
Findings of the Association for Computational Linguistics: ACL 2023, pages 4218–4230
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Semi-Autoregressive Graph Generative Model
for Dependency Graph Parsing

Ye Ma, Mingming Sun, Ping Li
Cognitive Computing Lab

Baidu Research
No.10 Xibeiwang East Road, Beijing 100193, China
10900 NE 8th St. Bellevue, Washington 98004, USA

{maye811906,sunmingming01, pingli98}@gmail.com

Abstract

Recent years have witnessed the impres-
sive progress in Neural Dependency Parsing.
According to the different factorization ap-
proaches to the graph joint probabilities, ex-
isting parsers can be roughly divided into au-
toregressive and non-autoregressive patterns.
The former means that the graph should be fac-
torized into multiple sequentially dependent
components, then it can be built up component
by component. And the latter assumes these
components to be independent so that they can
be outputted in a one-shot manner. However,
when treating the directed edge as an explicit
dependency relationship, we discover that there
is a mixture of independent and interdepen-
dent components in the dependency graph, sig-
nifying that both aforementioned models fail
to precisely capture the explicit dependencies
among nodes and edges. Based on this prop-
erty, we design a Semi-Autoregressive Depen-
dency Parser to generate dependency graphs
via adding node groups and edge groups autore-
gressively while pouring out all group elements
in parallel. The model gains a trade-off be-
tween non-autoregression and autoregression,
which respectively suffer from the lack of target
inter-dependencies and the uncertainty of graph
generation orders. The experiments show the
proposed parser outperforms strong baselines
on Enhanced Universal Dependencies of multi-
ple languages, especially achieving 4% average
promotion at graph-level accuracy. Also, the
performances of model variations show the im-
portance of specific parts.

1 Introduction

Dependency graph in neural parsing is a directed
graph representing semantic dependencies between
words, with a transitive relation traveling from the
rooted node to all words in the sentence phase by
phase. As such, transition-based parsing seems to
be a natural choice, as it builds up the parsing graph
sequentially so that the dependency relationships

can be captured. However, graph-based parsing
dominates recent competitions on parsing technolo-
gies including IWPT 2020 and 2021 (Bouma et al.,
2020, 2021), even if using a simple biaffine atten-
tion (Dozat and Manning, 2017) only to predict
the whole graph at once. To explore a more ef-
fective parsing method that can represent these de-
pendency relationships in a rigorous manner, we
define and construct Topological Hierarchies for
dependency graphs based on the explicit depen-
dencies carried by them. According to the char-
acteristics of topological hierarchies, we proposes
a Semi-Autoregressive Dependency Graph Parser
(SAGER) – a novel graph-based parsing fashion
via the semi-autoregressive graph generation.

Generally, autoregressive graph generation indi-
cates that the model dynamically adds nodes and
edges based on the generated sub-graph structure
until reaching the complete graph. It brings a chal-
lenge to determine the generation order of graphic
data, because there is no conventional reading or-
der like text data (Chen et al., 2021). Although the
dependency graphs stipulate the strict sequential
dependencies by directed edges, there is a lack of
such topological orders between sibling nodes. For
instance, node b in Figure 1.a depends on the node
a because there is an explicit edge pointing from a
to b. However, it is hard to decide the dependency
relationship between node d and node e as they are
not linked neither directly nor indirectly. Previous
works on directed graph generation solve the prob-
lem surfacely. Cai and Lam (2019, 2020) sort these
sibling nodes randomly at the early stage of training
and then change them to a deterministic order (e.g.,
relation-frequency) at later training steps. Some
other works do the sorting by referring to the orders
of the known sequences like word order or alphanu-
merical order (Zhang et al., 2019a,b; Bevilacqua
et al., 2021). Such imposed orders would bring
more exposure bias (Ranzato et al., 2016) to teacher
forcing training. More specifically, these sibling

4218

step 0

step 3.1step 2.2

step 2.1step 1.2step 1.1

step 3.2

(a)

(c)

Topo
Distance

1-path

2-path

3-path

0th-hier

1st-hier

2nd-hier

3rd-hier

Topo
Hierarchy

root
a

b
c

d e

(b)

a

b

c

d e

Figure 1: (a) An example graph (b) Divide nodes into
different topological hierarchies based on their furthest
distances from the root node. (c) Semi-autoregressive
graph generation process.

nodes are essentially orderless and non-interlogical.
They cannot form stationary and logical patterns
like words in sentences. As a result, it is hard for
the sibling nodes to be generated in the same or-
der as in the training, causing learned knowledge
invalid and later predictions misled. The afore-
mentioned random ordering seems to alleviate the
problem to some extent, but it destabilizes and com-
plicates the training process and generally results
in inferior models.

Instead of imposing orders on these sibling
nodes, we assume them (including their incom-
ing edges) to be conditionally independent to con-
struct topological hierarchies as the generation or-
ders. As shown in Figure 1.b, we divide nodes
into several hierarchies according to their furthest
distances from the root node. We can see that there
are no explicit dependency relationships between
nodes in the same hierarchy. Besides, nodes in
the later hierarchies only depends on those in the
previous hierarchies, forming a natural generation
sequence. For a directed acyclic graph (DAG), it
at least has one topological ordering but only has
one topological hierarchy. At each generation step,
we firstly predict all new nodes in parallel and then
calculate their incoming edges by the biaffine at-
tention (Dozat and Manning, 2017). In a word,

our model autoregressively adds node groups and
edge groups but non-autoregressively generates el-
ements in these groups. See Figure 1.c for our
semi-autoregressive generation process.

Another challenge lies at the probable edge spar-
sity problem when representing sub-graph struc-
tures. Sparse graph representation models like
GCN (Kipf and Welling, 2017) heavily rely on
the given adjacency to capture context information.
That means it may fail to represent historical infor-
mation completely and efficiently when predicted
edges make mistakes. An extreme situation of edge
sparsity is that the new nodes have no incoming
edges predicted so that the model can only rep-
resent its node features rather than the sub-graph
structure. To enhance the robustness of the gener-
ator, we adopt the dense structure of Transformer
(Vaswani et al., 2017). In our Graph Transformer,
there are implicit edges linking from the nodes
in the previous and current hierarchies to the new
node. Then, the predicted explicit edges serve as
the bias to adjust the attention distribution over
the implicit edges so that the model can adaptively
select useful structural information.

Overall, this paper proposes a novel direction
– semi-autoregression to deal with dependency
parsing problems, distinguished with autoregres-
sion and non-autoregression (detailed definitions
about them are available in § 2). With the depen-
dencies denoted as the directed edges, the semi-
autoregressive pattern unfolds graphs in the order
of topological hierarchies, which strictly follows
the explicit dependency relationships defined in de-
pendency graphs. Our model strikes a reasonable
balance, resulting in it neither ignoring inter-output
dependencies like non-autoregressive models, nor
suffering from severe exposure bias in generation
orders like autoregressive models On the exper-
imental side, we evaluate SAGER on Enhanced
Universal Dependencies (EUD) which are non-tree
dependency graphs. In addition to the official eval-
uation metric Enhanced Label Attachment Scores
(ELAS), we design a graph-level matching score
(GMS) to assess the probability of returning an
completely correct graph. Our model outperforms
other baselines in both metrics especially GMS,
showing that it is good at overcoming some in-
tractable prediction errors. Finally, we introduce
multiple model variations to investigate the effect
of different model components and show that our
model is well-designed, especially the parts of dis-

4219

carding imposed orders and adding implicit edges.

2 Related Work

Autoregressive Parser. Generally, a generator is
in an autoregressive fashion provided its generation
probability at each step is conditional on items it
produces previously. Transition-based parser ob-
viously conforms to the characteristic, as it up-
dates the action probability every step based on the
words, tags and label embeddings previously put
in the buffer and stack (Chen and Manning, 2014).
Meanwhile, we note that some mechanisms com-
monly used in autoregressive generators are used to
improve transition-based parsers like beam search
and pointer networks (Weiss et al., 2015; Ma et al.,
2018; Fernández-González and Gómez-Rodríguez,
2019). On the other hand, Cheng et al. (2016)
proposes a graph-based autoregressive parser by
adding arcs sequentially with the considerations
of previous parsing decisions. However, it should
not be taken as a rigorous graph generative model
as it does not generate by extending the sub-graph
structures. Actually, instead of dependency graphs,
it is more prevalent that leverage the autoregres-
sive graph generators to parse Abstract Meaning
Representation (AMR) (Cai and Lam, 2019, 2020;
Zhang et al., 2019b,a). They are all in the (fully)
autoregressive pattern that an order is imposed to
nodes and edges without topological orderings. In
this paper, we focus on investigating the effects
of these imposed orderings by introducing some
variations of the proposed model.

Non-Autoregressive Parser. In contrast, non-
autoregression implies that all components fac-
torized from the graph are independent, so their
probabilities do not affect each other and can be
obtained in parallel at any time. A representative
non-autoregressive parser is Deep Biaffine Atten-
tion (BiAtt) (Dozat and Manning, 2017) which
assuming all edges are independent. For the tree-
structure dependency graphs, it is often followed by
a searching algorithm for the Maximum Spanning
Tree (MST). Some heuristic algorithms (Li et al.,
2020; Kiperwasser and Goldberg, 2016) construct
the MST step by step, which yet does not mean they
are in the autoregressive manner because all edge
probabilities are predicted at once and fixed before
the searching. As to the higher-order graph-based
parsers, Ji et al. (2019) incorporates the second-
order knowledge into the word representations and
still uses the BiAtt as the final parser. Wang et al.

(2019); Zhang et al. (2020) decompose the graph
into components of different second-order parts.
Different from BiAtt that each component is an
edge, here some components consists of two edges
whose joint probabilities can be calculated as a
whole by a trilinear function. They still belong to
non-autoregressive parsers because their compo-
nents are independent of each other and disable to
be subdivided.

3 Proposed Model

3.1 Definitions

Problem Definition. Conditional on the source
sentence S = (wn)

N
n=1, the task is to generate a

dependency graph hierarchy by hierarchy. The gen-
eration process can be denoted as a sequence of
components: (C(t))Tt=0, T ≤ N . We firstly turn
dependency graphs to DAGs by deleting the back
edges in their cycles. It should be mentioned that
there are only a few graphs with cycles and we
can add these removed edges back by rules be-
fore evaluations. Then we can construct topologi-
cal hierarchies based on the furthest distance from
each node to the root node. The initial compo-
nent C(0) = {v0} in the 0-th hierarchy only has
a root node. When t > 0, the component in the
t-th hierarchy is defined as C(t) = {V (t), E(t)}.
Let Vt =

⋃t
j=0 V

(j), then V (t) = {vi}|Vt|−1
i=|Vt−1|

is a set of nodes in the t-th hierarchy. And,
E(t) = {(vj , vi, zji)|vj ∈ Vt−1, vi ∈ V (t)} is a
set of edges pointing from nodes in the previous
hierarchies to the current nodes, where vj is the
head of vi and zji is the label on the arc.

Explicit and Implicit Edge. We define two kinds
of edges, namely explicit edges and implicit edges.
The former is what we need to really predict. Let
Ni be the explicit first-order neighbours of the node
vi ∈ V (t) and Di be the implicit neighbours, and
Ni∪Di = Vt. Notably, nodes in Ni can not appear
in V (t) according to the definition of topological
hierarchy. They have uni-directional edges point-
ing to the node vi with arc labels, and these edge
can be found in E(t). On the other hand, nodes in
Di should not have pointed to vi, but our model
does so because we expect nodes to learn structural
information adaptively. It should be mentioned
that nodes in the same component or hierarchy
also have implicit edges linking to each other, i.e.,
V (t) ⊆ Di.

4220

FFN

Message Passing

+ +++ + +++ + + + + +++ + + +

FFN

Message Passing

IQSXWV

FFN

Message Passing

PRViWiRQaO EQcRdiQgV

WRUd EPbeddiQgV

MRdeO

OXWSXWV

E[SOiciW Edge

IPSOiciW Edge

he
ad

s

deps

NR Edge
rooW

Figure 2: Semi-autoregressive generation process and graph transformer.

Head and Dependent Representation. We define
two representations of the same node with different
roles, namely the head representation and the de-
pendent representation. Each generated node will
first be used as a dependent node to calculate its in-
coming arcs, and then as a head node until the end
of generation. We define the head vector of a node
vi ∈ V (t) as hi and its dependent vector as di. For
a component, its head matrix H(t) = Fθ(Vt, Et, S)
and dependent matrix D(t) = Fθ(Vt, Et−1, S) are
the concatenations of multiple corresponding node
representation, where Et =

⋃t
j=0E

(t). We can see
that the difference between them is that the latter
inputs lack E(t), which means there are no avail-
able explicit edges pointing to V (t) nodes when
calculating dependent representations. We shall
mention that the graph representation model Fθ(·)
can represent all components, but we only need
to focus on the new component at each generation
step because the new component does not affect
node representations in the previous components.

Training Objective. The objective is to maximize
the graph joint probability J :

J =

T∏

t=1

P (V (t)|Vt−1, Et−1)P (E(t)|Vt, Et−1)

P (V (t)|Vt−1, Et−1) =
∏

vi∈V (t)

P (vi|Vt−1, Et−1)

P (E(t)|Vt, Et−1) =
∏

ei∈E(t)

P (ei|Vt, Et−1)

Vt = Vt−1 ∪ V (t), Et = Et−1 ∪ E(t)

It indicates that we autoregressively generate the
new node group V (t) and the edge group E(t) based
on groups generated previously and the elements
in the same group are independent.

3.2 Graph Generation Process
Figure 2 presents the generative process from the
3-rd step to the 4-th step. Specifically, At the gen-
eration step t, we firstly update head representa-
tions H(t−1) for the last-step nodes V (t−1) using
their network structure information E(t−1). No-
tably, although there only generates an intermediate
sub-graph of the entire structure, the explicit topo-
logical information of V (t−1) nodes is completed
because they would not have incoming arcs from
nodes generated later. On the other hand, these

4221

sentence words have been represented as a dense
matrix S by a Transformer-encoder. Then, their
probabilities of being selected are calculated by:

P (w1:N) = MaxPool
[
σ
(

H(t−1)W1W⊤
2 S⊤

)]

V (t) = {wn|P (wn) > 0.5}

where W ∈ Rd×d is a linear transformation matrix.
This operation is similar to a multi-label classi-
fication. Every source word is assigned with an
independent probability, and words with probabili-
ties larger than 0.5 are selected as new nodes V (t).
To represent these new nodes as D(t) when their
network structural information are unknown, we
suppose that there are implicit edges pointing from
previous nodes to these nodes. Besides, these new
nodes are connected to each other by implicit edges.
Although it is impossible to appear explicit edges
among them, this operation can further enrich node
representations. Their connections are illustrated
by the second adjacency matrix in the middle block
of Figure 2. Explicit edge connections and types
are then figured out by Deep Biaffine Attention
(Dozat and Manning, 2017):

E(t) = DeepBiaffine
(
∥t−1
j=0H(j),D(t)

)

where ∥t−1
j=0H(j) is achieved by concatenating head

representations of all nodes in the previous hierar-
chies. The generation proceeds via repeating the
aforementioned operations until no words can be
selected as new nodes.

3.3 Graph Representation Model
Recently, Transformer (Vaswani et al., 2017) has
made impressive progress in the graph repre-
sentation field (Ying et al., 2021). In essence,
Transformer regards inputs as an undirected fully-
connected graph, thus serving as a special graph
representation model that can enjoys global percep-
tion at all layers. Previous works focusing on adapt-
ing Transformer-encoder to node or graph classi-
fication, while this paper modifies Transformer-
decoder to conduct graph generation.

Let x(l)
i denote the node vi embedding at the l-th

layer. If the node vi is in the component Ct and
copied from the source word wn, its initial node
embedding x

(0)
i should be the summation of:

x
(0)
i = S[n] +P[t]

where S,P indicate word embeddings and hierar-
chical positional encodings respectively, as shown

in Figure 2. Nodes in the same hierarchy have the
same hierarchical positional encodings.

The message passing layer actually takes the
position of the masked self-attention layer in the
decoder. The original decoder self-attention helps
every word to aggregate left-ward contexts. In con-
trast, every node in our model not only aggregates
left-ward contexts (i.e, nodes in previous hierar-
chies), but also nodes in the same hierarchy. To
distinguish explicit edges and implicit edges, the
message vector mji of the node vj with an explicit
edge pointing to the node vi should be enriched
with prior structural knowledge by

m
(l)
ji =

{
x
(l)
j + relu

(
x
(l)
j Uzji

)
, vj ∈ Ni

x
(l)
j , vj ∈ Di

where Uzji ∈ Rd×d indicates the parametric em-
bedding matrix of the edge label zji. These edge
embedding metrics are shared across all layers. No-
tably, we assume that the central node vi is self-
connected implicitly, i.e. vi ∈ Di. The reduction
function is then defined as the multi-head attention:

αji =
exp

(
xiWQW

⊤
Km⊤

ji

)

∑
vu∈Ni∪Di

exp
(
xiWQW⊤

Km⊤
ui

)

x
(l)′

i =


 H

∥
h=1


 ∑

vj∈Ni∪Di

αh
jim

(l)
ji W

h
V




WO

We can see that the query is the node embedding
xi, and the keys and values are those message vec-
tors mji. Its output x(l)′

i is then fed into the feed-
forward layer to enter the next layer:

x
(l+1)
i = FFN

(
x
(l)′

i

)

The outputs x(L) of the final layer are head repre-
sentations or dependent representations.

The edge embedding matrices U give the model
access to prior structural knowledge and enable it
to select useful prior knowledge adaptively. When
all structural knowledge is useless (i.e, parameters
in U are trained to be zeros) and each hierarchy
only contains one node, the graph model degrades
to a vanilla Transformer decoder.

4 Experiment

Datasets. We tune our models primarily on 15 lan-
guages that appear in IWPT 2020 dataset and IWPT

4222

IWPT 2021 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg
E

LA
S BiAtt 92.7 91.0 87.2 87.2 90.6 88.4 92.1 81.9 88.3 90.5 90.2 93.2 91.5 87.3 89.1 89.4

Tree-G 92.8 91.1 87.3 87.1 90.7 88.6 92.3 81.9 88.2 90.5 90.4 93.2 91.6 87.5 89.0 89.5
SAGER 92.9 90.9 87.9 87.3 90.7 89.5 92.8 83.5 88.5 90.9 90.4 93.5 92.1 87.9 89.6 89.9

G
M

S BiAtt 47.4 44.8 36.3 37.1 38.7 40.3 43.8 21.0 38.4 46.9 40.8 50.3 51.0 32.2 34.6 40.2
Tree-G 47.8 45.3 36.9 37.0 39.1 41.1 44.7 21.0 37.9 47.0 41.9 50.8 51.5 33.4 34.2 40.6
SAGER 48.8 45.6 40.3 39.2 41.4 45.4 47.1 28.2 42.8 51.3 43.6 54.2 57.8 38.2 39.2 44.2

IWPT 2020 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg

E
LA

S Sec-order 91.5 90.1 87.1 86.0 89.0 85.3 91.5 78.9 87.6 86.2 84.0 92.3 87.6 84.7 88.0 87.3
UDify 90.7 87.5 87.2 84.5 89.5 85.9 91.5 77.6 84.9 84.7 84.6 90.7 88.6 85.6 87.2 86.7
SAGER 92.6 90.4 88.2 86.9 90.1 87.4 92.6 82.5 88.5 86.7 86.7 93.2 91.0 87.0 89.0 88.9

G
M

S Sec-order 43.1 37.7 35.7 31.8 34.4 29.2 44.4 15.1 35.3 31.0 28.6 47.1 38.7 26.5 30.5 33.9
UDify 41.4 31.4 34.1 31.2 34.5 33.2 41.5 17.8 31.6 23.8 26.1 40.6 43.1 27.1 31.2 32.6
SAGER 48.3 43.5 41.6 36.6 38.4 38.7 47.1 25.6 42.0 34.1 32.9 53.7 55.2 36.4 38.3 40.8

Table 1: Average ELAS and GMS results of 3 calculations on IWPT 2021 and IWPT 2020 datasets. We use L = 2
according to ELAS on the English dev-set.

2021 dataset (Bouma et al., 2020, 2021). The two
shared tasks focus on EUD (Schuster and Manning,
2016) which are non-tree graphs with reentrancies,
empty nodes and sparsity cycles. To construct the
topological hierarchy, we need to delete the back
edges in cycles firstly and add them back by rules
at inference time. For the language that has mul-
tiple treebanks, we simply concatenate all of its
treebanks. Besides, we use gold tokenization and
gold sentence segmentation during training and
development. At test time, we use the results of
tokenization and segmentation provided by the top
ranked models.

Baseline Models. Our comparison experiments
aim to investigate the performances of models
themselves, without considering some learning
techniques like ensembling (Grünewald et al.,
2021), two-stage training (Shi and Lee, 2021) and
automated concatenation of embeddings (Wang
et al., 2021). We conclude four strong baselines
from top-ranked systems in IWPT 2021 and IWPT
2020, namely Deep Biaffine Attention (Dozat and
Manning, 2017), Tree-Graph Parser (Shi and Lee,
2021), Second-order Parser (Wang et al., 2019,
2020) and Language-specific UDify (Kondratyuk
and Straka, 2019; Kanerva et al., 2020). Their re-
sults are reported after eliminating the effects of
learning techniques.

Evaluation Metrics. ELAS results are evaluated
by the official script provided by IWPT 2021. Be-
sides, we also define a graph-level matching score
(GMS) to investigate whether the model can deal
with a few arcs that are difficult to be predicted
properly in a sample. Since we segment UD sen-
tences from raw texts, the numbers of sentences are

different for each system. Therefore, GMS is an
F1 score around the number of absolutely matched
graphs,

Recall =
#matched graph

#gold sentences

Precision =
#matched graph

#system sentences

GMS =
2×Recall × Precision

Recall + Precision

where # represents The number of .

Word Embeddings. Similar to the operations in
most top-ranked systems, our word embeddings
S[n] are initialized as the weighted summation of
the corresponding hidden states in XLM-R layers
(Conneau et al., 2020), where the weights are the
learned attention distribution over all XLM-R lay-
ers. For the word composed of multiple subwords,
we extract the hidden states of the last one. We set
up the dimension in the graph representation model
as d = 1024, the same as that in the pre-trained
models.

Other Details. We train models directly on each
language with Teacher Forcing Training to out-
put all head (dependent) representations at once.
Besides, we truncate the input sentences to 100
words at training time. We totally run 100 epochs
with 16 batch size and select the model parameters
base on the ELAS on the development sets. We
train our models on a single v100 with a speed
of about 10000 samples in 10 minutes. We use
ReZero (Bachlechner et al., 2021) in our graph
transformer, instead of LayerNorm operations com-
monly used in Transformer. In this case, we do not

4223

need to use the warm-up learning schedule, and we
use Adam optimizer with the 0.97 decay ratio of
the learning rate. We set up the initial learning rate
of pre-trained embeddings as 2e − 5, and that of
others as 1e− 3. Besides, dropout rates in the part
of pre-training and graph representation are set to
0.1, while the output layers of nodes and edges are
set to 0.3. We build up the vocabulary on the arc
labels for each language respectively. To shrink
the size of edge vocabularies, we follow the de-
lexicalization operations of arc labels (Grünewald
and Friedrich, 2020) and re-lexicalize them before
evaluations.

5 Results and Analysis

5.1 Main Results

The official evaluation metrics ELAS of our mod-
els and baselines are shown in Table 1. We note
that SAGER achieves at least comparable results
on all languages. In IWPT 2021, in addition to
obtaining the best average ELAS performance (av-
erage ∼ 0.4% points), our model brings significant
improvements over multiple languages like Lithua-
nian (∼ 1.6% points), French (∼ 0.9% points), En-
glish (∼ 0.6% points). This enhancement is more
significant when comparing our model with the top
two models in IWPT 2020 (average ∼ 1.6% points
). Besides, sharper increases appears in GMS of
IWPT 2021 (average ∼ 3.6% points) and IWPT
2020 (average ∼ 6.9% points), where our model
achieves an amazing rising against the baselines in
all languages.

It should be mentioned that a higher ELAS does
not mean a higher GMS, as shown in the results
of Czech (cs) language. In other words, some ob-
stinate errors are fixed to make more dependency
graphs completely correct, but there appear some
samples where more mistakes concentrate. This
situation derives from the inherent characteristics
of autoregressive generation that the prediction ac-
curacy at one certain step is heavily dependent on
that at historical steps. In ideal states, the historical
information can calibrate some obstinate errors by
the learned dependencies. However, once devia-
tion occurs in an intermediate step, it may lead to
mistakes that should not have been made. This is
the essential reason that autoregressive parsers are
weaker than non-autoregressive parsers. By com-
parison, our semi-autoregressive parser mitigates
the negative impact of this characteristic by remov-
ing some unreasonable dependency relationships,

thus resulting in better performances in both ELAS
and GMS.

5.2 Model Variant Ablation Studies

To investigate the importance of different model
components and input features, we evaluated the
following variations of our model.

A. Autoregressive generation with random
orders. We impose random orders to the sib-
ling nodes, so the model is converted to a fully-
autoregressive generator. At each step, the model
only generates a new node and its all incoming
edges. The sibling nodes will be re-ordered after a
training epoch.

B. Autoregressive generation with word or-
ders. The sibling nodes are sorted by the positions
of the node words in the sentence.

C. Combine random orders and word orders.
The sibling nodes are firstly randomly sorted at the
early stage of training and fixed to the word orders
at later training.

D. No implicit edges. Without the implicit
edges, the graph representation model is similar
to GAT (Velickovic et al., 2018) but the messages
are additionally enriched with the arc label infor-
mation.

E. No implicit edges in the same hierarchy.
We remove the implicit edges between nodes in the
same topological hierarchy. In this case, each node
only has the incoming arcs from the nodes in the
previous hierarchies.

F. No explicit edges. We replace all explicit
edges by implicit edges, which is equal to forcing
the edge embedding matrix U to zeros.

G. No hierarchical positional encodings. In
this case, the model would lose the sequential re-
lationships between hierarchies and fail to locate
nodes of different hierarchy.

The ablation results of 6 languages are summa-
rized in Figure 3. We firstly focus on the fully-
autoregressive variations, namely the model A, B
and C. We can see that there are significant declines
in performances when imposing orderings to sib-
ling nodes, indicating that the autoregressive mode
heavily suffers from exposure bias in terms of gen-
eration orderings. Besides, the extent of declines
varies a lot in different languages, ranging from
over 30% in the Slovak (sk) dataset and within 1%
in the English (en) and Italian (it) datasets. This
proves that the impact of imposed sorting is quite
unstable.

4224

sv

0.85

0.86

0.87

0.88

lt
0.78

0.80

0.82

sk
0.7

0.8

0.9

en

0.86

0.87

fr

0.88

0.89

it

0.91

0.92

Origin A B C D E F G

Figure 3: Test-set ELAS results, comparing the origin model with different model variations

Moving to the model D, E and F which are varia-
tions with respect to explicit and implicit edges. Al-
though it is not as significant as the negative effects
of using autoregressive modes, that of removing
implicit or explicit edges cannot be ignored. Gener-
ally, implicit edges play a more important role than
explicit edges as the performances of model D are
often lower than those of model E and F. This vali-
dates that the edge sparsity is the major problem of
graph generation after the uncertainty of generation
orderings. Besides, the implicit edges in the same
hierarchy (see model E) and the historical arc la-
bel information (see model F) are both compulsory
model components because the model always per-
forms worse when dropping them. The final is the
model without hierarchical positional encodings.
Compared with other variations, its performance is
the closest to the origin model, implying that our
graph representation model is not very sensitive to
the sequential relationships between hierarchies.

5.3 Error analysis of Topological Hierarchy

sv lt fr sk en
(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

N
od

e
A

cc
ur

ac
y

sv lt fr sk en
(b)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

E
LA

S

Oracle TH Origin

Figure 4: (a) Accuracy of nodes in the correct hierarchy.
(b) ELAS results using oracle Topological Hierarchy
(TH).

Since a topological hierarchy regulates the rough
topological structure of a dependency graph, its
prediction accuracy is crucial for the whole model.

We investigate the node accuracy on 5 languages
(see Figure 4.a), and find that about 90% nodes
can fall into correct hierarchies. Even the language
performing worst under the ELAS evaluation can
reach 80% node accuracy. We then provide the
model with the oracle node group at each genera-
tion step and plot the comparison results against
the origin model in Figure 4.b. There is about a 1%
increase of ELAS on most languages when using
oracle TH. It is surprising that oracle TH does not
bring about improvement to the English dataset,
indicating that corrupt topological hierarchies do
not always lead to incorrect arcs. Actually, it would
cause bad results only when the dependent node of
an arc is generated before its head nodes. It does
not matter for corruptions that do not shuffle the
orders of heads and dependents.

5.4 Sensitive analysis of Layers

1 2 3 4 5 6
sk

0.9150

0.9175

0.9200

0.9225

0.9250

1 2 3 4 5 6
lt

0.81

0.82

0.83

0.84

1 2 3 4 5 6
en

0.8700

0.8725

0.8750

0.8775

0.8800

1 2 3 4 5 6
sv

0.870

0.875

0.880

0.885

Ours Baseline

Figure 5: Sensitive analysis of layers on test sets.

We test the sensitivity of ELAS results to dif-
ferent L. As shown in Figure 5, We select four
languages whose ELAS are significantly higher
than baselines’ when L = 2. We find that our
model still outperforms the baseline whichever L
is used. Besides, it is hard to disclose a trend be-
tween model performance and the number of lay-

4225

ers from the four plots. This is possibly because
graph transformer can capture context information
of high-order neighbours even with one layer. Over-
all, SAGER is insensitive to the number of layers.

6 Case Study

root

xcompnsubj aux

have

We

do

nsubj:xsubj obj

believe

to him

n't .

root

xcomp

nsubj

aux

have

We do

obj

believe

to him

n't .

root

nsubj parataxis

measure

pints

nsubj obj

measureOunces

volum

weight . ,

root

nsubj obj conj punc

measure

pints

nsubj obj

measureOunces

volum

weight .

,

We do n't have to believe him .

Ounces measure weight , pints measure volume .

semi-auto non-auto

semi-auto auto

Figure 6: Case study, auto is the model B in § 5.2.

To better understand the drawbacks of non-
autoregressive and autoregressive models, we
present two examples in Figure 6. In the first ex-
ample, semi-auto performs better because it can
predict the arc nsubj:xsubj with the help of the pre-
viously predicted arc xcomp. The two edges are
heavily dependent. In contrast, non-auto fails be-
cause it assumes independency between edges. In
the graph produced by the auto, the edge between
the first measure and the comma should have been
predicted after linking measure to weight, but the
model actually skips the step and predicts a wrong
arc conj. This is probably because (nsubj, obj, conj)
is a very highly-frequent dependent relationship in
autoregressive graph sequences.

7 Conclusion and Limitation

This paper explores a semi-autoregressive depen-
dency graph parser (SAGER) that learns the ex-
plicit dependencies in dependency graphs. This
generation pattern captures the edge dependencies

while reducing exposure bias, resulting in a more
effective parser and two insights about graph gen-
eration, namely the ordering uncertainty and edge
sparsity. We believe that the proposed algorithm
can be applied in other language parsing problems
such as OIA (Open Information Annotation) (Sun
et al., 2020; Wang et al., 2022) and graph genera-
tion problems (Sun and Li, 2019).

The limitations of our work are inference speed
and decoding strategy. The efficiency of semi-
autoregressive inference is lower than that of non-
autoregressive algorithms, so currently it cannot
be applied to scenarios with high frequency re-
quests. Furthermore, this paper only introduces
greedy search as a decoding strategy. Overcoming
the challenge of introducing many complex decod-
ing strategies such as beam/tree search (Liu et al.,
2020; Ma et al., 2021) belongs to our future work.

References
Thomas Bachlechner, Bodhisattwa Prasad Majumder,

Huanru Henry Mao, Gary Cottrell, and Julian J.
McAuley. 2021. ReZero is all you need: fast
convergence at large depth. In Proceedings of
the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence (UAI), pages 1352–1361, Vir-
tual Event.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both:
Symmetric AMR semantic parsing and genera-
tion without a complex pipeline. In Proceedings
of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI), pages 12564–12573, Virtual
Event.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 shared task
on parsing into enhanced universal dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 151–161, Online.

Gosse Bouma, Djamé Seddah, and Daniel Zeman. 2021.
From raw text to enhanced Universal Dependen-
cies: The parsing shared task at IWPT 2021. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 146–157, Online.

Deng Cai and Wai Lam. 2019. Core seman-
tic first: A top-down approach for AMR pars-
ing. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3797–3807, Hong Kong, China.

4226

Deng Cai and Wai Lam. 2020. AMR parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1290–1301,
Online.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco J. R. Ruiz,
and Li-Ping Liu. 2021. Order matters: Probabilistic
modeling of node sequence for graph generation. In
Proceedings of the 38th International Conference on
Machine Learning (ICML), pages 1630–1639, Vir-
tual Event.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and
Li Deng. 2016. Bi-directional attention with agree-
ment for dependency parsing. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2204–2214,
Austin, TX.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 8440–8451, Online.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 5th International
Conference on Learning Representations (ICLR),
Toulon, France.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 710–
716, Minneapolis, MN.

Stefan Grünewald and Annemarie Friedrich. 2020.
Robertnlp at the IWPT 2020 shared task: Surpris-
ingly simple enhanced UD parsing for english. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 245–252, Online.

Stefan Grünewald, Frederik Tobias Oertel, and An-
nemarie Friedrich. 2021. RobertNLP at the IWPT
2021 shared task: Simple enhanced UD parsing
for 17 languages. In Proceedings of the 17th
International Conference on Parsing Technologies
and the IWPT 2021 Shared Task on Parsing into
Enhanced Universal Dependencies (IWPT), Online.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Conference of the
Association for Computational Linguistics (ACL),
pages 2475–2485, Florence, Italy.

Jenna Kanerva, Filip Ginter, and Sampo Pyysalo. 2020.
Turku enhanced parser pipeline: From raw text to
enhanced graphs in the IWPT 2020 shared task.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 162–173, Online.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
first dependency parsing with hierarchical tree
LSTMs. Trans. Assoc. Comput. Linguistics, 4:445–
461.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the 5th International
Conference on Learning Representations (ICLR),
Toulon, France.

Daniel Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies uni-
versally. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 2779–2795, Hong Kong, China.

Zuchao Li, Hai Zhao, and Kevin Parnow. 2020. Global
greedy dependency parsing. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), pages 8319–8326, New York,
NY.

Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, and
Ping Li. 2020. Extracting knowledge from web text
with monte carlo tree search. In Proceedings of the
Web Conference (WWW), pages 2585–2591, Taipei.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard H. Hovy. 2018. Stack-
pointer networks for dependency parsing. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1403–1414, Melbourne, Australia.

Ye Ma, Zixun Lan, Lu Zong, and Kaizhu Huang. 2021.
Global-aware beam search for neural abstractive
summarization. In Advances in Neural Information
Processing Systems (NeurIPS), pages 16545–16557,
virtual.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of the 4th International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth

4227

International Conference on Language Resources
and Evaluation (LREC), Portorož, Slovenia.

Tianze Shi and Lillian Lee. 2021. TGIF: Tree-graph
integrated-format parser for enhanced UD with two-
stage generic- to individual-language finetuning. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 213–224, Online.

Mingming Sun, Wenyue Hua, Zoey Liu, Xin Wang,
Kangjie Zheng, and Ping Li. 2020. A Predicate-
Function-Argument Annotation of Natural Language
for Open-Domain Information eXpression. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2140–2150, Online.

Mingming Sun and Ping Li. 2019. Graph to graph: a
topology aware approach for graph structures learn-
ing and generation. In Proceedings of the 22nd
International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 2946–2955, Naha,
Okinawa, Japan.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems (NIPS), pages 5998–6008, Long
Beach, CA.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In Proceedings
of the 6th International Conference on Learning
Representations (ICLR), Vancouver, Canada.

Xin Wang, Minlong Peng, Mingming Sun, and Ping Li.
2022. OIE@OIA: an adaptable and efficient open
information extraction framework. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 6213–6226,
Dublin, Ireland.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics (ACL), pages 4609–4618, Florence,
Italy.

Xinyu Wang, Zixia Jia, Yong Jiang, and Kewei Tu. 2021.
Enhanced Universal Dependency parsing with auto-
mated concatenation of embeddings. In Proceedings
of the 17th International Conference on Parsing
Technologies and the IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(IWPT), pages 189–195, Online.

Xinyu Wang, Yong Jiang, and Kewei Tu. 2020. En-
hanced universal dependency parsing with second-
order inference and mixture of training data. In
Proceedings of the 16th International Conference

on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT), pages 215–220, Online.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL), pages 323–333,
Beijing, China.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? In Advances in Neural
Information Processing Systems (NeurIPS), pages
28877–28888, virtual.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019a. AMR parsing as sequence-to-graph
transduction. In Proceedings of the 57th Conference
of the Association for Computational Linguistics
(ACL), pages 80–94, Florence, Italy.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019b. Broad-coverage seman-
tic parsing as transduction. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3784–3796, Hong Kong,
China.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Ef-
ficient second-order treecrf for neural dependency
parsing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics
(ACL), pages 3295–3305, Online.

4228

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

sec 7

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
the abstract and sec 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
appendix 2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4229

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
appendix 2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
table 1

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
sec 4 and appendix 2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4230

