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Abstract

Automatic speech translation is sensitive to
speech recognition errors, but in a multilingual
scenario, the same content may be available in
various languages via simultaneous interpret-
ing, dubbing or subtitling. In this paper, we hy-
pothesize that leveraging multiple sources will
improve translation quality if the sources com-
plement one another in terms of correct infor-
mation they contain. To this end, we first show
that on a 10-hour ESIC corpus, the ASR errors
in the original English speech and its simul-
taneous interpreting into German and Czech
are mutually independent. We then use two
sources, English and German, in a multi-source
setting for translation into Czech to establish
its robustness to ASR errors. Furthermore,
we observe this robustness when translating
both noisy sources together in a simultaneous
translation setting. Our results show that multi-
source neural machine translation has the po-
tential to be useful in a real-time simultaneous
translation setting, thereby motivating further
investigation in this area.

1 Introduction

Speech translation (ST) suffers from automatic
speech recognition (ASR) errors, especially in chal-
lenging conditions such as non-native language
speakers, background noise, named entities and
specialized vocabulary usage (Macháček et al.,
2019; Gaido et al., 2021, 2022; Anastasopoulos
et al., 2022). ASR errors negatively impact transla-
tion quality, via the compounding of speech recog-
nition and translation errors (Ruiz et al., 2017; Sper-
ber and Paulik, 2020), thereby limiting the appli-
cation of automatic speech translation in realistic
settings. Fortunately, there are multilingual settings
where a source is simultaneously or consecutively
interpreted into multiple languages. Many docu-
ments are also dubbed or subtitled in offline mode.
This simultaneous interpretation takes place either
via human interpreters, in the form of dubbing or

subtitling. In a situation where the same sentence
is available in multiple languages, multi-source
machine translation (MT) significantly improves
translation quality, especially when the two sources
used separately do not yield high quality transla-
tions (Dabre et al., 2018; Zoph and Knight, 2016;
Nishimura et al., 2018).

Although not yet clearly verified, multi-source
MT could be useful in settings where the sources
complement each other. In other words, challenges
in translation posed by using each source should
be independent of one another. Given that ASR
is noisy and that multiple sources can help over-
come limitations of individual sources, this paper
asks the following question: “Can multi-source MT
be leveraged for speech translation in a multilin-
gual setting where an original source transcription
and its simultaneously interpreted transcription are
available?” We decompose this question into three
parts where we hypothesize that (a) ASR errors
in the original and interpreted transcripts are inde-
pendent, which makes them complementary, (b)
multi-source MT is robust to transcription errors
present in individual sources, and (c) the robustness
of multi-source MT continues to hold in a simulta-
neous translation setting. We address each question
in Sections 3, 4, and 5, respectively.

To prove our hypotheses, firstly, we verify on the
Europarl Simultaneous Interpreting Corpus (ESIC,
Macháček et al., 2021) that original speech ASR
and interpreted speech ASR are indeed comple-
mentary in terms of errors. Secondly, we simulate
transcription errors in a full sentence multi-source
MT setting for English and German to Czech trans-
lation. We clearly show that when both sources
are noisy, using them together leads to significant
improvements when compared to using them in-
dividually, in contrast to drops in quality when at
least one of the sources is clean. For example,
on ESIC test set with 15% WER noise in English
source and 10% WER noise in German source,
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multi-sourcing performs 0.9 BLEU score higher
than English source. Finally, we use both sources
in a simultaneous translation setting and show that
multi-source MT continues to be robust to tran-
scription errors.

Our findings show that multi-source MT has
strong potential in a simultaneous translation set-
ting where multiple sources are available via ASR
or interpreted ASR. We note that our current analy-
sis is limited to the case where the multiple sources
are aligned and hence available at the same time.
This is a setting of, e.g., dubbed and subtitled
videos where we would want to consider additional
target languages. In simultaneous settings where
one source is available with a delay, the synchro-
nization of the sources would be a considerable
problem, which we leave for future research.

2 Related Work

This paper mainly focuses on ASR errors, multi-
lingual multi-source translation and simultaneous
translation.

ASR errors often propagate to MT in cascaded
ST systems and in a real time translation setting
where ASR systems are used. It is a major is-
sue that affects translation quality. Martucci et al.
(2021) propose a method to tune the MT on the
training data with artificial noise that mimics ASR
errors, via a unigram “lexical noise model” learned
on automatic–gold transcript pairs. Other authors
propose similar methods for training (Sperber et al.,
2017; Di Gangi et al., 2019; Xue et al., 2020; Serai
et al., 2022). However, in this work, rather than
mimicking ASR noise during training, we comple-
ment a noisy source with another whose ASR errors
are provably independent of the first. Specifically,
we use the lexical noising of Martucci et al. (2021)
to simulate noise in multiple source languages and
show the robustness of MT models, especially in a
multi-source setting.

Multilingualism (Dabre et al., 2020) has been
shown to improve translation quality in a vari-
ety of situations. In particular, multi-source ma-
chine translation has high potential for improving
translation quality, but has been relatively underex-
plored. In the context of multi-source text-to-text
translation, Zoph and Knight (2016) and Dabre
et al. (2018) showed that leveraging the same sen-
tence in different languages improves translation
quality as the two sources are expected to com-

plement hard to translate phenomena in the other
source. Although this approach requires multi-
parallel sentence-aligned data, the missing sources
can be obtained by MT (Nishimura et al., 2018) or
via simultaneous interpretation. Rather than train-
ing a multi-source model, Firat et al. (2016) pro-
pose the “late averaging” which needs multilingual
models trained on pairwise bilingual data, which
we also focus on when evaluating multi-source
models. Late averaging is akin to ensembling via
logits averaging, but with source sentences in dif-
ferent languages. These works do not consider
transcription errors which are ubiquitous in speech
translation, an aspect this paper focuses on.

Multi-sourcing in simultaneous translation set-
tings has not been extensively explored. Dabre
et al. (2021) have explored simultaneous multi-
pivot translation where a source is translated into
a target language via multiple pivot languages,
where the pivot languages are translated using
multi-source translation. Unlike them, we con-
sider only one pivot language which is interpreted
from the source and then use it together with the
source to show that the translation quality into the
target language improves. Additionally, they do
not consider the effect of transcription noise on
translation, which we do. Simultaneous transla-
tion approaches such as wait-k (Ma et al., 2019)
and Local Agreement (LA-n, Polák et al., 2022)
are commonly used, and we use the latter for our
experiment.

An alternative multi-sourcing approach is to se-
lect and use only one source. Macháček et al.
(2021) provide an analysis of using either the origi-
nal, or its simultaneously interpreted equivalent as a
source for simultaneous ST. Interpreting is delayed,
but shorter and simpler than translationese. Inter-
preters also segment their speech to sentences dif-
ferently than the original speakers, so it is not easy
to align segments. In any case, selecting sources
will involve additional effort and thus we consider
using multiple sources together to be a more effec-
tive approach. In this regard, multiple language
sources, both as text and speech streams, could be
used in ASR (Paulik et al., 2005; Soky et al., 2022)
as well as in pre-neural MT and ST (Och and Ney,
2001; Paulik and Waibel, 2008; Khadivi and Ney,
2008). Miranda et al. (2013) use them for punc-
tuation restoration. Kocmi et al. (2021) provide a
broad analysis of benefits of multilingual MT.
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subset Cs interp. De interp. En original
dev 14.84 25.14 13.63
test 14.04 23.79 14.71

Table 1: Transcription WER on ESIC. There are 191
and 179 documents in dev and test subsets. The scores
are weighted by number of words in gold transcripts.

3 Parallel Source-Interpreted ASRs are
Independent

We assume a multi-source setting with the original
speech and its simultaneously interpreted equiva-
lent as the two sources will improve robustness to
ASR errors if the errors in the two source streams
complement each other. This is not obvious be-
cause, on the one hand, the ASRs work indepen-
dently where they are deployed for different lan-
guages, trained on different data, and the process-
ing is fully independent. On the other hand, the
content of the speeches is identical. Interpreters’
speech pacing also depends on the original speaker,
and it may influence the quality of both ASRs the
same way. Therefore, in this section, we analyze
the dependency of ASR errors in the source and in-
terpreter, on 10-hour ESIC corpus (Macháček et al.,
2021) to prove that the ASR errors are indeed inde-
pendent.

Methodology First, we processed ASR for En-
glish original speakers and interpreters into Czech
and German. For English, we used the low-latency
neural ASR by Nguyen et al. (2021). For German,
we used an older hybrid HMM-DNN model trained
using the Janus Recognition Toolkit, which fea-
tures a single-pass decoder (Cho et al., 2013). For
Czech, we used Kaldi (Povey et al., 2011) HMM-
DNN model trained on Czech Parliament data (Kra-
tochvíl et al., 2020). Table 1 summarizes the tran-
scription quality on ESIC showing that the quality
is low, but to the best of our knowledge it is the
best one available for this domain.

We then re-used the word alignments of gold
transcripts between the original and interpretation
as described in Macháček et al. (2021). 38% of
tokens were aligned between English and Czech
interpretations, and 40% between English and Ger-
man, see Table 2. It may be caused by the charac-
teristics of the language pair (e.g. compound words
in German vs multi-word expressions in English),
features of interpreting (non-verbatim translation,
shortening) and by errors in automatic alignment.
We only analyzed the aligned tokens further. Since

En tokens En-Cs aligned En-De aligned
dev 44,494 16,962 (38.12%) 17,809 (40.03%)
test 46,151 17,623 (38.19%) 19,280 (41.78%)

Table 2: Number and percentage of aligned tokens in
gold transcripts between the original source (English
[En]) and its interpretations (German [De] and Czech
[Cs]).

En orig. Cs int. De int.
corr. incorr. corr. incorr.

dev corr. 13815 1497 7192 1561
incorr. 1228 422 633 307

test corr. 14204 1655 7895 1638
incorr. 1344 420 692 336

Table 3: Contingency table of correctly and incorrectly
recognized aligned tokens in English source (in rows)
and interpretation into Czech and German (in columns),
in dev and test subset of ESIC corpus. According to the
χ2 test of statistical independence, in all 4 cases, the
parallel recognition is independent with p < 0.01.

there are many tokens left in two 5-hour subsets of
the corpus, we consider further analysis as valid.

Finally, we aligned gold and automatic tran-
scripts using Levenshtein edit distance.1 We classi-
fied each token in the ASR transcript as transcribed
correctly or not, both for source and interpretations.

Results We made a contingency table (Table 3)
and ran a χ2 test (Pearson, 1900) of statistical in-
dependence. The results show that the parallel
source and interpretation ASRs make errors in-
dependently of each other with p < 0.01, for both
pairs, English-Czech and English-German, for both
dev and test subsets.

We manually assessed the severity of the ASR
errors and realized that most errors are only in
spelling and fluency, and not in adequacy. We
therefore conclude that our finding of independence
of parallel ASRs may be valid only for ASRs of
comparable quality to ours.

4 Multi-Source Speech Translation

Having established that ASR errors are indepen-
dent, we now analyze whether multi-source neu-
ral machine translation (NMT) is robust to noisy
sources. We focus on NMT for individual sen-
tences, with gold sentence alignment of the sources
and reference. It is a less realistic use-case than
translating long speech documents without any sen-
tence segmentation and alignment of the sources,
but proving the robustness of multi-sourcing in this

1https://pypi.org/project/edlib/
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sent. doc. En words De w. Cs w.
dev 2002 179 44866 43323 38347
test 1963 189 44273 42491 37695

Table 4: Size statistics of tri-parallel sentence-aligned
“revised translations” of ESIC (Macháček et al., 2021).
English is original, German and Czech are translations.

setting paves the way for its application in long
speech document translation.

Data For training, we use data from OPUS
(Tiedemann and Nygaard, 2004), aiming at a multi-
way model with English and German on the source
side and Czech as a target. We download all
the data from OPUS, remove all sentences from
IWSLT, WMT, ESIC and other test sets, filter
them by language identification, and then pro-
cess with dual cross-entropy scoring (Junczys-
Dowmunt, 2018) using the bilingual NMT models
from Tiedemann and Thottingal (2020). We select
the top 30 million sentences for each language pair
as training data, to prevent overfitting for either. It
is also near the threshold that Chen et al. (2021)
showed as optimal.

For NMT validation and evaluation, we use the
“revised transcript and translations” from ESIC
(Macháček et al., 2021). These are the texts that
were originally uttered in the European Parliament,
transcribed, revised and normalized for reading
and publication on the website, and then translated.
They are analogous, but not identical, to the gold
transcripts of the original and interpretations that
we used in Section 3. In addition to the version
published by Macháček et al. (2021), we properly
align the sentences in all the three languages. Two
documents were removed because they missed Ger-
man translation. The corpus is of comparable size
to a usual MT test set. See size statistics in Table 4.

For a contrastive evaluation, we use Newstest11
(Callison-Burch et al., 2011). It contains 3003 sen-
tences in 5 languages: English, German, Czech,
French and Spanish, the same amount in each.
Newstest11 has references that were translated di-
rectly, not through an intermediate language. We
also use three additional Czech references of New-
stest11 that were translated from German (Bojar
et al., 2012).

Multi-Sourcing We convert Marian models to
PyTorch to be used with the Hugging Face Trans-
formers (Wolf et al., 2020) library, in which we im-
plement late and early averaging. For both single-

and multi-sourcing, we use greedy decoding be-
cause beam search support is not implemented with
multi-source.

Training details We train a multi-way NMT
model using Marian (Junczys-Dowmunt et al.,
2018) with English and German as sources, with
language identification tokens, and Czech as the
target. We use two separate SentencePiece (Kudo
and Richardson, 2018) vocabularies, both sizes of
16 000. The source vocabulary is joint for Ger-
man and English, and the target is only for Czech.
The model is a Transformer Base (6 layers, 512
embedding size, 8 self-attention heads, 2048 filter
size) trained on 8 Quadro P5000 GPUs with 16 GB
memory for 17 days, until convergence.

Checkpoint selection We validate all check-
points (every 1000 training steps, 15 minutes) on
two single sources (English and German) and two
multi-sourcing options: early averaging, and late
averaging of a single checkpoint with two sources.
Furthermore, after the training has ended, we se-
lected top 10 checkpoints that reached the high-
est BLEU scores for English and German single-
source on the ESIC dev set. We evaluated all pairs
of the top performing checkpoints in late averaging
multi-sourcing setup. The top performing model
from all validation and grid search options was se-
lected as a final model. It is late averaging with a
pair of distinct checkpoints. We also use these two
checkpoints for single source evaluation.

Evaluation Metrics We estimate translation
quality by BLEU (Papineni et al., 2002) and chrF2
(Popović, 2016) calculated by sacreBLEU2 (Post,
2018). We also report the current state-of-the-art
metric COMET3 (Rei et al., 2020) that achieves
the highest correlation with direct assessment as a
kind of human judgements (Mathur et al., 2020).
However, COMET requires one source on the input
and is not suitable for multi-source. Therefore, we
report it twice (En/De COMET) with two single
sources. Note that En COMET scores assume En-
glish as source and Czech as target. Since ESIC is
tri-parallel, even if the translation is obtained us-
ing German or English and German multi-source,
we only use the English source as the input to the
COMET model. De COMET scores are computed
similarly.

2Metric signatures: BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp| ver-
sion:2.2.1, chrF2|nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1

3wmt20-comet-da model
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Results with clean inputs Table 5 shows the
results of multi-sourcing with clean inputs, with-
out any speech recognition noise. One would be
tempted to conclude that the translation from En-
glish is of a higher quality than the translation from
German (e.g. 33 vs. 26 BLEU on ESIC dev set),
but such a claim is risky. The metrics measure the
match of the candidate translation with the refer-
ence sentence (and, in case of COMET, also with
the source), and it is conceivable that the English
served as the source for the human reference trans-
lation. The Czech reference thus may very well
exhibit more traits of the English source than of the
German source. While the chrF2 scores agree with
BLEU, COMET scores seem to indicate that multi-
sourcing is as good as, if not better than, using a
single source. Since COMET is known to correlate
with human judgements better than BLEU (Mathur
et al., 2020) our results show that multi-sourcing is
indeed a viable solution.

To further shed light on the impact of the source
used for creating references, we evaluated the mod-
els with Newstest11 and computed the scores with
three additional references that were translated
only from German. The German single source
achieves much higher BLEU than the English
source (32.23 vs 16.62 BLEU), with multi-sourcing
in between (22.47 BLEU). Similar trends are ob-
served in chrF2 and COMET scores. This is the
opposite of ESIC scores, where the reference was
obtained from English. It shows that the traits of
the source language such as word order, structure
of clauses and terms are remarkable in automatic
metrics when the reference is constructed from that
source, but these effects may be negligible in hu-
man evaluation. Appendix C contains more details.

Finally, we consider a “balanced” scenario
where an equal number of references comes from
both sources and this shows similar scores for both
single sources (23.40 vs 22.85 BLEU) with multi-
sourcing outperforming them by 0.6 and 1.1 BLEU.
We therefore conclude that our multi-source model
should be well-prepared for content originating in
any of the source languages, but the automatic eval-
uation metrics may not always capture this. Mov-
ing forward, we only use BLEU for simplicity.

4.1 Modeling Transcription Noise

Although multi-sourcing English and German is
not very beneficial when both sources are clean, we
hypothesize that it could show benefits with noisy

Set Metric Model
ref. translation: En De De+En

ESIC dev
En→Cs

BLEU ∗33.31 26.13 ∗31.90
chrF2 ∗60.17 54.00 ∗58.59

En COMET ×0.920 0.860 ∗0.919
De COMET ×1.007 0.994 ∗1.022

ESIC test
En→Cs

BLEU ∗33.63 27.99 ∗32.57
chrF2 ∗59.58 54.75 ∗58.63

En COMET ∗0.906 0.871 ×0.912
De COMET 0.994 ×1.006 ∗1.018

news11
3×{De→Cs}

BLEU 16.62
±0.29

32.23
±0.53

22.47
±0.44

chrF2 44.84
±0.18

58.81
±0.38

49.72
±0.27

En COMET 0.528
±0.002

0.823
±0.002

0.652
±0.003

De COMET 0.600
±0.002

0.967
±0.001

0.757
±0.003

news11
{De,En,Fr,Es}→Cs,

Cs

BLEU ∗23.40 22.85 ∗23.96
chrF2 ×51.00 50.27 ∗50.83

En COMET 0.627 ∗0.674 ∗0.659
De COMET 0.700 ∗0.832 ∗0.766

Table 5: Evaluation scores with clean inputs (no
ASR noise), machine-translated into Czech with single-
sourcing English (En) or German (De), or multi-
sourcing (De+En), on ESIC and Newstest11 (news11).
Newstest is evaluated on a balanced reference that has
origin in 5 languages ({De,En,Fr,Es}→Cs translations
and Cs original; 600 sentences each), and 3-times with
additional references that were translated from German
(“3×{De→Cs}”). We report avg±stddev for them. “En
COMET” and “De COMET” are run with English and
German source, respectively. Maximum scores are in
bold. The symbol ∗ means that there is statistically sig-
nificant difference (p < 0.05) from all the lower scores
in the same row, × means no significance (t-test for
COMET, paired bootstrap resampling for BLEU and
chrF2).

sources. Averaging two noisy sources can lead
to cancelling the noise. Since ESIC contains tri-
parallel sentence-aligned translations as texts and
not speech, and since we want to evaluate different
levels of ASR noise, and we do not have many
ASRs, we generate the ASR errors artificially.

Custom WER noise model We adopt the lexical
noise model by Martucci et al. (2021) and modify
it to create outputs with arbitrary WER. The lex-
ical noise model modifies the source by applying
insertion, deletion, substitution, or copy operations
on each word with probabilities pI , pD, and pS , re-
spectively. The probabilities are learned from the
ASR and gold transcript pairs. It thus may learn to
shuffle homonyms such as “eight” and “ate”.

In the original lexical noise model by Martucci
et al. (2021), the target WER is bound to the per-
formance of the given ASR system on which it is
trained, and can not be changed. WER is defined as
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BLEU ESIC dev En WER
single-src. 0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

s-src. 33.3±0.0 29.7±0.3 26.3±0.4 22.9±0.4 20.4±0.5 18.2±0.8 15.8±0.1 14.0±0.2 12.1±0.1

D
e

W
E

R
0 % 26.1±0.0 31.9±0.0 30.0±0.2 28.5±0.3 26.6±0.1 25.2±0.4 23.8±0.3 21.9±0.3 20.5±0.2 19.3±0.3

5 % 23.5±0.0 30.9±0.1 29.1±0.2 27.6±0.3 25.7±0.1 24.2±0.4 22.8±0.4 21.1±0.4 19.6±0.2 18.6±0.2

10 % 21.6±0.2 30.0±0.2 28.0±0.1 26.6±0.4 24.6±0.3 23.4±0.2 21.9±0.4 20.2±0.1 18.7±0.2 17.5±0.5

15 % 19.0±0.3 28.9±0.2 27.1±0.1 25.7±0.4 23.7±0.2 22.4±0.4 21.0±0.4 19.3±0.2 17.8±0.3 16.7±0.4

20 % 17.1±0.3 27.9±0.4 26.6±0.2 24.9±0.4 22.9±0.1 21.7±0.5 20.0±0.4 18.3±0.2 17.0±0.1 15.7±0.1

25 % 15.6±0.3 27.1±0.3 25.7±0.2 24.1±0.3 22.1±0.2 20.7±0.4 19.2±0.5 17.4±0.2 16.3±0.2 14.9±0.1

30 % 13.8±0.2 25.9±0.3 24.5±0.4 22.8±0.3 20.9±0.3 19.6±0.2 18.3±0.2 16.3±0.4 15.1±0.1 13.9±0.2

35 % 12.5±0.2 24.6±0.4 22.5±0.4 20.9±0.2 19.2±0.1 18.1±0.5 16.7±0.3 15.3±0.3 14.1±0.2 12.9±0.1

40 % 10.8±0.1 23.4±0.4 21.4±0.1 20.1±0.3 18.3±0.5 17.3±0.2 16.0±0.1 14.4±0.1 13.2±0.2 12.1±0.1

BLEU news11 En WER
single-src. 0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

s-src. 23.4±0.0 21.1±0.2 19.2±0.1 17.1±0.0 15.3±0.1 13.6±0.2 12.2±0.2 10.6±0.3 9.6±0.0

D
e

W
E

R

0 % 22.9±0.0 24.0±0.0 22.7±0.0 21.4±0.2 20.2±0.1 18.9±0.2 17.8±0.1 16.9±0.1 15.5±0.1 14.6±0.2

5 % 20.6±0.1 23.2±0.1 21.8±0.1 20.7±0.0 19.2±0.0 18.2±0.1 17.1±0.1 16.1±0.1 14.8±0.0 13.9±0.1

10 % 18.8±0.1 22.5±0.1 21.3±0.2 20.1±0.1 18.6±0.2 17.7±0.1 16.4±0.1 15.5±0.1 14.1±0.1 13.2±0.2

15 % 17.0±0.3 21.6±0.2 20.3±0.2 19.1±0.2 17.8±0.1 16.9±0.1 15.6±0.0 14.7±0.1 13.4±0.1 12.5±0.1

20 % 15.4±0.2 20.8±0.0 19.5±0.1 18.3±0.1 17.0±0.2 16.0±0.1 14.9±0.1 14.0±0.1 12.7±0.2 12.0±0.1

25 % 13.8±0.1 19.9±0.2 18.7±0.2 17.7±0.1 16.3±0.1 15.4±0.0 14.0±0.2 13.2±0.1 11.9±0.0 11.1±0.1

30 % 12.3±0.3 19.2±0.3 17.9±0.2 16.9±0.3 15.6±0.1 14.5±0.2 13.5±0.3 12.7±0.2 11.3±0.1 10.6±0.1

35 % 11.2±0.1 18.4±0.0 17.1±0.1 16.1±0.1 15.0±0.2 13.8±0.1 12.7±0.2 11.7±0.1 10.6±0.2 9.9±0.2

40 % 9.9±0.3 17.1±0.0 16.1±0.2 14.9±0.2 14.0±0.1 12.9±0.1 11.7±0.2 10.7±0.1 9.9±0.1 9.1±0.2

Table 6: BLEU (avg±stddev) with transcription noise on ESIC dev set whose reference translations was English and
on Newstest11 with balanced reference source language. Green-backgrounded area is where the English single-

source outperforms German single-source. Black underlined numbers indicate the area where multi-sourcing
achieves higher score than both single-sourcing options. In bold is near maximum gap from single-source, more
than 2.1 BLEU. Red-colored numbers are where at least one single-source scores higher.

WER En De En+De
15% En, 10% De 23.58±0.16 23.23±0.05 26.50±0.27

Table 7: ESIC test multi-sourcing vs single-sourcing
BLEU scores on the artificial WER noise level where
multi-sourcing achieved the largest improvement.

the number of incorrect words in the ASR transcript
divided by the number of correct words in the gold
transcript. The errors are either insertions, dele-
tions, or substitutions. In the lexical noise model,
insertion is applied independently on the other op-
erations. Therefore, we can decompose WER to
the sum of insertion rate and the rate of deletions
or substitutions.

In the lexical noise model, the insertion rate
equals to the expected number of insertions for
each gold word. Since the probability of not insert-
ing is 1 − pI , the expected number of repetitions
before not inserting succeeds is pI

1−pI
. It is also a

mean of a geometric distribution with p = 1− pI .
The rate of deletions and substitutions is pD +

(1− pD)pS , where pD is the number of deletions.
The words that were not deleted can be substituted,

and there is (1− pD)pS of them. In summary, the
original model WER is

WER =
pI

1− pI
+ pD + (1− pD)pS , (1)

To get a custom target WER, we rescale the
learned probabilities by a constant c:

WERdesired =
cpI

1− cpI
+cpD+(1−cpD)cpS . (2)

We simplify the equation above to

WERdesired ≈ cpI + cpD + (1− cpD)cpS . (3)

It leads to a quadratic function where c can be
found easily. Since we work with probabilities, we
select the smallest non-negative root as the solution.
We release our implementation online.4

4https://github.com/pe-trik/
asr-errors-simulator
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Training the noise model For training the noise
model, we utilize VoxPopuli (Wang et al., 2021)
to retrieve around 100,000 audio and gold tran-
script sentences in English and 60,000 in German.
They are from the same domain as ESIC, both
corpora are from the European Parliament. We pro-
cessed the audio with NVidia NeMo CTC ASRs5

(Kuchaiev et al., 2019; Gulati et al., 2020). Then
we trained the rules of the lexical noise model and
applied them on source data. Since the result is de-
terministic on the random seed of the lexical noise
model, we perform multi-sourcing using three dif-
ferent seeds and report average BLEU scores with
standard deviation.

Results with transcription noise Table 6 sum-
marizes the BLEU scores of two-source MT with
different levels of transcription noise in each of the
sources on two sets: ESIC dev with reference trans-
lated from English, and Newstest11 with balanced
reference. Appendix A contains the correspond-
ing chrF2 scores. Table 7 shows the results on the
ESIC test set for the settings where multi-source
models achieved the highest improvement due to
noisy inputs.

In Table 6, on both sets, we observe that the less
noisy single source achieves higher BLEU than
the other single source. When the difference in
noise levels between the sources is small (close to
diagonal in the table), then multi-sourcing reaches
slightly higher BLEU than single sources. In case
of balanced Newstest11, this area matches the diag-
onal. In case of ESIC with English original source
and reference translated from English, the area of
multi-source outperforming single-source is shifted.
This tendency is reflected in the test set results in
Table 7 as well. Only when the German source is
less noisy than the English one, it does improve
BLEU in multi-sourcing. We explain it by the dis-
crepancy of source languages for MT and reference
that affect BLEU the same way as in offline mode
in Section 4. On Newstest11, with the references
translated from German, we expect the reverse.

We also observe expected behavior that the more
noise, the lower BLEU in all setups. Compare e.g.
33.3 BLEU with zero noise and 12.1 with 40%
WER in both sources. With very large noise, it is
possible that neither option would be usable. In
ESIC dev, e.g. when English WER is 20%, we
observe large span, between 5 and 25% WER in

5stt_de_quartznet15x5 and stt_en_conformer_ctc_large
from https://catalog.ngc.nvidia.com/models

German, where multi-sourcing outperforms single
source at least by several hundreths of BLEU. This
span in Newstest11 is much more narrow, only 20
to 25% WER in German. We hypothesize that it
may be caused by the domain difference. The lex-
ical noise model is trained on Europarl. In news
domain, there may be fewer words for substitution,
so the noise consists more of deletions and inser-
tions, and it might be more harmful for MT in com-
bination of two sources. However, multi-sourcing
appears to be robust to ASR errors regardless of
whether we have one or both sources as original.

5 Simultaneous Multi-Source

In the previous section, we experimented with
offline translation with artificial ASR noise and
showed that multi-source models are indeed ro-
bust to noise. However, one important use case of
speech translation is in a real time setting where
simultaneous MT is used. We therefore evaluate
the robustness of multi-source models in a simulta-
neous setting.

5.1 Simultaneous Machine Translation

Simultaneous MT is a task that simulates one
subtask of a technology that translates long-form
monologue speech in real-time, or with the lowest
possible latency. There exist two main approaches
to simultaneous MT: streaming and re-translating
(Niehues et al., 2018; Arivazhagan et al., 2020).
Re-translating systems generate preliminary trans-
lation hypotheses that can be updated. Both ap-
proaches have complementary benefits and draw-
backs. In this paper, we focus on streaming.

We assume that simultaneous MT continuously
receives an input text segmented to sentences, one
token at a time, as produced by the speaker and
upstream tasks. After reading each input token,
the system can either produce one or more target
tokens, or decide to read the next input token, e.g.
to have more context for translation. The goal
of simultaneous MT is to translate the input with
high quality and low latency. Quality is measured
on full sentences as in standard text-to-text MT,
e.g. by BLEU. The standard latency measure of
simultaneous MT is Average Lagging (AL, Ma
et al., 2019). It is an average number of tokens
behind an “optimal” policy that generates the target
proportionally with reading the source.

Simultaneous MT can be created from standard
text-to-text NMT by applying any simultaneous de-
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Figure 1: Single-sourcing vs multi-sourcing with different level of artificial ASR noise of the sources (% WER) in
simultaneous mode on ESIC dev set. The results are depicted as quality (BLEU) and latency (AL) trade-off of the
candidate systems. The plots highlighted by gray background show noise levels where multi-sourcing (En+De, blue
line) outperforms both single sources in BLEU at least for AL>5.5.

coding algorithm. However, it is recommendable
first to adapt NMT, so it is inclined to translate
consecutive sentence prefixes with the same target
prefix. We use Local Agreement (LA-n) as a de-
coding algorithm. It achieved good performance by
the best performing system (Polák et al., 2022) in
the most recent IWSLT competition (Anastasopou-
los et al., 2022). Local Agreement (LA-n) means
that n consecutive updates must agree on a target
prefix to commit and write. The last committed
prefix is then forced as a prefix to decoding the
next units. Agreement size n is a parameter that
controls the latency.

5.2 Creating Simultaneous MT Systems

In Section 4, we used multi-way models trained on
full sentences, but in a simultaneous setting, these
models will make mistakes when translating partial
sentences using the LA-n approach. Therefore, our
multi-way models should first be adapted for partial
sentence translation. To this end, we used the multi-
way English and German to Czech MT model as
a base for simultaneous MT. We fine-tuned the
last trained model checkpoint for stable translation
on 1:1 mix of incomplete sentence prefixes and
full sentences as Niehues et al. (2018). For each
source-target pair of the training data, we selected
5-times 1 to 90 % of source and target characters
and rounded them to full words. Then, we ran

training for 1 day on 1 GPU. We validated BLEU
score on ESIC dev and Normalized Erasure (NE,
Arivazhagan et al., 2020) on all prefixes of the first
65 sentences (around 1500 words) of ESIC dev set.
We ran fine-tuning with multi-way data for English
and German as source languages, and for bilingual
English-Czech and German-Czech MT.

We stopped training after one day when there
were no improvements in stability or quality. Then,
we selected one checkpoint for English and one
for German that reached acceptable quality and
stability values. See Appendix B for details.

5.3 Multi-Sourcing in Simultaneous MT

We use late averaging of the two selected check-
points for multi-sourcing in simultaneous MT.
The only aspects of multi-sourcing in simultane-
ous mode that differ from single-source or non-
simultaneous mode are synchronization of the
sources and how to count Average Lagging.

Synchronization In a realistic use-case, it is nec-
essary to synchronize the original speech and si-
multaneous interpreting. However, we leave it for
further work, as our goal is to inspect the lim-
its of multi-sourcing. Therefore, we simulate a
case where the sources are optimally synchronized,
aligned and parallel to sentence level.

In multi-source mode, we sort all sentence pre-
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fixes by proportion of the character length to the
sentence length. Each “Read” operation of the
multi-source system then receives two prefixes in
two languages. One of them is updated by one new
token. Every such update is counted to local agree-
ment size. We note that there are other strategies,
e.g. count only English source updates to LA-n,
but in this paper we have other goal than searching
for the best strategy.

AL in multi-source In multi-source setup, we
only count Read operations of the English source to
AL calculations that we report, and not of the Ger-
man source because the sources are simultaneous.
Counting only German tokens differs negligibly,
approximately by 0.1 tokens.

5.4 Simultaneous Multi-Source with Artifical
Noise

We want to compare multi-sourcing model to
single-sourcing with artificial ASR noise model
as in Section 4.1. We evaluate each system on
the latency levels with local agreement sizes 2, 5,
10 and 15. Since each evaluation takes approxi-
mately 5 hours on 2000 sentences, we report only
one run, and not average and deviation on multiple
randomly noised inputs.

The results on ESIC dev set are in Figure 1.
We can observe the same trends as in the offline
case. The single source that is noised less achieves
higher BLEU. Multi-sourcing outperforms both sin-
gle sources when both noise levels are similar and
when the English one is lower, e.g. in the case with
10% WER in German and 20% WER in English.
We explain it again by the fact that the Czech refer-
ence is translated from English, and not German.

Furthermore, on both ESIC and Newstest11 (Fig-
ure 1) we observe that multi-sourcing performs
worse in the low latency modes, i.e. in AL<5 that
roughly corresponds to LA<5. We assume that the
proportional synchronization of the two sources
is often inaccurate and may confuse late averag-
ing. In higher latency modes, the synchronization
noise at the end of input may be lowered by lo-
cal agreement. Having validated the multi-source
NMT is robust to ASR errors in both full sentence
and simultaneous settings, we have paved the way
for harder settings where multilingual interpreta-
tions of the original source available with different
amounts of delay can be used for translation.

6 Conclusion

We have investigated the robustness of multi-source
NMT to transcription errors in order to motivate its
use in settings where ASRs for the original speech
and its simultaneously interpreted equivalent are
available. To this end, we first analyzed the 10-hour
ESIC corpus and documented that the ASR errors
in the two sources are indeed independent, indicat-
ing their complementary nature. We then simulated
transcription noise for English and German when
translating into Czech in single and multi-source
NMT settings and observed that using multiple
noisy sources is significantly better than individual
noisy sources. We then repeated experiments in a
simultaneous translation setting and showed that
multi-source translation continues to be robust to
noise. This robustness of multi-source NMT to
noise motivates future research into simultaneous
multi-source speech translation, where one source
is available with a delay. We will also consider
training models with simulated ASR errors to fur-
ther increase their robustness, especially in multi-
source settings.

7 Limitations

Although we have shown the robustness of multi-
source NMT to transcription errors in a full-
sentence and simultaneous settings, our work has
the following limitations:

• Our work does not address the case where
the additional source, typically interpreted, is
available after a delay. A delayed source may
reduce the gains seen by multi-sourcing.

• We have only focused on the Local Agree-
ment (LA-n) approach for simultaneous trans-
lation and exploration of other simultaneous
approaches such as wait-k remains.

• Human evaluation of translations is pending.

• Evaluation on other language pairs is pending.
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Large corpus of Czech parliament plenary hearings.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 6363–6367, Marseille,
France. European Language Resources Association.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
et al. 2019. Nemo: a toolkit for building ai ap-
plications using neural modules. arXiv preprint
arXiv:1909.09577.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3036, Flo-
rence, Italy. Association for Computational Linguis-
tics.
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A chrF2 Scores with Noisy Inputs

There is an evidence that chrF2 correlates with
human judgements better than BLEU. In Table 8,
we can see that for multi-sourcing with noisy in-
puts on ESIC dev, chrF2 are indeed higher than
single-sourcing, and this correlates with the BLEU
score gains in Table 6. On the other hand, for New-
stest11, chrF2 scores do not indicate any improve-
ments. While the corresponding BLEU scores in
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Table 6 indicated improvements of multi-sourcing
with noisy inputs, the magnitude of these gains
were minor, much smaller than those observed for
ESIC. This gives us sufficient reason to believe that
multi-sourcing should be useful in a setting like
ESIC, where the reference is created from only one
source, which is more realistic than the “balanced”
use-case of Newstest11, where the reference origi-
nates from 5 languages.

B Checkpoint Selection for Simultaneous
Multi-Source

The checkpoints that we selected for simultaneous
multi-source decoding (recall Section 5.2) was the
multi-way checkpoint for English and bilingual one
for German. Table 9 summarizes the results of fine-
tuning for stability. BLEU decreased marginally
(by 0.2 on English and 0.9 on German), while nor-
malized erasure (NE) dropped by 40% in English
and 52% on German.

Based on some outputs, we explain higher NE
in German-to-Czech by discrepancy in word or-
ders. Many erasures were caused by an incorrect
presumption of the final verb. Regardless, our fine-
tuned models exhibit significantly reduced NE and
can be reliably used for simultaneous translation
using the LA-n approach.

C Effect of Reference Source Language

To explain the effect of reference source language,
we run a contrastive evaluation on the subset of
Newstest11 that consists only from the documents
that originate in English. We compare BLEU
measures with a reference translated directly from
Czech, and with three additional references trans-
lated only from German (Bojar et al., 2012).

The results of simultaneous mode (recall Sec-
tion 5) are in Figure 2. We observe the same trends
as in offline mode in Section 4. The BLEU score
is higher for the single source with the language
from which the reference was translated. When
this source is noised substantially more than the
other, multi-sourcing outperforms both by a small
margin.

In case of German references, the nearest margin
to single-sourcing is much smaller than with the
English references. We assume it is because the
structural difference of English source and German-
Czech references is larger than German to English-
Czech reference. It is documented also by BLEU
scores with zero noise (33 and 20 on references

from English vs 16 and 30 on references from Ger-
man).
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chrF2 ESIC dev En WER
single-src. 0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

s-src. 60.2±0.0 57.2±0.2 54.4±0.2 51.4±0.3 49.2±0.7 46.8±0.8 44.3±0.0 42.1±0.3 40.1±0.0

D
e

W
E

R
0 % 54.0±0.0 58.6±0.0 56.9±0.2 55.6±0.1 53.7±0.2 52.3±0.5 50.9±0.4 49.2±0.3 47.5±0.2 46.1±0.2

5 % 51.8±0.1 57.7±0.1 56.2±0.2 54.8±0.1 52.9±0.2 51.4±0.6 50.0±0.4 48.3±0.3 46.7±0.3 45.4±0.2

10 % 49.9±0.2 56.8±0.2 55.1±0.1 53.7±0.3 51.8±0.3 50.4±0.3 49.0±0.4 47.3±0.1 45.6±0.2 44.3±0.2

15 % 47.6±0.3 55.8±0.0 54.2±0.1 52.8±0.3 50.9±0.2 49.6±0.4 48.1±0.5 46.4±0.3 44.9±0.3 43.6±0.1

20 % 45.7±0.3 54.9±0.2 53.5±0.1 51.9±0.3 50.2±0.1 48.7±0.6 47.2±0.4 45.4±0.2 43.9±0.3 42.6±0.3

25 % 44.0±0.4 54.2±0.4 52.9±0.1 51.3±0.2 49.3±0.2 48.1±0.4 46.5±0.4 44.7±0.2 43.3±0.2 41.7±0.0

30 % 42.1±0.3 53.1±0.3 51.7±0.3 50.2±0.2 48.3±0.3 46.8±0.3 45.4±0.5 43.5±0.3 42.2±0.2 40.6±0.1

35 % 40.5±0.2 52.0±0.3 50.0±0.3 48.7±0.2 46.9±0.1 45.7±0.5 44.1±0.4 42.4±0.2 41.0±0.1 39.7±0.1

40 % 38.6±0.2 51.1±0.2 49.2±0.2 47.8±0.3 46.0±0.4 44.8±0.3 43.2±0.4 41.5±0.1 39.8±0.3 38.6±0.1

chrF2 news11 En WER
single-src. 0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

s-src. 51.0±0.0 48.8±0.2 46.9±0.1 44.9±0.1 43.0±0.1 41.0±0.1 39.4±0.1 37.3±0.1 35.8±0.0

D
e

W
E

R

0 % 50.3±0.0 50.8±0.0 49.5±0.0 48.0±0.1 46.7±0.1 45.3±0.2 43.8±0.3 42.6±0.2 41.0±0.1 39.7±0.1

5 % 48.3±0.1 50.0±0.0 48.6±0.0 47.3±0.0 45.7±0.1 44.5±0.1 43.1±0.1 41.8±0.0 40.1±0.1 38.8±0.1

10 % 46.5±0.2 49.2±0.1 47.9±0.2 46.4±0.1 44.8±0.1 43.8±0.0 42.3±0.0 40.9±0.1 39.2±0.2 38.0±0.1

15 % 44.7±0.2 48.1±0.1 46.7±0.1 45.4±0.1 43.9±0.1 42.8±0.0 41.2±0.0 40.1±0.1 38.4±0.0 37.1±0.0

20 % 42.9±0.1 47.1±0.0 45.8±0.1 44.3±0.0 42.9±0.1 41.7±0.1 40.4±0.1 39.1±0.0 37.4±0.1 36.3±0.1

25 % 41.1±0.1 46.1±0.2 44.8±0.0 43.6±0.1 42.0±0.1 40.8±0.1 39.3±0.2 38.1±0.1 36.4±0.1 35.3±0.1

30 % 39.4±0.2 45.3±0.3 43.9±0.2 42.6±0.2 41.1±0.1 39.9±0.2 38.5±0.2 37.3±0.1 35.7±0.0 34.5±0.2

35 % 38.0±0.2 44.3±0.2 42.9±0.3 41.5±0.1 40.2±0.2 38.9±0.2 37.6±0.1 36.4±0.1 34.9±0.0 33.7±0.2

40 % 36.2±0.2 43.2±0.2 41.9±0.2 40.5±0.2 39.1±0.1 37.9±0.1 36.4±0.2 35.2±0.1 33.8±0.2 32.8±0.2

Table 8: chrF2 (avg±stddev) with transcription noise on ESIC dev set whose reference translations was English and
on Newstest11 (news11) with balanced reference source language. The area with the green background is where
the English single-source outperforms German single-source. Black underlined numbers indicate the area where
multi-sourcing achieves higher score than both single-sourcing options. Red-colored numbers are where at least one
single-source scores higher.

En De
checkpoint BLEU NE BLEU NE

starting 33.2 1.77 25.9 3.15
selected 33.0 1.21 25.0 1.52

diff -0.2 -40% -0.9 -52%

Table 9: The results of fine-tuning for stability.
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Figure 2: Single-sourcing vs multi-sourcing with different level of artificial ASR noise of the sources (% WER)
in simultaneous mode on Newstest11 subset (598 sentences) originally in English. In the upper grid, the Czech
reference is translated from English, while in the lower, there is average and standard deviation of BLEU counted
against the 3 additional references translated from German (Bojar et al., 2012). Grey highlighting indicates area
where multi-sourcing (En+De, blue line) outperforms or is on-par with both single sources in BLEU.
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