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Abstract

Recent years have witnessed the impres-
sive progress in Neural Dependency Parsing.
According to the different factorization ap-
proaches to the graph joint probabilities, ex-
isting parsers can be roughly divided into au-
toregressive and non-autoregressive patterns.
The former means that the graph should be fac-
torized into multiple sequentially dependent
components, then it can be built up component
by component. And the latter assumes these
components to be independent so that they can
be outputted in a one-shot manner. However,
when treating the directed edge as an explicit
dependency relationship, we discover that there
is a mixture of independent and interdepen-
dent components in the dependency graph, sig-
nifying that both aforementioned models fail
to precisely capture the explicit dependencies
among nodes and edges. Based on this prop-
erty, we design a Semi-Autoregressive Depen-
dency Parser to generate dependency graphs
via adding node groups and edge groups autore-
gressively while pouring out all group elements
in parallel. The model gains a trade-off be-
tween non-autoregression and autoregression,
which respectively suffer from the lack of target
inter-dependencies and the uncertainty of graph
generation orders. The experiments show the
proposed parser outperforms strong baselines
on Enhanced Universal Dependencies of multi-
ple languages, especially achieving 4% average
promotion at graph-level accuracy. Also, the
performances of model variations show the im-
portance of specific parts.

1 Introduction

Dependency graph in neural parsing is a directed
graph representing semantic dependencies between
words, with a transitive relation traveling from the
rooted node to all words in the sentence phase by
phase. As such, transition-based parsing seems to
be a natural choice, as it builds up the parsing graph
sequentially so that the dependency relationships

can be captured. However, graph-based parsing
dominates recent competitions on parsing technolo-
gies including IWPT 2020 and 2021 (Bouma et al.,
2020, 2021), even if using a simple biaffine atten-
tion (Dozat and Manning, 2017) only to predict
the whole graph at once. To explore a more ef-
fective parsing method that can represent these de-
pendency relationships in a rigorous manner, we
define and construct Topological Hierarchies for
dependency graphs based on the explicit depen-
dencies carried by them. According to the char-
acteristics of topological hierarchies, we proposes
a Semi-Autoregressive Dependency Graph Parser
(SAGER) – a novel graph-based parsing fashion
via the semi-autoregressive graph generation.

Generally, autoregressive graph generation indi-
cates that the model dynamically adds nodes and
edges based on the generated sub-graph structure
until reaching the complete graph. It brings a chal-
lenge to determine the generation order of graphic
data, because there is no conventional reading or-
der like text data (Chen et al., 2021). Although the
dependency graphs stipulate the strict sequential
dependencies by directed edges, there is a lack of
such topological orders between sibling nodes. For
instance, node b in Figure 1.a depends on the node
a because there is an explicit edge pointing from a
to b. However, it is hard to decide the dependency
relationship between node d and node e as they are
not linked neither directly nor indirectly. Previous
works on directed graph generation solve the prob-
lem surfacely. Cai and Lam (2019, 2020) sort these
sibling nodes randomly at the early stage of training
and then change them to a deterministic order (e.g.,
relation-frequency) at later training steps. Some
other works do the sorting by referring to the orders
of the known sequences like word order or alphanu-
merical order (Zhang et al., 2019a,b; Bevilacqua
et al., 2021). Such imposed orders would bring
more exposure bias (Ranzato et al., 2016) to teacher
forcing training. More specifically, these sibling
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Figure 1: (a) An example graph (b) Divide nodes into
different topological hierarchies based on their furthest
distances from the root node. (c) Semi-autoregressive
graph generation process.

nodes are essentially orderless and non-interlogical.
They cannot form stationary and logical patterns
like words in sentences. As a result, it is hard for
the sibling nodes to be generated in the same or-
der as in the training, causing learned knowledge
invalid and later predictions misled. The afore-
mentioned random ordering seems to alleviate the
problem to some extent, but it destabilizes and com-
plicates the training process and generally results
in inferior models.

Instead of imposing orders on these sibling
nodes, we assume them (including their incom-
ing edges) to be conditionally independent to con-
struct topological hierarchies as the generation or-
ders. As shown in Figure 1.b, we divide nodes
into several hierarchies according to their furthest
distances from the root node. We can see that there
are no explicit dependency relationships between
nodes in the same hierarchy. Besides, nodes in
the later hierarchies only depends on those in the
previous hierarchies, forming a natural generation
sequence. For a directed acyclic graph (DAG), it
at least has one topological ordering but only has
one topological hierarchy. At each generation step,
we firstly predict all new nodes in parallel and then
calculate their incoming edges by the biaffine at-
tention (Dozat and Manning, 2017). In a word,

our model autoregressively adds node groups and
edge groups but non-autoregressively generates el-
ements in these groups. See Figure 1.c for our
semi-autoregressive generation process.

Another challenge lies at the probable edge spar-
sity problem when representing sub-graph struc-
tures. Sparse graph representation models like
GCN (Kipf and Welling, 2017) heavily rely on
the given adjacency to capture context information.
That means it may fail to represent historical infor-
mation completely and efficiently when predicted
edges make mistakes. An extreme situation of edge
sparsity is that the new nodes have no incoming
edges predicted so that the model can only rep-
resent its node features rather than the sub-graph
structure. To enhance the robustness of the gener-
ator, we adopt the dense structure of Transformer
(Vaswani et al., 2017). In our Graph Transformer,
there are implicit edges linking from the nodes
in the previous and current hierarchies to the new
node. Then, the predicted explicit edges serve as
the bias to adjust the attention distribution over
the implicit edges so that the model can adaptively
select useful structural information.

Overall, this paper proposes a novel direction
– semi-autoregression to deal with dependency
parsing problems, distinguished with autoregres-
sion and non-autoregression (detailed definitions
about them are available in § 2). With the depen-
dencies denoted as the directed edges, the semi-
autoregressive pattern unfolds graphs in the order
of topological hierarchies, which strictly follows
the explicit dependency relationships defined in de-
pendency graphs. Our model strikes a reasonable
balance, resulting in it neither ignoring inter-output
dependencies like non-autoregressive models, nor
suffering from severe exposure bias in generation
orders like autoregressive models On the exper-
imental side, we evaluate SAGER on Enhanced
Universal Dependencies (EUD) which are non-tree
dependency graphs. In addition to the official eval-
uation metric Enhanced Label Attachment Scores
(ELAS), we design a graph-level matching score
(GMS) to assess the probability of returning an
completely correct graph. Our model outperforms
other baselines in both metrics especially GMS,
showing that it is good at overcoming some in-
tractable prediction errors. Finally, we introduce
multiple model variations to investigate the effect
of different model components and show that our
model is well-designed, especially the parts of dis-
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carding imposed orders and adding implicit edges.

2 Related Work

Autoregressive Parser. Generally, a generator is
in an autoregressive fashion provided its generation
probability at each step is conditional on items it
produces previously. Transition-based parser ob-
viously conforms to the characteristic, as it up-
dates the action probability every step based on the
words, tags and label embeddings previously put
in the buffer and stack (Chen and Manning, 2014).
Meanwhile, we note that some mechanisms com-
monly used in autoregressive generators are used to
improve transition-based parsers like beam search
and pointer networks (Weiss et al., 2015; Ma et al.,
2018; Fernández-González and Gómez-Rodríguez,
2019). On the other hand, Cheng et al. (2016)
proposes a graph-based autoregressive parser by
adding arcs sequentially with the considerations
of previous parsing decisions. However, it should
not be taken as a rigorous graph generative model
as it does not generate by extending the sub-graph
structures. Actually, instead of dependency graphs,
it is more prevalent that leverage the autoregres-
sive graph generators to parse Abstract Meaning
Representation (AMR) (Cai and Lam, 2019, 2020;
Zhang et al., 2019b,a). They are all in the (fully)
autoregressive pattern that an order is imposed to
nodes and edges without topological orderings. In
this paper, we focus on investigating the effects
of these imposed orderings by introducing some
variations of the proposed model.

Non-Autoregressive Parser. In contrast, non-
autoregression implies that all components fac-
torized from the graph are independent, so their
probabilities do not affect each other and can be
obtained in parallel at any time. A representative
non-autoregressive parser is Deep Biaffine Atten-
tion (BiAtt) (Dozat and Manning, 2017) which
assuming all edges are independent. For the tree-
structure dependency graphs, it is often followed by
a searching algorithm for the Maximum Spanning
Tree (MST). Some heuristic algorithms (Li et al.,
2020; Kiperwasser and Goldberg, 2016) construct
the MST step by step, which yet does not mean they
are in the autoregressive manner because all edge
probabilities are predicted at once and fixed before
the searching. As to the higher-order graph-based
parsers, Ji et al. (2019) incorporates the second-
order knowledge into the word representations and
still uses the BiAtt as the final parser. Wang et al.

(2019); Zhang et al. (2020) decompose the graph
into components of different second-order parts.
Different from BiAtt that each component is an
edge, here some components consists of two edges
whose joint probabilities can be calculated as a
whole by a trilinear function. They still belong to
non-autoregressive parsers because their compo-
nents are independent of each other and disable to
be subdivided.

3 Proposed Model

3.1 Definitions

Problem Definition. Conditional on the source
sentence S = (wn)

N
n=1, the task is to generate a

dependency graph hierarchy by hierarchy. The gen-
eration process can be denoted as a sequence of
components: (C(t))Tt=0, T ≤ N . We firstly turn
dependency graphs to DAGs by deleting the back
edges in their cycles. It should be mentioned that
there are only a few graphs with cycles and we
can add these removed edges back by rules be-
fore evaluations. Then we can construct topologi-
cal hierarchies based on the furthest distance from
each node to the root node. The initial compo-
nent C(0) = {v0} in the 0-th hierarchy only has
a root node. When t > 0, the component in the
t-th hierarchy is defined as C(t) = {V (t), E(t)}.
Let Vt =

⋃t
j=0 V

(j), then V (t) = {vi}|Vt|−1
i=|Vt−1|

is a set of nodes in the t-th hierarchy. And,
E(t) = {(vj , vi, zji)|vj ∈ Vt−1, vi ∈ V (t)} is a
set of edges pointing from nodes in the previous
hierarchies to the current nodes, where vj is the
head of vi and zji is the label on the arc.

Explicit and Implicit Edge. We define two kinds
of edges, namely explicit edges and implicit edges.
The former is what we need to really predict. Let
Ni be the explicit first-order neighbours of the node
vi ∈ V (t) and Di be the implicit neighbours, and
Ni∪Di = Vt. Notably, nodes in Ni can not appear
in V (t) according to the definition of topological
hierarchy. They have uni-directional edges point-
ing to the node vi with arc labels, and these edge
can be found in E(t). On the other hand, nodes in
Di should not have pointed to vi, but our model
does so because we expect nodes to learn structural
information adaptively. It should be mentioned
that nodes in the same component or hierarchy
also have implicit edges linking to each other, i.e.,
V (t) ⊆ Di.
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Figure 2: Semi-autoregressive generation process and graph transformer.

Head and Dependent Representation. We define
two representations of the same node with different
roles, namely the head representation and the de-
pendent representation. Each generated node will
first be used as a dependent node to calculate its in-
coming arcs, and then as a head node until the end
of generation. We define the head vector of a node
vi ∈ V (t) as hi and its dependent vector as di. For
a component, its head matrix H(t) = Fθ(Vt, Et, S)
and dependent matrix D(t) = Fθ(Vt, Et−1, S) are
the concatenations of multiple corresponding node
representation, where Et =

⋃t
j=0E

(t). We can see
that the difference between them is that the latter
inputs lack E(t), which means there are no avail-
able explicit edges pointing to V (t) nodes when
calculating dependent representations. We shall
mention that the graph representation model Fθ(·)
can represent all components, but we only need
to focus on the new component at each generation
step because the new component does not affect
node representations in the previous components.

Training Objective. The objective is to maximize
the graph joint probability J :

J =

T∏

t=1

P (V (t)|Vt−1, Et−1)P (E(t)|Vt, Et−1)

P (V (t)|Vt−1, Et−1) =
∏

vi∈V (t)

P (vi|Vt−1, Et−1)

P (E(t)|Vt, Et−1) =
∏

ei∈E(t)

P (ei|Vt, Et−1)

Vt = Vt−1 ∪ V (t), Et = Et−1 ∪ E(t)

It indicates that we autoregressively generate the
new node group V (t) and the edge group E(t) based
on groups generated previously and the elements
in the same group are independent.

3.2 Graph Generation Process
Figure 2 presents the generative process from the
3-rd step to the 4-th step. Specifically, At the gen-
eration step t, we firstly update head representa-
tions H(t−1) for the last-step nodes V (t−1) using
their network structure information E(t−1). No-
tably, although there only generates an intermediate
sub-graph of the entire structure, the explicit topo-
logical information of V (t−1) nodes is completed
because they would not have incoming arcs from
nodes generated later. On the other hand, these
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sentence words have been represented as a dense
matrix S by a Transformer-encoder. Then, their
probabilities of being selected are calculated by:

P (w1:N ) = MaxPool
[
σ
(

H(t−1)W1W⊤
2 S⊤

)]

V (t) = {wn|P (wn) > 0.5}

where W ∈ Rd×d is a linear transformation matrix.
This operation is similar to a multi-label classi-
fication. Every source word is assigned with an
independent probability, and words with probabili-
ties larger than 0.5 are selected as new nodes V (t).
To represent these new nodes as D(t) when their
network structural information are unknown, we
suppose that there are implicit edges pointing from
previous nodes to these nodes. Besides, these new
nodes are connected to each other by implicit edges.
Although it is impossible to appear explicit edges
among them, this operation can further enrich node
representations. Their connections are illustrated
by the second adjacency matrix in the middle block
of Figure 2. Explicit edge connections and types
are then figured out by Deep Biaffine Attention
(Dozat and Manning, 2017):

E(t) = DeepBiaffine
(
∥t−1
j=0H(j),D(t)

)

where ∥t−1
j=0H(j) is achieved by concatenating head

representations of all nodes in the previous hierar-
chies. The generation proceeds via repeating the
aforementioned operations until no words can be
selected as new nodes.

3.3 Graph Representation Model
Recently, Transformer (Vaswani et al., 2017) has
made impressive progress in the graph repre-
sentation field (Ying et al., 2021). In essence,
Transformer regards inputs as an undirected fully-
connected graph, thus serving as a special graph
representation model that can enjoys global percep-
tion at all layers. Previous works focusing on adapt-
ing Transformer-encoder to node or graph classi-
fication, while this paper modifies Transformer-
decoder to conduct graph generation.

Let x(l)
i denote the node vi embedding at the l-th

layer. If the node vi is in the component Ct and
copied from the source word wn, its initial node
embedding x

(0)
i should be the summation of:

x
(0)
i = S[n] +P[t]

where S,P indicate word embeddings and hierar-
chical positional encodings respectively, as shown

in Figure 2. Nodes in the same hierarchy have the
same hierarchical positional encodings.

The message passing layer actually takes the
position of the masked self-attention layer in the
decoder. The original decoder self-attention helps
every word to aggregate left-ward contexts. In con-
trast, every node in our model not only aggregates
left-ward contexts (i.e, nodes in previous hierar-
chies), but also nodes in the same hierarchy. To
distinguish explicit edges and implicit edges, the
message vector mji of the node vj with an explicit
edge pointing to the node vi should be enriched
with prior structural knowledge by

m
(l)
ji =

{
x
(l)
j + relu

(
x
(l)
j Uzji

)
, vj ∈ Ni

x
(l)
j , vj ∈ Di

where Uzji ∈ Rd×d indicates the parametric em-
bedding matrix of the edge label zji. These edge
embedding metrics are shared across all layers. No-
tably, we assume that the central node vi is self-
connected implicitly, i.e. vi ∈ Di. The reduction
function is then defined as the multi-head attention:

αji =
exp

(
xiWQW

⊤
Km⊤

ji

)

∑
vu∈Ni∪Di

exp
(
xiWQW⊤

Km⊤
ui

)

x
(l)′

i =


 H

∥
h=1


 ∑

vj∈Ni∪Di

αh
jim

(l)
ji W

h
V




WO

We can see that the query is the node embedding
xi, and the keys and values are those message vec-
tors mji. Its output x(l)′

i is then fed into the feed-
forward layer to enter the next layer:

x
(l+1)
i = FFN

(
x
(l)′

i

)

The outputs x(L) of the final layer are head repre-
sentations or dependent representations.

The edge embedding matrices U give the model
access to prior structural knowledge and enable it
to select useful prior knowledge adaptively. When
all structural knowledge is useless (i.e, parameters
in U are trained to be zeros) and each hierarchy
only contains one node, the graph model degrades
to a vanilla Transformer decoder.

4 Experiment

Datasets. We tune our models primarily on 15 lan-
guages that appear in IWPT 2020 dataset and IWPT
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IWPT 2021 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg
E

LA
S BiAtt 92.7 91.0 87.2 87.2 90.6 88.4 92.1 81.9 88.3 90.5 90.2 93.2 91.5 87.3 89.1 89.4

Tree-G 92.8 91.1 87.3 87.1 90.7 88.6 92.3 81.9 88.2 90.5 90.4 93.2 91.6 87.5 89.0 89.5
SAGER 92.9 90.9 87.9 87.3 90.7 89.5 92.8 83.5 88.5 90.9 90.4 93.5 92.1 87.9 89.6 89.9

G
M

S BiAtt 47.4 44.8 36.3 37.1 38.7 40.3 43.8 21.0 38.4 46.9 40.8 50.3 51.0 32.2 34.6 40.2
Tree-G 47.8 45.3 36.9 37.0 39.1 41.1 44.7 21.0 37.9 47.0 41.9 50.8 51.5 33.4 34.2 40.6
SAGER 48.8 45.6 40.3 39.2 41.4 45.4 47.1 28.2 42.8 51.3 43.6 54.2 57.8 38.2 39.2 44.2

IWPT 2020 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg

E
LA

S Sec-order 91.5 90.1 87.1 86.0 89.0 85.3 91.5 78.9 87.6 86.2 84.0 92.3 87.6 84.7 88.0 87.3
UDify 90.7 87.5 87.2 84.5 89.5 85.9 91.5 77.6 84.9 84.7 84.6 90.7 88.6 85.6 87.2 86.7
SAGER 92.6 90.4 88.2 86.9 90.1 87.4 92.6 82.5 88.5 86.7 86.7 93.2 91.0 87.0 89.0 88.9

G
M

S Sec-order 43.1 37.7 35.7 31.8 34.4 29.2 44.4 15.1 35.3 31.0 28.6 47.1 38.7 26.5 30.5 33.9
UDify 41.4 31.4 34.1 31.2 34.5 33.2 41.5 17.8 31.6 23.8 26.1 40.6 43.1 27.1 31.2 32.6
SAGER 48.3 43.5 41.6 36.6 38.4 38.7 47.1 25.6 42.0 34.1 32.9 53.7 55.2 36.4 38.3 40.8

Table 1: Average ELAS and GMS results of 3 calculations on IWPT 2021 and IWPT 2020 datasets. We use L = 2
according to ELAS on the English dev-set.

2021 dataset (Bouma et al., 2020, 2021). The two
shared tasks focus on EUD (Schuster and Manning,
2016) which are non-tree graphs with reentrancies,
empty nodes and sparsity cycles. To construct the
topological hierarchy, we need to delete the back
edges in cycles firstly and add them back by rules
at inference time. For the language that has mul-
tiple treebanks, we simply concatenate all of its
treebanks. Besides, we use gold tokenization and
gold sentence segmentation during training and
development. At test time, we use the results of
tokenization and segmentation provided by the top
ranked models.

Baseline Models. Our comparison experiments
aim to investigate the performances of models
themselves, without considering some learning
techniques like ensembling (Grünewald et al.,
2021), two-stage training (Shi and Lee, 2021) and
automated concatenation of embeddings (Wang
et al., 2021). We conclude four strong baselines
from top-ranked systems in IWPT 2021 and IWPT
2020, namely Deep Biaffine Attention (Dozat and
Manning, 2017), Tree-Graph Parser (Shi and Lee,
2021), Second-order Parser (Wang et al., 2019,
2020) and Language-specific UDify (Kondratyuk
and Straka, 2019; Kanerva et al., 2020). Their re-
sults are reported after eliminating the effects of
learning techniques.

Evaluation Metrics. ELAS results are evaluated
by the official script provided by IWPT 2021. Be-
sides, we also define a graph-level matching score
(GMS) to investigate whether the model can deal
with a few arcs that are difficult to be predicted
properly in a sample. Since we segment UD sen-
tences from raw texts, the numbers of sentences are

different for each system. Therefore, GMS is an
F1 score around the number of absolutely matched
graphs,

Recall =
#matched graph

#gold sentences

Precision =
#matched graph

#system sentences

GMS =
2×Recall × Precision

Recall + Precision

where # represents The number of .

Word Embeddings. Similar to the operations in
most top-ranked systems, our word embeddings
S[n] are initialized as the weighted summation of
the corresponding hidden states in XLM-R layers
(Conneau et al., 2020), where the weights are the
learned attention distribution over all XLM-R lay-
ers. For the word composed of multiple subwords,
we extract the hidden states of the last one. We set
up the dimension in the graph representation model
as d = 1024, the same as that in the pre-trained
models.

Other Details. We train models directly on each
language with Teacher Forcing Training to out-
put all head (dependent) representations at once.
Besides, we truncate the input sentences to 100
words at training time. We totally run 100 epochs
with 16 batch size and select the model parameters
base on the ELAS on the development sets. We
train our models on a single v100 with a speed
of about 10000 samples in 10 minutes. We use
ReZero (Bachlechner et al., 2021) in our graph
transformer, instead of LayerNorm operations com-
monly used in Transformer. In this case, we do not
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need to use the warm-up learning schedule, and we
use Adam optimizer with the 0.97 decay ratio of
the learning rate. We set up the initial learning rate
of pre-trained embeddings as 2e − 5, and that of
others as 1e− 3. Besides, dropout rates in the part
of pre-training and graph representation are set to
0.1, while the output layers of nodes and edges are
set to 0.3. We build up the vocabulary on the arc
labels for each language respectively. To shrink
the size of edge vocabularies, we follow the de-
lexicalization operations of arc labels (Grünewald
and Friedrich, 2020) and re-lexicalize them before
evaluations.

5 Results and Analysis

5.1 Main Results

The official evaluation metrics ELAS of our mod-
els and baselines are shown in Table 1. We note
that SAGER achieves at least comparable results
on all languages. In IWPT 2021, in addition to
obtaining the best average ELAS performance (av-
erage ∼ 0.4% points), our model brings significant
improvements over multiple languages like Lithua-
nian (∼ 1.6% points), French (∼ 0.9% points), En-
glish (∼ 0.6% points). This enhancement is more
significant when comparing our model with the top
two models in IWPT 2020 (average ∼ 1.6% points
). Besides, sharper increases appears in GMS of
IWPT 2021 (average ∼ 3.6% points) and IWPT
2020 (average ∼ 6.9% points), where our model
achieves an amazing rising against the baselines in
all languages.

It should be mentioned that a higher ELAS does
not mean a higher GMS, as shown in the results
of Czech (cs) language. In other words, some ob-
stinate errors are fixed to make more dependency
graphs completely correct, but there appear some
samples where more mistakes concentrate. This
situation derives from the inherent characteristics
of autoregressive generation that the prediction ac-
curacy at one certain step is heavily dependent on
that at historical steps. In ideal states, the historical
information can calibrate some obstinate errors by
the learned dependencies. However, once devia-
tion occurs in an intermediate step, it may lead to
mistakes that should not have been made. This is
the essential reason that autoregressive parsers are
weaker than non-autoregressive parsers. By com-
parison, our semi-autoregressive parser mitigates
the negative impact of this characteristic by remov-
ing some unreasonable dependency relationships,

thus resulting in better performances in both ELAS
and GMS.

5.2 Model Variant Ablation Studies

To investigate the importance of different model
components and input features, we evaluated the
following variations of our model.

A. Autoregressive generation with random
orders. We impose random orders to the sib-
ling nodes, so the model is converted to a fully-
autoregressive generator. At each step, the model
only generates a new node and its all incoming
edges. The sibling nodes will be re-ordered after a
training epoch.

B. Autoregressive generation with word or-
ders. The sibling nodes are sorted by the positions
of the node words in the sentence.

C. Combine random orders and word orders.
The sibling nodes are firstly randomly sorted at the
early stage of training and fixed to the word orders
at later training.

D. No implicit edges. Without the implicit
edges, the graph representation model is similar
to GAT (Velickovic et al., 2018) but the messages
are additionally enriched with the arc label infor-
mation.

E. No implicit edges in the same hierarchy.
We remove the implicit edges between nodes in the
same topological hierarchy. In this case, each node
only has the incoming arcs from the nodes in the
previous hierarchies.

F. No explicit edges. We replace all explicit
edges by implicit edges, which is equal to forcing
the edge embedding matrix U to zeros.

G. No hierarchical positional encodings. In
this case, the model would lose the sequential re-
lationships between hierarchies and fail to locate
nodes of different hierarchy.

The ablation results of 6 languages are summa-
rized in Figure 3. We firstly focus on the fully-
autoregressive variations, namely the model A, B
and C. We can see that there are significant declines
in performances when imposing orderings to sib-
ling nodes, indicating that the autoregressive mode
heavily suffers from exposure bias in terms of gen-
eration orderings. Besides, the extent of declines
varies a lot in different languages, ranging from
over 30% in the Slovak (sk) dataset and within 1%
in the English (en) and Italian (it) datasets. This
proves that the impact of imposed sorting is quite
unstable.
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Figure 3: Test-set ELAS results, comparing the origin model with different model variations

Moving to the model D, E and F which are varia-
tions with respect to explicit and implicit edges. Al-
though it is not as significant as the negative effects
of using autoregressive modes, that of removing
implicit or explicit edges cannot be ignored. Gener-
ally, implicit edges play a more important role than
explicit edges as the performances of model D are
often lower than those of model E and F. This vali-
dates that the edge sparsity is the major problem of
graph generation after the uncertainty of generation
orderings. Besides, the implicit edges in the same
hierarchy (see model E) and the historical arc la-
bel information (see model F) are both compulsory
model components because the model always per-
forms worse when dropping them. The final is the
model without hierarchical positional encodings.
Compared with other variations, its performance is
the closest to the origin model, implying that our
graph representation model is not very sensitive to
the sequential relationships between hierarchies.

5.3 Error analysis of Topological Hierarchy
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Figure 4: (a) Accuracy of nodes in the correct hierarchy.
(b) ELAS results using oracle Topological Hierarchy
(TH).

Since a topological hierarchy regulates the rough
topological structure of a dependency graph, its
prediction accuracy is crucial for the whole model.

We investigate the node accuracy on 5 languages
(see Figure 4.a), and find that about 90% nodes
can fall into correct hierarchies. Even the language
performing worst under the ELAS evaluation can
reach 80% node accuracy. We then provide the
model with the oracle node group at each genera-
tion step and plot the comparison results against
the origin model in Figure 4.b. There is about a 1%
increase of ELAS on most languages when using
oracle TH. It is surprising that oracle TH does not
bring about improvement to the English dataset,
indicating that corrupt topological hierarchies do
not always lead to incorrect arcs. Actually, it would
cause bad results only when the dependent node of
an arc is generated before its head nodes. It does
not matter for corruptions that do not shuffle the
orders of heads and dependents.

5.4 Sensitive analysis of Layers
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Figure 5: Sensitive analysis of layers on test sets.

We test the sensitivity of ELAS results to dif-
ferent L. As shown in Figure 5, We select four
languages whose ELAS are significantly higher
than baselines’ when L = 2. We find that our
model still outperforms the baseline whichever L
is used. Besides, it is hard to disclose a trend be-
tween model performance and the number of lay-
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ers from the four plots. This is possibly because
graph transformer can capture context information
of high-order neighbours even with one layer. Over-
all, SAGER is insensitive to the number of layers.

6 Case Study
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Figure 6: Case study, auto is the model B in § 5.2.

To better understand the drawbacks of non-
autoregressive and autoregressive models, we
present two examples in Figure 6. In the first ex-
ample, semi-auto performs better because it can
predict the arc nsubj:xsubj with the help of the pre-
viously predicted arc xcomp. The two edges are
heavily dependent. In contrast, non-auto fails be-
cause it assumes independency between edges. In
the graph produced by the auto, the edge between
the first measure and the comma should have been
predicted after linking measure to weight, but the
model actually skips the step and predicts a wrong
arc conj. This is probably because (nsubj, obj, conj)
is a very highly-frequent dependent relationship in
autoregressive graph sequences.

7 Conclusion and Limitation

This paper explores a semi-autoregressive depen-
dency graph parser (SAGER) that learns the ex-
plicit dependencies in dependency graphs. This
generation pattern captures the edge dependencies

while reducing exposure bias, resulting in a more
effective parser and two insights about graph gen-
eration, namely the ordering uncertainty and edge
sparsity. We believe that the proposed algorithm
can be applied in other language parsing problems
such as OIA (Open Information Annotation) (Sun
et al., 2020; Wang et al., 2022) and graph genera-
tion problems (Sun and Li, 2019).

The limitations of our work are inference speed
and decoding strategy. The efficiency of semi-
autoregressive inference is lower than that of non-
autoregressive algorithms, so currently it cannot
be applied to scenarios with high frequency re-
quests. Furthermore, this paper only introduces
greedy search as a decoding strategy. Overcoming
the challenge of introducing many complex decod-
ing strategies such as beam/tree search (Liu et al.,
2020; Ma et al., 2021) belongs to our future work.
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