” are two core arguments to form Causation
that “An Cause causes an Effect”. So when we
delete argument effect (“sparked a review of he-
licopter safety”), ED model wrongly classifies the
event as Process_start. The same applies to the
second event Attack, when delete the Victim, ED
models identify it as Catastrophe. The qualitative
results indicate that our proposed TAE can capture
trigger-argument structures that are important for
model prediction.

5.7 Case Study

Figure 6 shows an example of TAE explanation.
Given an event mention, 1) Group Modeling di-
vides neurons into different event structure accord-
ing to the arguments information, e.g., neurons
are grouped into Military_operation, Attack

During the American led coalition offensive in  the  Persian  Gulf War,
American, Canadian, British and  French  aircraft  and  ground  forces 
attacked retreating Iraqi military personnel attempting to leave Kuwait
on  the  night  of  February 26–27, 1991, resulting in the destruction of
hundreds of vehicles and the deaths of many of their occupants.

Depictive

Event Mention

  Assailant physically attacks the Victim .

 Group Modeling Sparsity Modeling

                             American,  Canadian,  British and  French  aircraft 
and  ground forces  attacked retreating Iraqi military personnel.

"Attack"  Event : 

Important Text :

Area

Force Opponent

Goal

Military_operation Attack

Departing Source Theme Distance Departing Source Theme

Assailant

Victim

Force

Opponent

Military_operation Attack
Assailant Victim

Result

Explanations of TAE

Support Modeling Attack Military_operation Departing> >

Figure 6: An example of TAE explanation.

and Departing; 2) Sparsity Modeling filters use-
less features such as Depictive and Result to
compact the explanations; 3) Support Modeling
selects features that are consist with the prediction,
for example, Attack are more faithful comparing
to Military_operation and Departing. From
the above three procedures, we obtain the TAE

explanation, which not only contains important fea-
tures from the text but also reveals why they are
important for the final prediction. For instance,
“American, Canadian, British and French aircraft
and ground forces” and “retreating Iraqi military
personnel” respectively refer to Assailant and
Victim, which work together to characterize the
Attack event in which “Assailant physically at-
tacks the Victim”. In addition, with the help of
trigger-argument information, the explanation is
more helpful for human understanding.

6 Conclusion

In this paper, we propose a trigger-argument based
explanation method, TAE, which exploits the event
structure-level explanations for event detection
(ED) task. TAE focuses on utilizing neuron fea-
tures of ED models to generate explanations, along
with three strategies, namely, group modeling, spar-
sity modeling, and support modeling. We conduct
experiments on two ED datasets (i.e., MAVEN and
ACE). The results show that TAE achieves better
performance compared to the strong baselines on
multiple public metrics. In addition, TAE also pro-
vides more faithful and human-understandable ex-
planations.
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There might be a few different future directions.
Firstly, we might look into the idea of using ex-
planations to further improve ED classification, as
well as ED explanations in downstream applica-
tions. Secondly, we plan to explore ED under the
multi-modal setting. Thirdly, event relation extrac-
tion is still challenging and deserves some further
investigation. From the practical aspect of event
knowledge graphs (EKGs), it is worth investigating
high-quality yet efficient methods for constructing
EKGs and making use of EKGs to predict future
events (Lecue and Pan., 2013; Deng et al., 2020).
Furthermore, it might be an idea to integrate com-
monsense knowledge (Speer et al., 2016; Romero
et al., 2019; Malaviya et al., 2020) into event knowl-
edge graphs.

Limitations

In this section, we discuss the limitations of TAE.
First, as our method depends on event structure
information which is obtained through automatic
parser, if the parser is not good enough, then it will
impact the performance. Second, since we focus
on leveraging structural information, we restrict the
experiments on text-based event explanation. Fu-
ture work will explore multi-modal event detection
explanations and evaluate models on other NLP
tasks.
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