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Abstract

There exists a wide variety of efficiency meth-
ods for natural language processing (NLP)
tasks, such as pruning, distillation, dynamic
inference, quantization, etc. From a differ-
ent perspective, we can consider an efficiency
method as an operator applied on a model.
Naturally, we may construct a pipeline of oper-
ators, i.e., to apply multiple efficiency methods
on the model sequentially. In this paper, we
study the plausibility of this idea, and more im-
portantly, the commutativity and cumulative-
ness of efficiency operators. We make two
interesting observations from our experiments:
(1) The operators are commutative—the order
of efficiency methods within the pipeline has
little impact on the final results; (2) The op-
erators are also cumulative—the final results
of combining several efficiency methods can
be estimated by combining the results of in-
dividual methods. These observations deepen
our understanding of efficiency operators and
provide useful guidelines for building them in
real-world applications.

1 Introduction

Natural language processing (NLP) tasks nowadays
heavily rely on complex neural models, especially
large-scale pre-trained language models based on
the transformer architecture (Vaswani et al., 2017),
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and GPT (Radford et al., 2019). De-
spite being more accurate than previous models,
transformer-based models are typically slow to ex-
ecute, making it a non-trivial challenge to apply
them in real-world applications. For example, it
takes a BERT-base model about 200 ms per query
to perform a simple sequence classification task on
a commercial CPU, which can be too slow in many
scenarios. Therefore, model efficiency has become

an increasingly important research direction in the
transformer era.

A wide variety of efficiency methods have been
individually studied for transformers, like prun-
ing (McCarley et al., 2019), distillation (Sanh et al.,
2019), dynamic inference (Xin et al., 2020; Kim
and Cho, 2021), and quantization (Shen et al.,
2020), just to name a few. There has also been work
on applying multiple efficiency methods together
as a pipeline (Kim and Hassan, 2020; Lin et al.,
2021; Cui et al., 2021), but the construction of such
pipelines has not been methodically studied. For
a desired accuracy–efficiency tradeoff, it remains
unclear how to choose components for the pipeline
among numerous possibilities. Furthermore, even
with a chosen set of efficiency methods, it is un-
clear whether we need to exhaustively examine all
possible orders to find the best one.

In this paper, we study how to effectively con-
struct a pipeline of efficiency methods, and we do
this by exploring their properties. Conceptually, we
consider each efficiency method as an operator ap-
plied on a model. We conduct experiments with the
RoBERTa model (Liu et al., 2019) and the follow-
ing components in our efficiency pipelines: distil-
lation, structured pruning, quantization, early exit-
ing, and dynamic length inference. We empirically
study two important properties of efficiency opera-
tors: (1) Commutativity: does swapping the order
of operators affect the final accuracy–efficiency
tradeoff of the model? (2) Cumulativeness: how
do the two core metrics of efficiency methods, time
savings and accuracy drops, compound across mul-
tiple operators? Under the condition of our ex-
periments, we show that, for commutativity, the
difference between various orderings of the same
set of components is usually small and negligible
in practice. For cumulativeness, we show that time

2870



Knowledge

Distill

EMB

EMB

CLS

CLS

(a) Distillation

Prune

Rewire

X X

X X

X X

X X

CLS CLS

EMB EMB

(b) Pruning

EMB

CLS

CLS

CLS

CLS

(c) Early exiting

Figure 1: Diagrams for efficiency methods. The model consists of an embedding layer (EMB) at the bottom,
several transformer layers in the middle, and a classifier (CLS) at the top. Green blocks represent parameters
available from fine-tuning and yellow blocks represent parameters that are initialized and optimized after fine-
tuning. (a) Distillation initialized a new student model and distill knowledge from the original teacher model; (b)
Pruning removes unimportant parts of the original model and rewires the connection; (c) Early exiting adds extra
classifiers for intermediate transformer layers. Dynamic sequence length and quantization are not shown because
they do not change the model architecture.

saving and accuracy drop are both cumulative to
the extent that we can estimate the performance
of a new pipeline by combining the results of indi-
vidual components. The observation of these prop-
erties provides the foundation for us to build new
pipelines and estimate their performance without
having to carry out time-consuming experiments.

Our main contributions in this paper include: (1)
In Section 3, we propose a conceptual framework
to treat efficiency methods as operators and effi-
ciency optimization processes as pipelines; (2) In
Sections 4 to 5, we demonstrate the properties of
operators by experiments. Finally we will conclude
the paper and discuss its limitations.

2 Related Work and Background

In this section, we first introduce related work,
background, and modeling choices for individual
efficiency methods chosen for our experiments. We
then discuss related work for applying multiple ef-
ficiency methods.

Applying transformers for NLP tasks typically
involves three stages: pre-training, fine-tuning, and
inference (Radford et al., 2019; Devlin et al., 2019).
In this paper, we assume the availability of a pre-
trained RoBERTa model and study different ways
of fine-tuning it to achieve better tradeoffs between
inference accuracy and efficiency. Training hence-
forth refers to fine-tuning in this paper.

2.1 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) im-
proves efficiency by distilling knowledge from a
large and costly teacher model to a small and ef-
ficient student model. The teacher model’s output
is used as the supervision signal for the student
model’s training. In the case of transformers, there
are two types of distillation, namely task-agnostic
and task-specific, depending on whether the stu-
dent model is trained for a specific task. These two
types correspond to the pre-training stage and the
fine-tuning stage.

Previously, Tang et al. (2019) perform task-
specific distillation from a fine-tuned BERT model
into non-transformer architectures such as LSTMs,
aligning predicted logits of the teacher and the stu-
dent. Patient knowledge distillation (Sun et al.,
2019) performs task-specific distillation, where the
students are transformer models with smaller depth
and width; furthermore, they align not only pre-
dicted logits but also intermediate states of both
models. DistilBERT (Sanh et al., 2019) and Tiny-
BERT (Jiao et al., 2020) perform both task-agnostic
and task-specific distillation: first the student model
learns from a pre-trained teacher; then it can either
be directly fine-tuned like a pre-trained model or
learn from another fine-tuned teacher as a student.

In this paper, we focus on task-specific dis-
tillation, which corresponds to fine-tuning (Fig-
ure 1a). We initialize the student model with a
DistilRoBERTaBASE (Sanh et al., 2019) backbone
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that comes from task-agnostic distillation. The
student model has the same width as the teacher
RoBERTa but only half the number of layers. In
addition to the most common loss function (teacher
supervising student), which is a soft cross-entropy
between output logits of the teacher and the stu-
dent, we introduce two other parts for the loss func-
tion: (1) mean squared error (MSE) between the
teacher’s and the student’s embedding layers’ out-
puts; (2) MSE between the teacher’s and the stu-
dent’s final transformer layers’ outputs. It has been
shown in related work that adding objectives to
align intermediate states of the teacher and the stu-
dent helps with distillation (Sun et al., 2019; Sanh
et al., 2019). We simply use a ratio of 1 : 1 : 1 for
these three parts of the loss function.

2.2 Structured Pruning

Pruning removes unimportant parts of the model
and increases the sparsity level of the model. A spe-
cific category of pruning, structured pruning (Han
et al., 2015; Anwar et al., 2017; Gordon et al.,
2020), removes high-level units of the model,
such as a layer, an attention head, or an entire
row/column in the weight matrix of a feed-forward
network (FFN). Model sparsity induced by struc-
tured pruning can directly translate to faster execu-
tion, and therefore we focus on structured pruning
in the paper.

Previously, Michel et al. (2019) show that reduc-
ing attention heads after training/fine-tuning does
not significantly degrade the model’s effectiveness
and argue that in a lot of cases, the number of at-
tention heads can be reduced. MobileBERT (Sun
et al., 2020) reduces the intermediate dimension of
a transformer layer’s FFN by using a funnel-like
structure to first shrink the intermediate layer size
and then recover it at the end of the layer. McCarley
et al. (2019) improves BERT efficiency for ques-
tion answering by reducing both attention heads
and intermediate dimensions.

In this paper, we follow the work by McCarley
et al. (2019); Kim and Hassan (2020) and choose
two aspects of the model and prune them separately:
the number of attention heads and the intermedi-
ate dimension of the fully connected layer within
a transformer layer (Figure 1b). We calculate the
importance of attention heads and intermediate di-
mensions with a first-order method: run inference
for the entire dev set and accumulate the first-order
gradients for each attention head and intermediate

dimension. We then remove the least important at-
tention heads and intermediate dimensions, accord-
ing to the desired sparsity level, and then rewire the
model connections so it becomes a smaller but com-
plete model. After pruning, we perform another
round of knowledge distillation from the original
model to the pruned model as described in the previ-
ous subsection, which further improves the pruned
model’s accuracy without sacrificing efficiency.

2.3 Dynamic Inference
Dynamic inference (Teerapittayanon et al., 2016;
Graves, 2016; Dehghani et al., 2019) accelerates
inference by reducing the amount of computation
adaptively, depending on the nature of the input ex-
ample. We discuss two types of dynamic inference
in this section.

2.3.1 Dynamic Depth: Early Exiting
For dynamic depth, early exiting (Xin et al.,
2020; Liu et al., 2020) converts the original fine-
tuned model into a multi-output one, and dy-
namically chooses the number of layers used for
the inference of each example, based on model
confidence (Schwartz et al., 2020), model pa-
tience (Zhou et al., 2020), or the prediction of an
external controlling module (Xin et al., 2021).

Early exiting training We first modify a fine-
tuned model by adding extra classifiers to interme-
diate transformer layers (Figure 1c). In order to use
these extra classifiers, we further train the model
before inference. The additional training is done
by minimizing the sum of loss functions of all clas-
sifiers, and the loss function has the same form for
each classifier: the cross entropy between ground
truth labels and the classifier’s prediction logits. A
special case to notice here is that the training of
distillation and pruning needs to be adjusted after
adding early exiting.

• Distillation after early exiting. When we ini-
tialize the student model (e.g., from Tiny-
BERT), we also add early exiting classifiers
to it. For training, the ith layer of the student
model uses the prediction from the 2ith layer
of the teacher model as supervision.

• Pruning after early exiting. When we prune
the transformer layers, we do not change the
classifiers. For the additional round of distilla-
tion, each layer of the student model uses the
prediction from its corresponding layer of the
teacher model as supervision.
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Early exiting inference The early exiting model
produces an output probability distribution at each
layer’s classifier. If the confidence of a certain
layer’s output exceeds a preset early exiting thresh-
old, the model immediately returns the current out-
put; otherwise, inference continues at the next layer,
and so forth until the final layer. In this way, when
the model is confident enough at an early layer,
we no longer need to execute the remaining layers,
thereby saving inference computation.

2.3.2 Dynamic Sequence Length

Pre-trained language models come with a fixed
input sequence length (e.g., 512 for RoBERTa)
that aligns with the design of positional embed-
dings (Devlin et al., 2019). Inputs longer than the
fixed length are truncated and shorter inputs are
padded with zero vectors. This fixed length, while
being useful for tasks with long inputs, is often un-
necessarily large for most downstream applications
and leads to a waste of computation.

Previously, PoWER-BERT (Goyal et al., 2020)
shrinks the sequence length gradually as infer-
ence progresses into deep layers, eventually re-
ducing the sequence length to 1 at the final layer
for sequence-level prediction. Length-Adaptive
Transformer (Kim and Cho, 2021) extends the idea
to token-level prediction by first reducing the se-
quence length and then recovering missing tokens’
outputs.

In this paper, we use a simple method for length
reduction: for each batch, we dynamically set the
input sequence length to the maximum length of
inputs within the batch. This reduces the number
of zero paddings in input sequences and reduces
unnecessary computation. Different from previous
methods, dynamic sequence length does not affect
the model’s accuracy.

2.4 Quantization

Quantization (Lin et al., 2016; Shen et al., 2020)
improves model efficiency by using fewer bits to
store and process data. The idea itself is straightfor-
ward, but implementation can be highly hardware
dependent. Since we run inference on CPUs, we
first export the trained model to ONNX1 and then
run it with 8-bit quantization, following Fastform-
ers (Kim and Hassan, 2020).

1https://onnx.ai/.

2.5 Applying Multiple Efficiency Methods

With all the individual efficiency methods available,
there has been work on applying multiple ones to-
gether. For example, Cui et al. (2021); Aghli and
Ribeiro (2021); Park and No (2022) combine prun-
ing and distillation for model compression and ac-
celeration. Phuong and Lampert (2019) explore us-
ing distillation to improve the training of early exit-
ing models. Lin et al. (2021) propose a bag of tricks
to accelerate the inference stage of neural machine
translation models. Fastformers (Kim and Hassan,
2020) propose a pipeline consisting of several com-
ponents which together provide more than 100×
acceleration. Despite the success of combining ef-
ficiency methods, it remains underexplored how
to build an efficiency pipeline in order to achieve
the best accuracy–efficiency tradeoffs. We aim to
tackle this problem in our paper.

3 Experimental Design

In this section, we introduce the detailed design
and setups for our experiments. Since the experi-
ments are exploratory rather than SOTA-chasing,
we focus on providing a fair comparison.

3.1 Conceptual Framework

In our experiments, we work with pipelines consist-
ing of multiple efficiency operators that are applied
to the model sequentially. We represent a pipeline
with a string of bold capital letters, where each let-
ter represents an efficiency operator and the order
of these letters represents their order.

The operators include: Distillation, Structured
Pruning, Early Exiting, Dynamic Length, and
Quantization. For example, the string “DEPLQ”
represents a pipeline of sequentially applying the
following operators to a fine-tuned model: (1) dis-
till it into a student model; (2) add early exiting
classifiers to it and train; (3) apply structured prun-
ing to make each layer “thinner” and distill from
the unpruned model; and (4) use dynamic length
and quantization for the final inference. Addition-
ally, we use O to represent an “empty” pipeline, i.e.,
directly applying the Original fine-tuned model.

Not all combinations of operators constitute a
meaningful pipeline. Among the operators dis-
cussed in this paper, D, P, and E require additional
training steps, while Q and L are directly applica-
ble right before inference. Therefore, D, P, and
E (Group I) should always appear before Q and
L (Group II) in the pipeline. Moreover, applying
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Figure 2: Different orderings of the same set of operators have similar tradeoff curves. The title of each subfigure
shows the set of operators; each color represents a dataset; each marker shape represents a component ordering.

D after P does not make sense, since D initializes
a small student, and the efficiency brought by the
pruning step cannot be passed over to the student.
With these constraints, the number of meaningful
pipelines is significantly reduced.

3.2 Datasets and Implementation

We conduct experiments with the RoBERTa-base
model (Liu et al., 2019) on four sequence classi-
fication tasks: MRPC (Dolan and Brockett, 2005),
SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al.,
2016; Wang et al., 2018), and QQP (Sharma et al.,
2019). Our implementation of efficiency methods
are adopted from Transformers (Wolf et al., 2020),
Fastformers (Kim and Hassan, 2020), and Dee-
BERT (Xin et al., 2020). We train all the models
with an NVIDIA Tesla T4 GPU. We evaluate them
with an AMD Ryzen 5800X CPU, which provides
more stable measurements for inference latency.
Wall-clock runtime is used as the efficiency metric.

3.3 Settings for Pipelines and Operators

Before experimenting with pipelines, we explore
the optimal setting (e.g., learning rate, batch size)
for each individual operator and use the same set-
ting in the pipelines. This is a realistic approach
since it is impractical to search for the optimal set-
ting for every component in every new pipeline.

For training the RoBERTa model, including orig-
inal fine-tuning, distillation, and training with early
exiting, we use the same hyperparameters as in the
Transformers library (Wolf et al., 2020): learning
rate is set to 10−5; batch size is set to 8; all train-
ing procedures consist of 10 epochs with no early
stopping. For pruning, we prune the number of
attention heads from 12 to 8 and the intermediate
dimension from 3072 to 1536. The reason for this
is that in our preliminary experiments, the above

combination of hyperparameters is a sweet spot on
the Pareto frontier.

4 Operator Commutativity and Order

Given a set of operators, we naturally wonder about
the best order to apply them. Although this ques-
tion seems formidable due to the exponentially
large number of possible orderings, we show that
the question is actually simpler than expected: on
the one hand, we have eliminated a number of in-
valid orderings as described in Section 3; on the
other, we show that operators are commutative in
the remaining ordering candidates.

4.1 Commutative Properties of Operators
In this subsection, we discuss operator commuta-
tivity separately for the two groups.

Group I We show the results of swapping the
order of operators from Group I in Figure 2. Since
early exiting is involved, which means the model
can achieve different tradeoffs between accuracy
and inference time, we present each ordering as
a tradeoff curve, where points are drawn by vary-
ing the early exiting threshold of confidence. We
can see that when we use the same set of opera-
tors (same color), different orderings have similar
tradeoff curves, in most cases.

Exceptions exist, however, in the E+P combi-
nation on the MRPC dataset. We hypothesize that
this is due to training randomness, since MRPC
has smallest size of all. In order to study random-
ness, we repeat the experiment with additional ran-
dom seeds and show in Figure 3 the results on
MRPC. We can see that (1) the gap between the
mean curves is smaller than the gap between curves
corresponding to using a single seed; (2) the mean
curve of each ordering lies within the 95% confi-
dence interval (95% CI) of other orderings. This
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Figure 3: Comparing the results of a single run (solid lines; same as the ones from Figure 2) and the results from
multiple runs (dashed lines for the mean and shaded areas for 95% confidence intervals).

shows that the differences between tradeoff curves
of different orderings can, at least partly, be at-
tributed to training randomness.

To further quantify the degree of dissimilarity
between different orderings, we define and calcu-
late the distance between tradeoff curves. The dis-
tance between two tradeoff curves is defined as
the maximum accuracy (y-axis) difference at the
same inference time (x-axis) point. We compare
distances between tradeoff curves (1) generated by
the same operator order but with different random
seeds; and (2) generated by different operator or-
ders. We show the results in Table 1. We can see
that while tradeoff curves generated by the same op-
erator order tend to have a smaller average distance,
the difference between same/different orders is typ-
ically small and the one-standard-deviation (1-SD)
intervals of both sides always overlap. Although
we are unable to find a suitable significance test
since the distances are not independent, the above
analysis shows that the difference of distances be-
tween curves from same/different orders is likely
not significant. More importantly, as shown in Fig-
ure 3, the gap between mean curves of different
orderings is smaller than the deviation caused by
different random seeds. Therefore, in practice, we
can regard the operators as commutative.

Group II The two operators, Q and L, are inde-
pendent of each other, and therefore their order can
be arbitrarily swapped (i.e., they are strictly com-
mutative by definition). We show the results of ap-
plying Q and/or L at the end of different pipelines
in Table 2. We do not report the accuracy of +L
since using dynamic length does not change the
model’s accuracy.

Based on the above discussion, when we have a set
of components to apply, it suffices to simply pick a

Dataset Order D+E P+E D+P+E

MRPC
Same 1.57± 0.69 2.31± 0.85 1.53± 0.62
Diff. 1.74± 0.40 4.12± 1.10 2.59± 0.97

SST-2
Same 1.30± 0.39 1.64± 0.46 1.49± 0.53
Diff. 1.48± 0.46 1.84± 0.62 1.98± 0.82

QNLI
Same 2.24± 1.20 4.40± 2.49 3.41± 2.51
Diff. 3.93± 0.82 4.58± 2.39 4.91± 2.44

QQP
Same 2.38± 1.36 2.11± 0.86 2.30± 1.05
Diff. 3.64± 1.14 3.30± 1.27 4.56± 1.71

Table 1: The mean and the standard deviation (SD)
of distances between tradeoff curves belonging to
same/different orders (the same ordering is run with
multiple random seeds). For all entries, the 1-SD in-
tervals of same/different orders overlap.

reasonable order from the candidate space, rather
than extensively searching for the optimal setting.

5 Operator Cumulativeness and
Predictability of Pipelines

In order to choose components for an efficiency
pipeline, an important question is whether time
savings and accuracy drops of individual opera-
tors are cumulative. In this subsection, we show
that they are indeed cumulative to the degree that
accuracy–efficiency tradeoffs of a new pipeline can
be estimated, simply by combining the results of
individual operators.

We first discuss operators from Group I. In Fig-
ure 4, we show how we can estimate the tradeoff
curve of a new pipeline based on the results of
its constituents, using the two larger and more sta-
ble datasets, QQP and QNLI. For example, in the
top-right subfigure, we show the estimation for the
tradeoff curves of pipelines comprising E, D, and
P, based on the results of individually applying
each of these operators.
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Dataset Pipeline Accuracy (%) Time (ms per example)

Raw +Q (relative diff.) Raw +Q +L +QL +QL (est.)

MRPC

O 92.7 92.5 (−0.2%) 170.7 −50% −83% −94% −92%
D 89.2 88.8 (−0.4%) 85.5 −49% −82% −94% −91%
P 91.0 89.0 (−2.2%) 122.4 −64% −86% −94% −95%

DP 88.9 87.9 (−1.1%) 59.3 −62% −84% −94% −94%

SST-2

O 93.7 93.5 (−0.2%) 170.8 −50% −86% −97% −93%
D 92.3 92.3 (−0.0%) 85.5 −49% −86% −97% −93%
P 92.4 91.7 (−0.8%) 126.7 −66% −89% −97% −96%

DP 92.0 90.9 (−1.2%) 62.9 −65% −88% −97% −96%

QNLI

O 92.3 92.1 (−0.2%) 174.2 −51% −83% −95% −92%
D 91.3 90.7 (−0.7%) 86.9 −50% −82% −95% −91%
P 91.5 91.4 (−0.1%) 121.5 −64% −86% −95% −95%

DP 89.8 89.6 (−0.2%) 62.6 −65% −85% −95% −95%

QQP

O 88.6 88.3 (−0.3%) 172.3 −51% −86% −96% −93%
D 87.9 87.7 (−0.2%) 88.2 −51% −85% −97% −93%
P 88.5 88.5 (−0.0%) 118.3 −63% −87% −97% −95%

DP 87.6 87.6 (−0.0%) 58.8 −62% −86% −97% −95%

Table 2: Accuracy drops and time savings provided by quantization (Q) and dynamic length inference (L) applied
at the end of pipelines. The accuracy drops and time savings of most operators are cumulative.

The idea for estimating accuracy drops is based
on the following cumulativeness assumption. Sup-
pose R is a pipeline and A* is the accuracy for a
pipeline *, the assumption is:

AR+D =
AD

AO
×AR, (1)

AR+P =
AP

AO
×AR. (2)

In other words, our assumption is that adding D or
P to any pipeline should result in similar relative
accuracy drops. We can therefore estimate the ac-
curacy of ED, EP, and EDP (and other orders of
the same set of operators) as follows: (1) calculate
accuracy drops of D and P relative to O; (2) mul-
tiply the relative accuracy drops to points on E’s
tradeoff curve.

The idea for estimating time savings is also sim-
ilar, but additional modifications are necessary:

• When we add P to E, since they work on
reducing different dimensions of the model
(width and depth), the time savings are inde-
pendent and directly cumulative:

TE+P =
TP

TO
× TE, (3)

where similarly, T* is the inference time for a
pipeline *.

• When we add D to E, we need to consider the
fact that both D and E reduce the number of
layers. Therefore, our estimation is based on
interpolating the following two extreme cases.
When the early exiting threshold is extremely
large and the model uses all layers for infer-
ence, the relative time saving will be close to
TD/TO; when the early exiting threshold is
extremely small and the model exits after the
first layer, adding D provides no extra time
saving. The final time saving estimation for
E+D is therefore the following interpolation:

TE+D = tE + (TE − tE)×
TD

TO
, (4)

where tE is the minimum value of time in the
tradeoff curve of E (i.e., the point where we
early exit after only one layer).

• When we add both P and D to E, we combine
the above two estimations:

TE+DP =
(
tE+(TE−tE)×

TD

TO

)
× TP

TO
. (5)

We use the above ideas to estimate tradeoff curves
of new pipelines and show the results in Fig-
ure 4. From the figure, we can see that the estima-
tion curves (orange) align well with the measured
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Figure 4: Estimating the tradeoff curves of target pipelines based on the results of individually applying operators.
Green curves: measured tradeoff curves of target pipelines; blue curves: measured tradeoff curves of individually
applying the operator E; orange curves: estimated tradeoff curves for the target pipelines.

curves (green), across different datasets and oper-
ator sets. This shows that individual components
from Group I are cumulative with each other under
these settings.

For operators from Group II, we refer to Table 2.
We see that on the same dataset, Q leads to sim-
ilar accuracy drops when added to any pipeline,
especially on the larger and more stable datasets,
QNLI and QQP. Time savings, on the other hand,
are trickier:

• L provides consistent time savings for all
pipelines, showing that it is cumulative with
any operator from Group I.

• L and Q are also cumulative with each other,
as evidenced by the fact that the measured
time savings of +QL align well with the esti-
mation of +QL, which is simply multiplying
the respective savings of Q and L.

• Q, however, is cumulative only with D and E,
but not P—it saves more time for pipelines
with P. This is because quantization’s acceler-
ation is different for different types of opera-
tions, and pruning changes the proportion of
each type of operations within a transformer
layer, while distillation or early exiting does
not. When we estimate the tradeoff of a
pipeline containing both Q and P, PQ needs

to be treated as a compound operator, and it
is cumulative with others. This also applies
to other operators that change the connection
within a transformer layer.

Empirically, the observation that operators are
cumulative facilitates future experiments on effi-
ciency pipelines: for pipelines that are computation-
ally expensive to train and evaluate, simply measur-
ing the performance of their components can pro-
vide us with a reliable estimation of the pipeline’s
behavior. Therefore, choosing efficiency meth-
ods for a pipeline according to desired accuracy–
efficiency tradeoffs becomes easy calculation once
the measurement of individual operators is finished.

On the theoretical side, the cumulativeness obser-
vation also makes it easier to analyze the contribu-
tion of each component, i.e., how much time each
operator saves and how much accuracy each sacri-
fices. The Shapley value (Shapley, 1997) of each
component, for instance, can be approximated by
simply using the standalone estimation (Fréchette
et al., 2016).

6 Conclusion

In this paper, we propose a conceptual framework
to consider efficiency methods as operators applied
on transformer models and study the properties of
these operators when used as pipelines. We ob-

2877



serve that, under the condition of our experiments,
(1) efficiency operators are commutative: changing
their order has little practical impact on the final
efficiency–accuracy tradeoff; (2) efficiency opera-
tors are cumulative: a new pipeline’s performance
can be estimated by aggregating time savings and
accuracy drops of each component. These observa-
tions facilitate future construction, evaluation, and
application of efficiency pipelines, and also pro-
vide an interesting direction to better understand
efficiency pipelines.

Limitations

There exist so many different transformer models
and efficiency methods that it is extremely difficult
to conduct exhaustive experiments for all of them.
Although our experiments demonstrate nice prop-
erties for efficiency operators, the observations are
restricted to our experimental setup. Considering
the huge space of all combinations of transformer
models, efficiency methods, and datasets, our ex-
periments provide understanding for an important
but small subspace, and it is possible that the con-
clusions no longer hold when we explore further.
We hope that our discoveries can inspire more fu-
ture research, both empirical and theoretical, to
push further the frontier of our understanding of
the space.
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