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Abstract
Intent detection, which estimates diverse in-
tents behind user utterances, is an essential
component of task-oriented dialogue systems.
Previous intent detection models are usually
trained offline, which can only handle prede-
fined intent classes. In the real world, new
intents may keep challenging deployed mod-
els. For example, with the prevalence of the
COVID-19 pandemic, users may pose various
issues related to the pandemic to conversational
systems, which brings many new intents. A
general intent detection model should be intel-
ligent enough to continually learn new data and
recognize new arriving intent classes. There-
fore, this work explores Class Lifelong Learn-
ing for Intent Detection (CLL-ID), where the
model continually learns new intent classes
from new data while avoiding catastrophic per-
formance degradation on old data. To this
end, we propose a novel lifelong learning
method, called Structure Consolidation Net-
works (SCN), which consists of structure-based
retrospection and contrastive knowledge distil-
lation to handle the problems of expression di-
versity and class imbalance in the CLL-ID task.
In addition to formulating the new task, we con-
struct 3 benchmarks based on 8 intent detection
datasets. Experimental results demonstrate the
effectiveness of SCN, which significantly out-
performs previous lifelong learning methods
on the three benchmarks.

1 Introduction

Task-oriented dialogue systems provide a natural
interface to help users accomplish a wide range of
tasks, such as playing music, handling money trans-
fer business, and providing information about the
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COVID-19 pandemic. Intent detection is an essen-
tial component of task-oriented dialogue systems,
which aims to accurately estimate diverse user in-
tents for downstream modules (Hemphill et al.,
1990; Coucke et al., 2018). For example, given the
user utterance “Tell me some ways to avoid coron-
avirus”, an intent detection model should classify
it into the intent class “how to protect yourself ”.

Existing intent detection models usually perform
once-and-for-all training on a fixed dataset and can
only handle predefined intent classes. However,
this setting may not be practical enough in the real
world, as new intent classes continually emerge
after the model is deployed. For example, with
the prevalence of the COVID-19 pandemic, users
may pose various issues related to the pandemic
to conversational systems, which brings many new
intents, such as “how to protect yourself ” and “the
latest number of infections”. A general intent de-
tection model should be able to flexibly and effi-
ciently learn new intents round by round. There-
fore, this work proposes a realistic and challenging
task, Class Lifelong Learning for Intent Detection
(CLL-ID). This task continually trains an intent de-
tection model using new data to learn new intents.
At any time, the updated model should be able to
perform accurate classification for all intents ob-
served so far.

In the CLL-ID task, it is often infeasible to re-
train the model from scratch with the data of all
seen classes due to computational cost and data pri-
vacy (McMahan et al., 2017; Li et al., 2021). For
example, the time to train a model with all data of
the CLINC benchmark (Larson et al., 2019) is ap-
proximately 9.8 times longer than the time to train
the same model with only new data. In practice,
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Intent: How to protect yourself?
User 1:  How can I protect against the virus?
User 2:  Do any medications protect against the virus?
User 3:  Will wearing gloves help me avoid COVID-19?
User 4:  What kind of face mask helps?

Figure 1: An example of expression diversity. Different
users have different expressions for the same intent.

virtual assistants, such as Alexa and Siri, typically
provide a large number of services, which makes
the time overhead of continual retraining extremely
high (Rastogi et al., 2020). Moreover, the CLL-
ID task allows flexible and scalable applications
on embedded devices that have limited computing
power and storage capacity, such as smartphones,
to learn user-specific intents without privacy risks
(Kemker and Kanan, 2018).

A plain lifelong learning method is to fine-tune a
model pre-trained on old data directly on new data.
However, this method usually suffers from catas-
trophic performance degradation on old data, also
known as catastrophic forgetting (McCloskey and
Cohen, 1989; French, 1999). To cope with this is-
sue, current mainstream lifelong learning methods
usually maintain a memory to store a small number
of representative old data (Wang et al., 2019; Han
et al., 2020; Cui et al., 2021).

However, when directly applying existing life-
long learning methods to the CLL-ID task, we find
two severe problems: expression diversity and class
imbalance. Expression Diversity: In the intent
detection task, there are various expression types
for the same intent class, as shown in Figure 1.
Previous methods usually preserve similar old sam-
ples that involve only a few expression types and
are inconsistent with the original data distribution.
These samples are not conducive to maintaining the
performance of the old intent classes. Class Imbal-
ance: At each step of the lifelong learning process,
there is generally a large amount of new data, yet
only a small amount of old data is preserved due to
the memory capacity limitation, leading to a severe
imbalance between the new and old intent classes.
In this case, the model will be significantly biased
towards learning new data, leading to catastrophic
forgetting on old data.

To address the above two problems, we pro-
pose Structure Consolidation Networks (SCN),
which contains two core components: (1) to handle
the problem of expression diversity, we propose
structure-based retrospection, which selects and

preserves diverse and informative old data based
on the spatial structure of features; (2) to cope
with the class imbalance problem, we propose con-
trastive knowledge distillation, which preserves the
knowledge of the model trained at the previous step
and improves the generalization between the old
and new intent classes through contrastive learning.
For the CLL-ID task, we constructed 3 benchmarks
based on 8 widely used intent detection datasets.
Experimental results show that SCN significantly
outperforms previous lifelong learning methods.
In summary, the contributions of this work are as
follows:

• We formally introduce class lifelong learning
into intent detection and we construct 3 bench-
marks through 8 intent detection datasets.

• We propose structure consolidation networks,
which can effectively handle expression diver-
sity and class imbalance in the CLL-ID task
through structure-based retrospection and con-
trastive knowledge distillation.

• Experimental results show that SCN signifi-
cantly outperforms previous lifelong learning
methods on the three benchmarks. The source
code and benchmarks will be released for fur-
ther research (https://github.com/liuqi
ngbin2022/CLL4ID).

2 Task Formulation

The traditional intent detection task is usually for-
mulated as a text classification task, which predicts
an intent class for each input utterance (Hemphill
et al., 1990; Coucke et al., 2018). The CLL-ID task
adopts a realistic setting where the intent detection
model is continually trained on new data to learn
new intents. That is, new data arrives in a stream
form, denoted as (D1,D2, ...,DK). Each data
Di has its own training/validation/test set (Dtrain

i ,
Dvalid

i , Dtest
i ), as well as its own label set Ci. The

label set Ci contains one or multiple new classes
that do not appear in the previous steps. When new
data arrives, the intent detection model is updated
using the new training set Dtrain

i , and uniformly
classifies each sample according to all observed
intents (i.e., C̃i =

⋃i
n=1 Cn). The updated model

should perform well on all seen classes. Therefore,
in the testing stage of the i-th step, we evaluate
the updated model on the test data of all observed
classes (i.e., D̃test

i =
⋃i

n=1Dtest
n ).
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Figure 2: Illustrations of SCN. When learning the intent set B, the model is updated with the combination of the new
training data for the Intent B and the old data in memory. SCN first adopts contrastive knowledge distillation to retain
previous knowledge. Then, the method stores new representative samples through structure-based retrospection.

The arrival of new data round by round will con-
stantly change the original data distribution, which
makes it increasingly difficult for intent detection
models to achieve high performance on old data.
We experimentally demonstrate this claim in Sec-
tion 4.4. Thus, how to alleviate catastrophic perfor-
mance degradation on old data is a central research
point of the CLL-ID task.

3 Method

In this work, we propose Structure Consolidation
Networks to handle the CLL-ID task. The overall
framework of SCN is shown in Figure 2. SCN
consists of two core components, i.e., structure-
based retrospection and contrastive knowledge dis-
tillation. Structure-based retrospection preserves
diverse and informative samples to deal with the
problem of expression diversity. Contrastive knowl-
edge distillation alleviates the negative effects of
class imbalance through knowledge distillation and
contrastive learning.

3.1 Background

SCN is a model-agnostic lifelong learning method.
The intent detection model is only a basic com-
ponent and is not the focus of our research. We
employ a BERT-based classifier as the base model
because it proved to be a powerful model for intent
detection (Devlin et al., 2019; Zhan et al., 2021).
BERT is a pre-trained language model based on the
Transformer architecture (Vaswani et al., 2017).

To match the input form of BERT, we add two to-
kens [CLS] and [SEP] at the beginning and end of
each input sequence. The BERT encoder outputs
the contextual representation for each sequence.
We use the hidden state of the [CLS] token as the
feature vector and feed it into a linear layer to cal-

culate the probability. The cross-entropy loss is
used to train the intent detection model:

LCE = −
∑|N |

n=1
ynlog(pn), (1)

where yn is the ground-truth label and pn is the
predicted probability. N is the training samples.

3.2 Structure-Based Retrospection

To learn new intent classes, we study class lifelong
learning for intent detection, which aims to train a
unified model to handle all observed classes so far.
Given a model trained on old data, we continually
train the model based on a new combined dataset
N = Dtrain

i

⋃M. Dtrain
i is the training data of the

new intent classes at step i. M is a bounded mem-
ory that stores a small number of representative old
samples to retain the performance on old classes
(Han et al., 2020; Cui et al., 2021). M is denoted
as M = (M1,M2, ...,Mk), where Mk is the set
of preserved samples of the k-th old class.

To select and store representative samples from
diverse utterances, we propose structure-based ret-
rospection. In each step, this approach performs
two operations: (1) structure-based sample selec-
tion chooses informative and diverse samples based
on the spatial structure of the feature vectors; (2)
structure-preserved sample removal maintains a
constant memory size by deleting some of the
stored old samples while not affecting their original
distribution as much as possible. In this way, im-
portant information about the data distribution of
the previous classes enters the subsequent training
process.

3.2.1 Structure-Based Sample Selection
After learning the new data, we select |M|/l sam-
ples for each new class, where |M| is the memory
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size and l is the number of all observed classes.
Specifically, for each new class, we transform all
its training samples into feature vectors via the
trained model. Then, we apply the K-means algo-
rithm to these feature vectors and the number of
clusters is |M|/l. In each cluster, we select the
sample closest to the centroid and store it in the
memory. This operation tends to select diverse and
informative samples. As shown in Figure 2, these
selected samples are located at the center of differ-
ent regions of the feature space. In this way, the
distribution of the stored data is consistent with the
distribution of the original data.

3.2.2 Structure-Preserved Sample Removal
Since the memory size is constant, we need to
delete some of the stored old samples to allocate
space for the representative samples of the new
classes. Specifically, we need to delete |M|/k −
|M|/l training samples for each old class, where
k is the number of old classes and l is the total
number of observed classes.

In our method, we remove samples that are far
from the center of the entire feature space because
these samples usually have less impact on the over-
all data distribution (Snell et al., 2017; Yang et al.,
2018). For the c-th new intent class, we first aver-
age the feature vectors of all its samples to serve as
the center of the feature space:

ηc =
1

|Nc|
∑|Nc|

n=1
f(xc,n), (2)

where Nc is the training samples of the c-th class
and f(xc,n) is the feature vector of the sample xc,n.
Then, for the selected representative samples of the
new class, we sort them according to their distances
from the central vector ηc. In the subsequent life-
long learning steps, we remove the samples that are
far from the central vector based on the sorted list.
In this way, the distribution of the original data is
preserved as much as possible.

SCN utilizes the spatial structure of features in
both sample selection and sample removal, which
shows remarkable improvements in our experi-
ments. Previous lifelong learning methods tend to
select similar samples or ignore the importance of
structure-preserved sample removal (Rebuffi et al.,
2017; Han et al., 2020).

3.3 Contrastive Knowledge Distillation
Although preserving a small amount of old data
can alleviate catastrophic forgetting, it introduces

another problem, class imbalance. Due to the mem-
ory capacity limitation, the preserved old data is
relatively small, while the new data is usually large.
The imbalanced data makes the model significantly
biased towards learning new data, affecting the per-
formance on old data. In contrast, the model in the
last step is trained on old data. It performs well
in the old classes and is less biased towards the
new classes. Therefore, to mitigate the negative
effects of class imbalance, we propose contrastive
knowledge distillation to learn the knowledge of
the last model.

Specifically, for each sample x, we represent the
feature vectors extracted by the current model and
the last model by f(x) and g(x), respectively. The
contrastive knowledge distillation is calculated as:

LSIM =
∑|N |

n=1
1− ⟨f(xn), g(xn)⟩, (3)

LMGN =
∑|N |

n=1

∑|N |
t=1

1δ(n)̸=δ(t)[

max(⟨f(xn), f(xt)⟩ − α, 0)+

max(⟨f(xn), g(xt)⟩ − α, 0)], (4)

LCKD =γ1LSIM + γ2LMGN, (5)

where ⟨f(xn), g(xn)⟩ denotes the cosine similar-
ity between the two feature vectors. 1δ(n)̸=δ(t) is
an indicator function that is 1 if the label of the
sample xn is not equal to the label of the sample
xt, otherwise it is 0. α is a scalar that represents
the margin of separation between features. γ1 and
γ2 are two adjustment coefficients that are used to
control the proportion of different losses.

As shown above, the contrastive knowledge dis-
tillation loss LCKD contains two elements, i.e.,
LSIM and LMGN. The similarity loss LSIM encour-
ages the features extracted by the current model to
be close to the features extracted by the last model
so that the feature distribution of the last model
can be effectively retained. However, since the last
model did not learn the new data, it has difficulty
distinguishing new classes. Thus, just adopting
the similarity loss may weaken the generalization
between the new and old classes. Contrastive learn-
ing can improve the generalization of the model by
increasing the distance between each positive sam-
ple and multiple negative samples (Ke et al., 2021;
Gao et al., 2021). Inspired by contrastive learning,
we employ the margin loss LMGN to ensure that the
separation between each feature and multiple nega-
tive features is greater than the margin α. For each
feature, we adopt other features in the same batch
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that have different labels from the current feature
as negative features. Contrastive knowledge distil-
lation ultimately preserves the feature distribution
of the last model and improves the generalization
between the new and old classes.

In addition, we adopt the vanilla knowledge dis-
tillation method (Hinton et al., 2015) as an auxiliary
loss. It encourages the current model to retain the
probability distribution of the last model as:

LPKD = −
∑|N |

n=1

∑|C̃o|
t=1

τt(u) log(τt(v)), (6)

where u and v are the logits predicted by the
last model and the current model for the sam-
ple xn. C̃o is the set of old classes. τt(u) =

eut/T /
∑|C̃o|

s=1 eus/T . T is a scalar that is used to
increase the weight of small probability values.

3.4 Optimization

When new data arrives, SCN optimizes the intent
detection model with the above losses:

L = LCE + γ1LSIM + γ2LMGN + γ3LPKD, (7)

where γ1, γ2, and γ3 are the adjustment coefficients.
These coefficients are used to balance the perfor-
mance of the old classes and the new classes. These
losses are calculated for both the new data and the
stored old data. After training the model, structure-
based retrospection updates the memory with new
representative samples. In this way, our method
can continually learn new classes while avoiding
catastrophic forgetting. Besides, at the end of each
step, we can further fine-tune the model using the
balanced sample set in the memory, which can
moderately improve performance.

4 Experiments

4.1 Benchmarks for the CLL-ID Task

We construct three CLL-ID benchmarks based on
the following method: for each benchmark, we ar-
range the classes of one or multiple datasets in a
fixed random order. Each class has its own train-
ing/validation/test data. In a class incremental man-
ner, the lifelong learning methods continually train
an intent detection model on new data. To the
best of our ability, we collected 8 intent detection
datasets to construct the 3 benchmarks:

The CLINC benchmark is constructed based on
the CLINC150 dataset (Larson et al., 2019). We
use all the 150 classes provided by the CLINC150

dataset. The data splitting of each class follows
the official CLINC150 dataset. 15 new classes are
learned at each step.

The Banking-ML benchmark is constructed
on the basis of three datasets, including Banking
(Casanueva et al., 2020), M-CID-EN (Arora et al.,
2020a), and Liu57 (Liu et al., 2019). The Banking
and M-CID-EN datasets provide 77 and 16 classes,
respectively. The data splitting of these classes fol-
lows the official datasets. Since the classes in Liu57
suffer from a severe long-tail data distribution, we
only use the top 57 frequent classes. Since Liu57
does not provide data splitting, we split the data of
each class of Liu57 in a 3:1:1 ratio into the train-
ing/validation/test set. Finally, the Banking-ML
benchmark contains 150 classes. 15 new classes
are learned at each step.

The Stack-SHA benchmark is constructed based
on four datasets, including StackOverflow (Xu
et al., 2015), SNIPS (Coucke et al., 2018), HINT3
(Arora et al., 2020b), and ATIS (Hemphill et al.,
1990). We use all 20 and 7 classes provided by
StackOverflow and SNIPS, as well as the official
data split. We use the top 8 and 15 frequent classes
of the ATIS and HINT3 datasets due to the long-
tail data distribution. Similar to Liu57, the data of
each class of ATIS and HINT3 is split into training,
validation, and test sets in a 3:1:1 ratio. The total
number of classes for the Stack-SHA benchmark
is 50. At each step, 5 new classes are learned.

4.2 Implementation Details

Our BERT-based model is implemented with the
HuggingFace’s Transformer library1. The learning
rate is 5e-5. The margin α is 0.3. The adjustment
coefficients γ1,γ2, and γ3 are 0.1, 0.9, and 0.005,
respectively. The scalar T is 2. The batch size is
24. All hyper-parameters are obtained by a grid
search on the validation set. The memory size is
500. For all experiments, we run each model with
5 different seeds on a single NVIDIA Tesla P40
GPU and report the average performance.

After each incremental step, we evaluate the
model on the test data of all observed classes so
far. Therefore, the test accuracy of the whole pro-
cess can be plotted as a curve. After the last step,
we report the average accuracy of all steps and the
whole accuracy on the test data of all classes.

1https://github.com/huggingface
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Figure 3: Test accuracy of the entire class lifelong learning process on the CLINC, Banking-ML, and Stack-SHA
benchmarks. The training time of the entire process is shown in the brackets.

Method
CLINC Banking-ML Stack-SHA

Average Acc. Whole Acc. Average Acc. Whole Acc. Average Acc. Whole Acc.

FineTune 29.20 9.54 19.15 7.81 21.51 3.73
UpperBound 96.10 93.86 83.17 84.22 91.87 89.26

LwF 29.38 9.97 19.19 8.14 23.34 4.66
EWC 41.25 16.70 34.63 19.25 28.17 8.66
iCaRL 87.97 79.08 69.63 64.45 81.70 74.97
EEIL 88.09 79.78 70.73 66.51 83.21 77.63
EMAR 86.37 76.32 69.04 63.93 77.66 64.51
RP-CRE 89.37 81.63 71.34 68.14 84.25 78.33
SCN (Ours) 93.46 87.61 74.63 71.79 87.25 81.56

Table 1: The average accuracy (%) of all steps (“Average Acc.” column) and the whole accuracy (%) on the whole
test data (“Whole Acc.” column) after the last step.

4.3 Baselines

To provide a comprehensive comparison, we com-
pare SCN with a variety of previous lifelong learn-
ing methods.

LwF (Li and Hoiem, 2016) utilizes knowledge
distillation to preserve the probability distribution
of the last model. EWC (Kirkpatrick et al., 2017)
retains parameters that are important to old classes
through L2 regularization. iCaRL (Rebuffi et al.,
2017) selects representative samples based on class
prototypes and trains the model with knowledge
distillation. EEIL (Castro et al., 2018) fine-tunes
the model on the balanced data in the memory to
cope with class imbalance. EMAR (Han et al.,
2020) uses K-Means to select samples and consol-
idates the model by class prototypes. RP-CRE
(Cui et al., 2021) utilizes class prototypes as ex-
ternal features and selects samples by K-Means.
FineTune fine-tunes the model pre-trained on old
data directly on new data. UpperBound uses train-
ing data of all observed classes to train the model,
which is regarded as the upper bound.

4.4 Main Results

Figure 3 shows the test accuracy during the entire
lifelong learning process. We present the average
and whole accuracy after the last step in Table 1.
From the results, we can see that:

(1) The proposed method SCN achieves state-
of-the-art performance on all benchmarks. Com-
pared to RP-CRE, SCN achieves 5.98%, 3.65%,
and 3.23% improvements in terms of the whole
accuracy on the CLINC, Banking-ML, and Stack-
SHA benchmarks, respectively. It verifies the ef-
fectiveness of our method on the CLL-ID task.

(2) At each step of the entire process, there is
a significant performance gap between RP-CRE
and our method SCN. The reason is that RP-CRE
ignores the problems of expression diversity and
class imbalance in the CLL-ID task. Due to the
lack of structure-preserved sample removal, RP-
CRE may delete important samples and corrupt
the data distribution. In addition, RP-CRE suffers
from class imbalance, which eventually leads to
performance degradation.
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Method
CLINC Banking-ML Stack-SHA

Average Acc. Whole Acc. Average Acc. Whole Acc. Average Acc. Whole Acc.

SCN (Ours) 93.46 87.61 74.63 71.79 87.25 81.56
- SBSS 92.14 84.97 74.06 70.41 85.41 79.91
- SPSR 93.15 87.11 74.15 71.13 86.38 79.24
- SBR 92.09 84.73 73.82 70.14 85.32 79.17
+ CPBR 90.29 83.21 71.63 67.47 83.79 78.18

Table 2: Ablation studies of structure-based retrospection. We describe these variants in detail below.

Method
CLINC Banking-ML Stack-SHA

Average Acc. Whole Acc. Average Acc. Whole Acc. Average Acc. Whole Acc.

SCN (Ours) 93.46 87.61 74.63 71.79 87.25 81.56
- SIM 92.21 84.64 73.92 70.07 86.63 79.87
- MGN 92.75 85.86 74.10 70.76 86.98 80.38
- CKD 92.08 84.11 73.65 69.73 86.39 79.32
- PKD 93.18 86.45 74.32 71.40 87.11 80.59
- CKD and PKD 91.54 83.82 73.26 69.45 86.34 79.24

Table 3: Ablation studies of contrastive knowledge distillation. We describe these variants in detail below.

(3) FineTune always achieves the worst perfor-
mance on all benchmarks. It proves that catas-
trophic forgetting is indeed a core challenge in the
CLL-ID task. Besides, there is still a performance
gap between SCN and the upper bound. It indicates
that although SCN is very effective in the CLL-ID
task, there is still room for further improvement.

4.5 Ablation Study

To verify the effectiveness of the structure-based
retrospection and contrastive knowledge distilla-
tion, we conduct ablation studies.

4.5.1 Effect of Structure-Based Retrospection

To gain more insights into structure-based retro-
spection, we compare our method with different
data preservation methods. The results are shown
in Table 2. From the results, we can see that:

(1) For “- SBSS”, we remove the structure-based
sample selection and randomly add samples to the
memory. For “- SPSR”, the model randomly re-
moves samples without using structure-preserved
sample removal. For “- SBR”, this variant employs
a random strategy in both sample selection and
sample removal. SCN significantly outperforms
these variants on all benchmarks. The results indi-
cate that structure-based retrospection is effective
in selecting and storing the representative samples
from diverse user utterances.

(2) For “+ CPBR” (Rebuffi et al., 2017; Castro
et al., 2018), the model computes a prototype for

SCN

1  How can I protect against the virus?
2  Do any medications protect against the virus?
3  Will wearing gloves help me avoid COVID-19?
4  Do kids need to wear face masks?

+ CPBR

1  How should I protect myself?
2  How can I protect myself from coronavirus?
3  How can I stay safe from COVID-19?
4  Tell me some ways to avoid coronavirus.

Figure 4: Case study. We show some preserved samples.

each class and selects samples based on this pro-
totype. In the CLL-ID task, “+ CPBR” is even
worse than the random strategy “- SBR” because
it usually selects similar samples. In contrast, our
method utilizes the spatial structure of features to
effectively select diverse and informative samples.

(3) To give a visual comparison, we show some
samples preserved by SCN and “+ CPBR” for the
class “how to protect yourself ” in Figure 4. “+
CPBR” tends to preserve similar samples, such as
sample 1 and sample 2. In contrast, the samples pre-
served by our method tend to be diverse, covering
a wide range of typical expressions. It qualitatively
demonstrates the effectiveness of our method.

4.5.2 Effect of Contrastive Knowledge
Distillation

To verify the effectiveness of the proposed con-
trastive knowledge distillation, we conduct ablation
experiments and show the results in Table 3. From
the results, we can see that:

(1) Removing any part of the contrastive knowl-
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Number
SCN (Ours) RP-CRE

Average Acc. Whole Acc. Average Acc. Whole Acc.

500 93.46 87.61 89.37 81.63
450 93.25 86.55 88.16 80.17
400 92.53 84.61 87.49 78.34
350 92.03 84.14 87.13 78.03
300 91.71 83.38 86.63 77.55

Table 4: Comparison of the robustness of models to
memory size on the CLINC benchmark.

edge distillation, i.e., the similarity loss (“- SIM”)
or the margin loss (“- MGN”), brings significant
performance degradation. When we remove the
contrastive knowledge distillation (“- CKD”), the
performance degrades further. It demonstrates that
contrastive knowledge distillation can effectively
improve performance by preserving the knowledge
of the original model. In addition, the results show
that utilizing contrastive learning in our method to
increase the generalization between the new and
old classes can improve performance.

(2) When we remove the vanilla knowledge dis-
tillation (“- PKD”), the performance drops. When
we remove both contrastive knowledge distillation
and vanilla knowledge distillation, the performance
decreases significantly. It indicates that simultane-
ously exploiting both methods is effective.

4.6 Discussion: Memory Size

In replay-based lifelong learning methods (Cao
et al., 2020; Cui et al., 2021), the memory size is
a key factor affecting performance. Therefore, we
conduct experiments to verify whether our method
can stably outperform the baselines under different
memory sizes. As shown in Table 4, our method
significantly outperforms RP-CRE in each case.
Furthermore, as the memory size decreases, the per-
formance improvement of our method usually be-
comes larger. Our method using only 300 samples
surpasses RP-CRE using 500 samples. These re-
sults demonstrate the effectiveness of our method.

5 Related Work

5.1 Intent Detection

Recently, there are many research works on intent
detection (Larson et al., 2019; Qin et al., 2019; Yan
et al., 2020; Gerz et al., 2021). Zhang et al. (2019)
utilize capsule networks to model the relations be-
tween intent detection and slot filling. Zhang et al.
(2021b) propose a contrastive pre-training method
to handle few-shot intent detection. Besides, un-

known intent detection is a hot research task that
aims to detect samples belonging to the unknown
intent class (Brychcín and Král, 2017; Kim and
Kim, 2018; Lin and Xu, 2019; Gangal et al., 2020).
Cavalin et al. (2020) utilize the word graph informa-
tion of classes to detect the unknown intent. Zhang
et al. (2021a) propose an adaptive method to learn
decision boundaries of the unknown intent.

Despite the great progress in intent detection
tasks, these existing methods usually cannot flexi-
bly and efficiently learn new intents, which limits
their application in the real world. In this paper, we
address the realistic and challenging task, i.e., class
lifelong learning for intent detection.

5.2 Lifelong Learning

Lifelong learning is a key research topic in ma-
chine learning, which enables models to learn
new data online (Cauwenberghs and Poggio, 2000;
Kuzborskij et al., 2013; Wang et al., 2019; Cui
et al., 2021). Existing lifelong learning meth-
ods can be roughly divided into three categories:
architecture-based methods (Fernando et al., 2017;
Shen et al., 2019), regularization-based methods
(Zenke et al., 2017; Aljundi et al., 2018), and
replay-based methods (Rebuffi et al., 2017; Hou
et al., 2019). Architecture-based methods dynami-
cally change the model architecture in response to
new data (Geng et al., 2021; Madotto et al., 2021).
Regularization-based methods slow down the up-
date of the parameters that are important to old
data (Kirkpatrick et al., 2017; Li and Hoiem, 2016).
Replay-based methods alleviate catastrophic forget-
ting by preserving a small number of old samples
(Han et al., 2020; Cui et al., 2021). In addition, gen-
erative replay-based methods generate old samples
via generative models (Shin et al., 2017; Kemker
and Kanan, 2018; Ostapenko et al., 2019). Replay-
based methods have proven to be the most effective
solutions for many lifelong learning tasks in NLP
(Han et al., 2020; Cui et al., 2021).

In recent years, researchers have gradually begun
to investigate lifelong learning in NLP scenarios
(Kirkpatrick et al., 2017; Cao et al., 2020; Liu et al.,
2021). Lee (2017) adopts a one-step incremental
setting, which fine-tunes the model pre-trained on
open-domain dialogues on task-oriented dialogues.
Xia et al. (2021) study incremental few-shot learn-
ing in text classification tasks, which aims to con-
tinually learn new classes with only a small number
of training samples. Madotto et al. (2021) study
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domain lifelong learning in task-oriented dialogues.
However, they mainly focus on the dialogue state
tracking task. In addition, they adopt a generic
architecture-based method, which does not address
the main challenges of the intent detection task.

6 Conclusion

In this paper, we introduce class lifelong learning
into intent detection and further propose structure
consolidation networks to overcome catastrophic
forgetting. To cope with expression diversity, we
propose structure-based retrospection to select di-
verse and informative samples. To alleviate the
negative effects of class imbalance, we propose
contrastive knowledge distillation to preserve the
knowledge of the original model. Experimental
results on three benchmarks demonstrate the effec-
tiveness of our method.

Limitations

Although our method SCN achieves state-of-the-
art performance in the CLL-ID task, there is still
a performance gap between SCN and the upper
bound. This result is inconsistent with human be-
haviors because humans usually do not forget old
skills when learning new skills. Therefore, in future
work, we hope to introduce findings from the brain
science domain into the model design to overcome
the problem of catastrophic forgetting.
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