
Findings of the Association for Computational Linguistics: ACL 2023, pages 2870–2882
July 9-14, 2023 ©2023 Association for Computational Linguistics

Operator Selection and Ordering in a Pipeline Approach to Efficiency
Optimizations for Transformers

Ji Xin, Raphael Tang, Zhiying Jiang, Yaoliang Yu, and Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

{ji.xin,r33tang,zhiying.jiang,yaoliang.yu,jimmylin}@uwaterloo.ca

Abstract

There exists a wide variety of efficiency meth-
ods for natural language processing (NLP)
tasks, such as pruning, distillation, dynamic
inference, quantization, etc. From a differ-
ent perspective, we can consider an efficiency
method as an operator applied on a model.
Naturally, we may construct a pipeline of oper-
ators, i.e., to apply multiple efficiency methods
on the model sequentially. In this paper, we
study the plausibility of this idea, and more im-
portantly, the commutativity and cumulative-
ness of efficiency operators. We make two
interesting observations from our experiments:
(1) The operators are commutative—the order
of efficiency methods within the pipeline has
little impact on the final results; (2) The op-
erators are also cumulative—the final results
of combining several efficiency methods can
be estimated by combining the results of in-
dividual methods. These observations deepen
our understanding of efficiency operators and
provide useful guidelines for building them in
real-world applications.

1 Introduction

Natural language processing (NLP) tasks nowadays
heavily rely on complex neural models, especially
large-scale pre-trained language models based on
the transformer architecture (Vaswani et al., 2017),
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and GPT (Radford et al., 2019). De-
spite being more accurate than previous models,
transformer-based models are typically slow to ex-
ecute, making it a non-trivial challenge to apply
them in real-world applications. For example, it
takes a BERT-base model about 200 ms per query
to perform a simple sequence classification task on
a commercial CPU, which can be too slow in many
scenarios. Therefore, model efficiency has become

an increasingly important research direction in the
transformer era.

A wide variety of efficiency methods have been
individually studied for transformers, like prun-
ing (McCarley et al., 2019), distillation (Sanh et al.,
2019), dynamic inference (Xin et al., 2020; Kim
and Cho, 2021), and quantization (Shen et al.,
2020), just to name a few. There has also been work
on applying multiple efficiency methods together
as a pipeline (Kim and Hassan, 2020; Lin et al.,
2021; Cui et al., 2021), but the construction of such
pipelines has not been methodically studied. For
a desired accuracy–efficiency tradeoff, it remains
unclear how to choose components for the pipeline
among numerous possibilities. Furthermore, even
with a chosen set of efficiency methods, it is un-
clear whether we need to exhaustively examine all
possible orders to find the best one.

In this paper, we study how to effectively con-
struct a pipeline of efficiency methods, and we do
this by exploring their properties. Conceptually, we
consider each efficiency method as an operator ap-
plied on a model. We conduct experiments with the
RoBERTa model (Liu et al., 2019) and the follow-
ing components in our efficiency pipelines: distil-
lation, structured pruning, quantization, early exit-
ing, and dynamic length inference. We empirically
study two important properties of efficiency opera-
tors: (1) Commutativity: does swapping the order
of operators affect the final accuracy–efficiency
tradeoff of the model? (2) Cumulativeness: how
do the two core metrics of efficiency methods, time
savings and accuracy drops, compound across mul-
tiple operators? Under the condition of our ex-
periments, we show that, for commutativity, the
difference between various orderings of the same
set of components is usually small and negligible
in practice. For cumulativeness, we show that time

2870



Knowledge

Distill

EMB

EMB

CLS

CLS

(a) Distillation

Prune

Rewire

X X

X X

X X

X X

CLS CLS

EMB EMB

(b) Pruning

EMB

CLS

CLS

CLS

CLS

(c) Early exiting

Figure 1: Diagrams for efficiency methods. The model consists of an embedding layer (EMB) at the bottom,
several transformer layers in the middle, and a classifier (CLS) at the top. Green blocks represent parameters
available from fine-tuning and yellow blocks represent parameters that are initialized and optimized after fine-
tuning. (a) Distillation initialized a new student model and distill knowledge from the original teacher model; (b)
Pruning removes unimportant parts of the original model and rewires the connection; (c) Early exiting adds extra
classifiers for intermediate transformer layers. Dynamic sequence length and quantization are not shown because
they do not change the model architecture.

saving and accuracy drop are both cumulative to
the extent that we can estimate the performance
of a new pipeline by combining the results of indi-
vidual components. The observation of these prop-
erties provides the foundation for us to build new
pipelines and estimate their performance without
having to carry out time-consuming experiments.

Our main contributions in this paper include: (1)
In Section 3, we propose a conceptual framework
to treat efficiency methods as operators and effi-
ciency optimization processes as pipelines; (2) In
Sections 4 to 5, we demonstrate the properties of
operators by experiments. Finally we will conclude
the paper and discuss its limitations.

2 Related Work and Background

In this section, we first introduce related work,
background, and modeling choices for individual
efficiency methods chosen for our experiments. We
then discuss related work for applying multiple ef-
ficiency methods.

Applying transformers for NLP tasks typically
involves three stages: pre-training, fine-tuning, and
inference (Radford et al., 2019; Devlin et al., 2019).
In this paper, we assume the availability of a pre-
trained RoBERTa model and study different ways
of fine-tuning it to achieve better tradeoffs between
inference accuracy and efficiency. Training hence-
forth refers to fine-tuning in this paper.

2.1 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) im-
proves efficiency by distilling knowledge from a
large and costly teacher model to a small and ef-
ficient student model. The teacher model’s output
is used as the supervision signal for the student
model’s training. In the case of transformers, there
are two types of distillation, namely task-agnostic
and task-specific, depending on whether the stu-
dent model is trained for a specific task. These two
types correspond to the pre-training stage and the
fine-tuning stage.

Previously, Tang et al. (2019) perform task-
specific distillation from a fine-tuned BERT model
into non-transformer architectures such as LSTMs,
aligning predicted logits of the teacher and the stu-
dent. Patient knowledge distillation (Sun et al.,
2019) performs task-specific distillation, where the
students are transformer models with smaller depth
and width; furthermore, they align not only pre-
dicted logits but also intermediate states of both
models. DistilBERT (Sanh et al., 2019) and Tiny-
BERT (Jiao et al., 2020) perform both task-agnostic
and task-specific distillation: first the student model
learns from a pre-trained teacher; then it can either
be directly fine-tuned like a pre-trained model or
learn from another fine-tuned teacher as a student.

In this paper, we focus on task-specific dis-
tillation, which corresponds to fine-tuning (Fig-
ure 1a). We initialize the student model with a
DistilRoBERTaBASE (Sanh et al., 2019) backbone

2871



that comes from task-agnostic distillation. The
student model has the same width as the teacher
RoBERTa but only half the number of layers. In
addition to the most common loss function (teacher
supervising student), which is a soft cross-entropy
between output logits of the teacher and the stu-
dent, we introduce two other parts for the loss func-
tion: (1) mean squared error (MSE) between the
teacher’s and the student’s embedding layers’ out-
puts; (2) MSE between the teacher’s and the stu-
dent’s final transformer layers’ outputs. It has been
shown in related work that adding objectives to
align intermediate states of the teacher and the stu-
dent helps with distillation (Sun et al., 2019; Sanh
et al., 2019). We simply use a ratio of 1 : 1 : 1 for
these three parts of the loss function.

2.2 Structured Pruning

Pruning removes unimportant parts of the model
and increases the sparsity level of the model. A spe-
cific category of pruning, structured pruning (Han
et al., 2015; Anwar et al., 2017; Gordon et al.,
2020), removes high-level units of the model,
such as a layer, an attention head, or an entire
row/column in the weight matrix of a feed-forward
network (FFN). Model sparsity induced by struc-
tured pruning can directly translate to faster execu-
tion, and therefore we focus on structured pruning
in the paper.

Previously, Michel et al. (2019) show that reduc-
ing attention heads after training/fine-tuning does
not significantly degrade the model’s effectiveness
and argue that in a lot of cases, the number of at-
tention heads can be reduced. MobileBERT (Sun
et al., 2020) reduces the intermediate dimension of
a transformer layer’s FFN by using a funnel-like
structure to first shrink the intermediate layer size
and then recover it at the end of the layer. McCarley
et al. (2019) improves BERT efficiency for ques-
tion answering by reducing both attention heads
and intermediate dimensions.

In this paper, we follow the work by McCarley
et al. (2019); Kim and Hassan (2020) and choose
two aspects of the model and prune them separately:
the number of attention heads and the intermedi-
ate dimension of the fully connected layer within
a transformer layer (Figure 1b). We calculate the
importance of attention heads and intermediate di-
mensions with a first-order method: run inference
for the entire dev set and accumulate the first-order
gradients for each attention head and intermediate

dimension. We then remove the least important at-
tention heads and intermediate dimensions, accord-
ing to the desired sparsity level, and then rewire the
model connections so it becomes a smaller but com-
plete model. After pruning, we perform another
round of knowledge distillation from the original
model to the pruned model as described in the previ-
ous subsection, which further improves the pruned
model’s accuracy without sacrificing efficiency.

2.3 Dynamic Inference
Dynamic inference (Teerapittayanon et al., 2016;
Graves, 2016; Dehghani et al., 2019) accelerates
inference by reducing the amount of computation
adaptively, depending on the nature of the input ex-
ample. We discuss two types of dynamic inference
in this section.

2.3.1 Dynamic Depth: Early Exiting
For dynamic depth, early exiting (Xin et al.,
2020; Liu et al., 2020) converts the original fine-
tuned model into a multi-output one, and dy-
namically chooses the number of layers used for
the inference of each example, based on model
confidence (Schwartz et al., 2020), model pa-
tience (Zhou et al., 2020), or the prediction of an
external controlling module (Xin et al., 2021).

Early exiting training We first modify a fine-
tuned model by adding extra classifiers to interme-
diate transformer layers (Figure 1c). In order to use
these extra classifiers, we further train the model
before inference. The additional training is done
by minimizing the sum of loss functions of all clas-
sifiers, and the loss function has the same form for
each classifier: the cross entropy between ground
truth labels and the classifier’s prediction logits. A
special case to notice here is that the training of
distillation and pruning needs to be adjusted after
adding early exiting.

• Distillation after early exiting. When we ini-
tialize the student model (e.g., from Tiny-
BERT), we also add early exiting classifiers
to it. For training, the ith layer of the student
model uses the prediction from the 2ith layer
of the teacher model as supervision.

• Pruning after early exiting. When we prune
the transformer layers, we do not change the
classifiers. For the additional round of distilla-
tion, each layer of the student model uses the
prediction from its corresponding layer of the
teacher model as supervision.

2872



Early exiting inference The early exiting model
produces an output probability distribution at each
layer’s classifier. If the confidence of a certain
layer’s output exceeds a preset early exiting thresh-
old, the model immediately returns the current out-
put; otherwise, inference continues at the next layer,
and so forth until the final layer. In this way, when
the model is confident enough at an early layer,
we no longer need to execute the remaining layers,
thereby saving inference computation.

2.3.2 Dynamic Sequence Length

Pre-trained language models come with a fixed
input sequence length (e.g., 512 for RoBERTa)
that aligns with the design of positional embed-
dings (Devlin et al., 2019). Inputs longer than the
fixed length are truncated and shorter inputs are
padded with zero vectors. This fixed length, while
being useful for tasks with long inputs, is often un-
necessarily large for most downstream applications
and leads to a waste of computation.

Previously, PoWER-BERT (Goyal et al., 2020)
shrinks the sequence length gradually as infer-
ence progresses into deep layers, eventually re-
ducing the sequence length to 1 at the final layer
for sequence-level prediction. Length-Adaptive
Transformer (Kim and Cho, 2021) extends the idea
to token-level prediction by first reducing the se-
quence length and then recovering missing tokens’
outputs.

In this paper, we use a simple method for length
reduction: for each batch, we dynamically set the
input sequence length to the maximum length of
inputs within the batch. This reduces the number
of zero paddings in input sequences and reduces
unnecessary computation. Different from previous
methods, dynamic sequence length does not affect
the model’s accuracy.

2.4 Quantization

Quantization (Lin et al., 2016; Shen et al., 2020)
improves model efficiency by using fewer bits to
store and process data. The idea itself is straightfor-
ward, but implementation can be highly hardware
dependent. Since we run inference on CPUs, we
first export the trained model to ONNX1 and then
run it with 8-bit quantization, following Fastform-
ers (Kim and Hassan, 2020).

1https://onnx.ai/.

2.5 Applying Multiple Efficiency Methods

With all the individual efficiency methods available,
there has been work on applying multiple ones to-
gether. For example, Cui et al. (2021); Aghli and
Ribeiro (2021); Park and No (2022) combine prun-
ing and distillation for model compression and ac-
celeration. Phuong and Lampert (2019) explore us-
ing distillation to improve the training of early exit-
ing models. Lin et al. (2021) propose a bag of tricks
to accelerate the inference stage of neural machine
translation models. Fastformers (Kim and Hassan,
2020) propose a pipeline consisting of several com-
ponents which together provide more than 100×
acceleration. Despite the success of combining ef-
ficiency methods, it remains underexplored how
to build an efficiency pipeline in order to achieve
the best accuracy–efficiency tradeoffs. We aim to
tackle this problem in our paper.

3 Experimental Design

In this section, we introduce the detailed design
and setups for our experiments. Since the experi-
ments are exploratory rather than SOTA-chasing,
we focus on providing a fair comparison.

3.1 Conceptual Framework

In our experiments, we work with pipelines consist-
ing of multiple efficiency operators that are applied
to the model sequentially. We represent a pipeline
with a string of bold capital letters, where each let-
ter represents an efficiency operator and the order
of these letters represents their order.

The operators include: Distillation, Structured
Pruning, Early Exiting, Dynamic Length, and
Quantization. For example, the string “DEPLQ”
represents a pipeline of sequentially applying the
following operators to a fine-tuned model: (1) dis-
till it into a student model; (2) add early exiting
classifiers to it and train; (3) apply structured prun-
ing to make each layer “thinner” and distill from
the unpruned model; and (4) use dynamic length
and quantization for the final inference. Addition-
ally, we use O to represent an “empty” pipeline, i.e.,
directly applying the Original fine-tuned model.

Not all combinations of operators constitute a
meaningful pipeline. Among the operators dis-
cussed in this paper, D, P, and E require additional
training steps, while Q and L are directly applica-
ble right before inference. Therefore, D, P, and
E (Group I) should always appear before Q and
L (Group II) in the pipeline. Moreover, applying

2873

https://onnx.ai/


20 40 60 80 100
 

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

D+E

MRPC
SST-2
QNLI
QQP

DE
ED

20 40 60 80 100 120
Time (ms per example)

70

75

80

85

90

 

P+E

MRPC
SST-2
QNLI
QQP

PE
EP

10 20 30 40 50 60
 

65

70

75

80

85

90

 

D+P+E

MRPC
SST-2
QNLI
QQP

DPE
DEP
EDP

Figure 2: Different orderings of the same set of operators have similar tradeoff curves. The title of each subfigure
shows the set of operators; each color represents a dataset; each marker shape represents a component ordering.

D after P does not make sense, since D initializes
a small student, and the efficiency brought by the
pruning step cannot be passed over to the student.
With these constraints, the number of meaningful
pipelines is significantly reduced.

3.2 Datasets and Implementation

We conduct experiments with the RoBERTa-base
model (Liu et al., 2019) on four sequence classi-
fication tasks: MRPC (Dolan and Brockett, 2005),
SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al.,
2016; Wang et al., 2018), and QQP (Sharma et al.,
2019). Our implementation of efficiency methods
are adopted from Transformers (Wolf et al., 2020),
Fastformers (Kim and Hassan, 2020), and Dee-
BERT (Xin et al., 2020). We train all the models
with an NVIDIA Tesla T4 GPU. We evaluate them
with an AMD Ryzen 5800X CPU, which provides
more stable measurements for inference latency.
Wall-clock runtime is used as the efficiency metric.

3.3 Settings for Pipelines and Operators

Before experimenting with pipelines, we explore
the optimal setting (e.g., learning rate, batch size)
for each individual operator and use the same set-
ting in the pipelines. This is a realistic approach
since it is impractical to search for the optimal set-
ting for every component in every new pipeline.

For training the RoBERTa model, including orig-
inal fine-tuning, distillation, and training with early
exiting, we use the same hyperparameters as in the
Transformers library (Wolf et al., 2020): learning
rate is set to 10−5; batch size is set to 8; all train-
ing procedures consist of 10 epochs with no early
stopping. For pruning, we prune the number of
attention heads from 12 to 8 and the intermediate
dimension from 3072 to 1536. The reason for this
is that in our preliminary experiments, the above

combination of hyperparameters is a sweet spot on
the Pareto frontier.

4 Operator Commutativity and Order

Given a set of operators, we naturally wonder about
the best order to apply them. Although this ques-
tion seems formidable due to the exponentially
large number of possible orderings, we show that
the question is actually simpler than expected: on
the one hand, we have eliminated a number of in-
valid orderings as described in Section 3; on the
other, we show that operators are commutative in
the remaining ordering candidates.

4.1 Commutative Properties of Operators
In this subsection, we discuss operator commuta-
tivity separately for the two groups.

Group I We show the results of swapping the
order of operators from Group I in Figure 2. Since
early exiting is involved, which means the model
can achieve different tradeoffs between accuracy
and inference time, we present each ordering as
a tradeoff curve, where points are drawn by vary-
ing the early exiting threshold of confidence. We
can see that when we use the same set of opera-
tors (same color), different orderings have similar
tradeoff curves, in most cases.

Exceptions exist, however, in the E+P combi-
nation on the MRPC dataset. We hypothesize that
this is due to training randomness, since MRPC
has smallest size of all. In order to study random-
ness, we repeat the experiment with additional ran-
dom seeds and show in Figure 3 the results on
MRPC. We can see that (1) the gap between the
mean curves is smaller than the gap between curves
corresponding to using a single seed; (2) the mean
curve of each ordering lies within the 95% confi-
dence interval (95% CI) of other orderings. This

2874



20 40 60 80 100
 

78

80

82

84

86

88

90

92
Ac

cu
ra

cy
 (%

)
MRPC

1 Seed
Mean
95% CI

DE
ED

20 40 60 80 100 120
Time (ms per example)

78

80

82

84

86

88

90

92

94

 

MRPC

1 Seed
Mean
95% CI

PE
EP

10 20 30 40 50 60
 

80

82

84

86

88

 

MRPC

1 Seed
Mean
95% CI

DPE
DEP
EDP

Figure 3: Comparing the results of a single run (solid lines; same as the ones from Figure 2) and the results from
multiple runs (dashed lines for the mean and shaded areas for 95% confidence intervals).

shows that the differences between tradeoff curves
of different orderings can, at least partly, be at-
tributed to training randomness.

To further quantify the degree of dissimilarity
between different orderings, we define and calcu-
late the distance between tradeoff curves. The dis-
tance between two tradeoff curves is defined as
the maximum accuracy (y-axis) difference at the
same inference time (x-axis) point. We compare
distances between tradeoff curves (1) generated by
the same operator order but with different random
seeds; and (2) generated by different operator or-
ders. We show the results in Table 1. We can see
that while tradeoff curves generated by the same op-
erator order tend to have a smaller average distance,
the difference between same/different orders is typ-
ically small and the one-standard-deviation (1-SD)
intervals of both sides always overlap. Although
we are unable to find a suitable significance test
since the distances are not independent, the above
analysis shows that the difference of distances be-
tween curves from same/different orders is likely
not significant. More importantly, as shown in Fig-
ure 3, the gap between mean curves of different
orderings is smaller than the deviation caused by
different random seeds. Therefore, in practice, we
can regard the operators as commutative.

Group II The two operators, Q and L, are inde-
pendent of each other, and therefore their order can
be arbitrarily swapped (i.e., they are strictly com-
mutative by definition). We show the results of ap-
plying Q and/or L at the end of different pipelines
in Table 2. We do not report the accuracy of +L
since using dynamic length does not change the
model’s accuracy.

Based on the above discussion, when we have a set
of components to apply, it suffices to simply pick a

Dataset Order D+E P+E D+P+E

MRPC
Same 1.57± 0.69 2.31± 0.85 1.53± 0.62
Diff. 1.74± 0.40 4.12± 1.10 2.59± 0.97

SST-2
Same 1.30± 0.39 1.64± 0.46 1.49± 0.53
Diff. 1.48± 0.46 1.84± 0.62 1.98± 0.82

QNLI
Same 2.24± 1.20 4.40± 2.49 3.41± 2.51
Diff. 3.93± 0.82 4.58± 2.39 4.91± 2.44

QQP
Same 2.38± 1.36 2.11± 0.86 2.30± 1.05
Diff. 3.64± 1.14 3.30± 1.27 4.56± 1.71

Table 1: The mean and the standard deviation (SD)
of distances between tradeoff curves belonging to
same/different orders (the same ordering is run with
multiple random seeds). For all entries, the 1-SD in-
tervals of same/different orders overlap.

reasonable order from the candidate space, rather
than extensively searching for the optimal setting.

5 Operator Cumulativeness and
Predictability of Pipelines

In order to choose components for an efficiency
pipeline, an important question is whether time
savings and accuracy drops of individual opera-
tors are cumulative. In this subsection, we show
that they are indeed cumulative to the degree that
accuracy–efficiency tradeoffs of a new pipeline can
be estimated, simply by combining the results of
individual operators.

We first discuss operators from Group I. In Fig-
ure 4, we show how we can estimate the tradeoff
curve of a new pipeline based on the results of
its constituents, using the two larger and more sta-
ble datasets, QQP and QNLI. For example, in the
top-right subfigure, we show the estimation for the
tradeoff curves of pipelines comprising E, D, and
P, based on the results of individually applying
each of these operators.

2875



Dataset Pipeline Accuracy (%) Time (ms per example)

Raw +Q (relative diff.) Raw +Q +L +QL +QL (est.)

MRPC

O 92.7 92.5 (−0.2%) 170.7 −50% −83% −94% −92%
D 89.2 88.8 (−0.4%) 85.5 −49% −82% −94% −91%
P 91.0 89.0 (−2.2%) 122.4 −64% −86% −94% −95%

DP 88.9 87.9 (−1.1%) 59.3 −62% −84% −94% −94%

SST-2

O 93.7 93.5 (−0.2%) 170.8 −50% −86% −97% −93%
D 92.3 92.3 (−0.0%) 85.5 −49% −86% −97% −93%
P 92.4 91.7 (−0.8%) 126.7 −66% −89% −97% −96%

DP 92.0 90.9 (−1.2%) 62.9 −65% −88% −97% −96%

QNLI

O 92.3 92.1 (−0.2%) 174.2 −51% −83% −95% −92%
D 91.3 90.7 (−0.7%) 86.9 −50% −82% −95% −91%
P 91.5 91.4 (−0.1%) 121.5 −64% −86% −95% −95%

DP 89.8 89.6 (−0.2%) 62.6 −65% −85% −95% −95%

QQP

O 88.6 88.3 (−0.3%) 172.3 −51% −86% −96% −93%
D 87.9 87.7 (−0.2%) 88.2 −51% −85% −97% −93%
P 88.5 88.5 (−0.0%) 118.3 −63% −87% −97% −95%

DP 87.6 87.6 (−0.0%) 58.8 −62% −86% −97% −95%

Table 2: Accuracy drops and time savings provided by quantization (Q) and dynamic length inference (L) applied
at the end of pipelines. The accuracy drops and time savings of most operators are cumulative.

The idea for estimating accuracy drops is based
on the following cumulativeness assumption. Sup-
pose R is a pipeline and A* is the accuracy for a
pipeline *, the assumption is:

AR+D =
AD

AO
×AR, (1)

AR+P =
AP

AO
×AR. (2)

In other words, our assumption is that adding D or
P to any pipeline should result in similar relative
accuracy drops. We can therefore estimate the ac-
curacy of ED, EP, and EDP (and other orders of
the same set of operators) as follows: (1) calculate
accuracy drops of D and P relative to O; (2) mul-
tiply the relative accuracy drops to points on E’s
tradeoff curve.

The idea for estimating time savings is also sim-
ilar, but additional modifications are necessary:

• When we add P to E, since they work on
reducing different dimensions of the model
(width and depth), the time savings are inde-
pendent and directly cumulative:

TE+P =
TP

TO
× TE, (3)

where similarly, T* is the inference time for a
pipeline *.

• When we add D to E, we need to consider the
fact that both D and E reduce the number of
layers. Therefore, our estimation is based on
interpolating the following two extreme cases.
When the early exiting threshold is extremely
large and the model uses all layers for infer-
ence, the relative time saving will be close to
TD/TO; when the early exiting threshold is
extremely small and the model exits after the
first layer, adding D provides no extra time
saving. The final time saving estimation for
E+D is therefore the following interpolation:

TE+D = tE + (TE − tE)×
TD

TO
, (4)

where tE is the minimum value of time in the
tradeoff curve of E (i.e., the point where we
early exit after only one layer).

• When we add both P and D to E, we combine
the above two estimations:

TE+DP =
(
tE+(TE−tE)×

TD

TO

)
× TP

TO
. (5)

We use the above ideas to estimate tradeoff curves
of new pipelines and show the results in Fig-
ure 4. From the figure, we can see that the estima-
tion curves (orange) align well with the measured

2876



25 50 75 100 125 150 175
 

69

72

75

78

81

84

87
Ac

cu
ra

cy
 (%

)

QQP
ED
DE
E
Estimation

25 50 75 100 125 150 175
 

69

72

75

78

81

84

87

 

QQP
EP
PE
E
Estimation

25 50 75 100 125 150 175
 

66

69

72

75

78

81

84

87

 

QQP
EDP
DEP
DPE
E
Estimation

25 50 75 100 125 150 175 200
 

72

75

78

81

84

87

90

Ac
cu

ra
cy

 (%
)

QNLI
ED
DE
E
Estimation

50 100 150 200
Time (ms per example)

72

75

78

81

84

87

90

 

QNLI
EP
PE
E
Estimation

50 100 150 200
 

72

75

78

81

84

87

90

 

QNLI
EDP
DEP
DPE
E
Estimation

Figure 4: Estimating the tradeoff curves of target pipelines based on the results of individually applying operators.
Green curves: measured tradeoff curves of target pipelines; blue curves: measured tradeoff curves of individually
applying the operator E; orange curves: estimated tradeoff curves for the target pipelines.

curves (green), across different datasets and oper-
ator sets. This shows that individual components
from Group I are cumulative with each other under
these settings.

For operators from Group II, we refer to Table 2.
We see that on the same dataset, Q leads to sim-
ilar accuracy drops when added to any pipeline,
especially on the larger and more stable datasets,
QNLI and QQP. Time savings, on the other hand,
are trickier:

• L provides consistent time savings for all
pipelines, showing that it is cumulative with
any operator from Group I.

• L and Q are also cumulative with each other,
as evidenced by the fact that the measured
time savings of +QL align well with the esti-
mation of +QL, which is simply multiplying
the respective savings of Q and L.

• Q, however, is cumulative only with D and E,
but not P—it saves more time for pipelines
with P. This is because quantization’s acceler-
ation is different for different types of opera-
tions, and pruning changes the proportion of
each type of operations within a transformer
layer, while distillation or early exiting does
not. When we estimate the tradeoff of a
pipeline containing both Q and P, PQ needs

to be treated as a compound operator, and it
is cumulative with others. This also applies
to other operators that change the connection
within a transformer layer.

Empirically, the observation that operators are
cumulative facilitates future experiments on effi-
ciency pipelines: for pipelines that are computation-
ally expensive to train and evaluate, simply measur-
ing the performance of their components can pro-
vide us with a reliable estimation of the pipeline’s
behavior. Therefore, choosing efficiency meth-
ods for a pipeline according to desired accuracy–
efficiency tradeoffs becomes easy calculation once
the measurement of individual operators is finished.

On the theoretical side, the cumulativeness obser-
vation also makes it easier to analyze the contribu-
tion of each component, i.e., how much time each
operator saves and how much accuracy each sacri-
fices. The Shapley value (Shapley, 1997) of each
component, for instance, can be approximated by
simply using the standalone estimation (Fréchette
et al., 2016).

6 Conclusion

In this paper, we propose a conceptual framework
to consider efficiency methods as operators applied
on transformer models and study the properties of
these operators when used as pipelines. We ob-

2877



serve that, under the condition of our experiments,
(1) efficiency operators are commutative: changing
their order has little practical impact on the final
efficiency–accuracy tradeoff; (2) efficiency opera-
tors are cumulative: a new pipeline’s performance
can be estimated by aggregating time savings and
accuracy drops of each component. These observa-
tions facilitate future construction, evaluation, and
application of efficiency pipelines, and also pro-
vide an interesting direction to better understand
efficiency pipelines.

Limitations

There exist so many different transformer models
and efficiency methods that it is extremely difficult
to conduct exhaustive experiments for all of them.
Although our experiments demonstrate nice prop-
erties for efficiency operators, the observations are
restricted to our experimental setup. Considering
the huge space of all combinations of transformer
models, efficiency methods, and datasets, our ex-
periments provide understanding for an important
but small subspace, and it is possible that the con-
clusions no longer hold when we explore further.
We hope that our discoveries can inspire more fu-
ture research, both empirical and theoretical, to
push further the frontier of our understanding of
the space.

Acknowledgements

We thank anonymous reviewers for their construc-
tive suggestions. This research is supported in part
by the Canada First Research Excellence Fund and
the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

References
Nima Aghli and Eraldo Ribeiro. 2021. Combining

weight pruning and knowledge distillation for cnn
compression. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 3185–3192.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2017. Structured pruning of deep convolutional neu-
ral networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 13(3):1–18.

Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2021.
Joint structured pruning and dense knowledge distil-
lation for efficient transformer model compression.
Neurocomputing, 458:56–69.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Alexandre Fréchette, Lars Kotthoff, Tomasz Micha-
lak, Talal Rahwan, Holger Hoos, and Kevin Leyton-
Brown. 2016. Using the Shapley value to analyze
algorithm portfolios. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 30(1).

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. PoWER-BERT: Acceler-
ating BERT inference via progressive word-vector
elimination. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 3690–3699. PMLR.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28. Curran
Associates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

2878



Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6501–6511, Online. As-
sociation for Computational Linguistics.

Young Jin Kim and Hany Hassan. 2020. FastFormers:
Highly efficient transformer models for natural lan-
guage understanding. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 149–158, Online. Association for
Computational Linguistics.

Darryl Lin, Sachin Talathi, and Sreekanth Anna-
pureddy. 2016. Fixed point quantization of deep
convolutional networks. In Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Re-
search, pages 2849–2858, New York, New York,
USA. PMLR.

Ye Lin, Yanyang Li, Tong Xiao, and Jingbo Zhu. 2021.
Bag of tricks for optimizing transformer efficiency.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4227–4233, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a BERT-based question an-
swering model. arXiv preprint arXiv:1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Jinhyuk Park and Albert No. 2022. Prune your model
before distill it. In European Conference on Com-
puter Vision, pages 120–136. Springer.

Mary Phuong and Christoph Lampert. 2019.
Distillation-based training for multi-exit architec-
tures. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1355–1364.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 6640–6651, Online.
Association for Computational Linguistics.

Lloyd S. Shapley. 1997. A value for n-person games.
Classics in game theory, 69.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and
Utku Evci. 2019. Natural language understand-
ing with the Quora Question Pairs dataset. arXiv
preprint arXiv:1907.01041.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for
Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

2879



Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. BranchyNet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 18330–18341. Curran Asso-
ciates, Inc.

2880



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The Limitations section on page 9.

�3 A2. Did you discuss any potential risks of your work?
The Limitations section on page 9.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Introduction (Section 1)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3.2

�3 B1. Did you cite the creators of artifacts you used?
Section 3.2

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
I’ve never seen such things in previous papers.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �3 Did you run computational experiments?
Section 3.2

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
number of parameters: everyone knows the total computational budget (e.g., GPU hours), and
computing infrastructure used: nobody cares

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2881

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2882


